当前位置:文档之家› 地铁能馈再生制动能量利用原理

地铁能馈再生制动能量利用原理

机车再生制动能量吸收利用方案

2014年8月

汇报内容

一、机车再生制动能量吸收利用的意义

机械能→电能

机械能→热能

机械能→热能

将再生制动的能量回收再利用;

可采用储能、回馈等方式。

减少隧道内热量的排放;

减小环控动力负荷,节约环控投资。

减小机车轴重,增加了载客能力;节约车底空间,减小电气布线难度。

全被其它车辆和本车的用电设备吸收时,牵引网电压将很快上升,网压上升到一定程度

1、电阻耗能型

由于电阻装置将吸收的能量均以发热的形式消耗掉,装置顶部温度高,出现过烤化灯管等问。(北京地铁15号线中段地下站的电阻室设置在地面,为封闭式房间,后改为栏杆形

通过对北京已通线运行情况调查,电阻工作时会

1、电阻耗能型

2、逆变回馈型

2.1

2.2

逆变回馈型再生电能利用装置的直流侧与牵引变电所中的整流器直流母线相联,其交流进

3、储能型(超级电容储能、飞轮储能)

储能型再生制动能量吸收装置主要采用IGBT逆变器将列车的再生制动能量吸收到大容量电能释放出去并进行再利用。

电容储能装置原理图

经初步估算,电容型装置在北京地铁的寿命约10年。储能单元

3、储能型(超级电容储能、飞轮储能)电容储能型应用情况:

三、再生制动能量吸收利用方案比较

1、中压逆变型装置接入系统方案①

2、中压逆变型装置系统参数

3、中压逆变型装置应用情况

18

变压器交流低压开关柜

中压能馈装置

4、设备实物照片-北京10号线二期-千驷驭-2000kW

4、设备实物照片-14号线西段-时代电气-3600kW(间歇工作20s/120s)

变压器双向变流器直流柜(隔离开关

和电抗器)

5、实测数据分析-北京10号线

制动能量回收技术现状及发展趋势

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:汽车技术现状及发展趋势教师:贺岩松姓名:赵金龙学号:20110702218 专业:车辆工程类别:学术 上课时间:2011年11月至2011年11月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

再生制动技术现状及发展趋势 摘要 随着新能源危机的加剧,混合动力汽车和纯电动汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车和电动汽车的一向重要节能技术,已经得到越来越大的重视。再生制动技术使汽车在制动过程中将一部分动能转化为电能并储存在储能装置中,实现了制动减速时的能量再利用。本文对再生制动的工作原理、技术发展现状进行了详细的阐述,并提出日后的发展趋势。 关键词:制动能量;制动能量回收;发展现状 Regenerative Braking Technology Status and Development Trends ABSTRACT With the new energy crisis intensifies, hybrid vehicles and pure electric vehicles has become the new direction of next generation car, and regenerative brakingtechnology as an important energy-saving technology for hybrid vehicles and electric cars has been paid more and more attention.During braking, part of the kinetic energywill be turn into electrical energy by regenerative braking technology so that we can achieve the energy re-use when the car speed is brakingdeceleration .In this paper, regenerative braking technology works and research status has been elaborated in detail and proposed the future development trend. Key words:Braking energy; Energy regeneration and use; Research status

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理

————————————————————————————————作者:————————————————————————————————日期:

气压制动系统的主要构造元件 和工作原理 气压制动以压缩空气为制动源,制动踏板控制压缩空气进入车轮制动器,所以气压制动最大的优势是操纵轻便,提供大的制动力矩;气压制动的另一个优势是对长轴距、多轴和拖带半挂车、挂车等,实现异步分配制动有独特的优越性。 但是气压制动的缺点也很明显: 相对于液压制动,气压制动结构要复杂的多;且制动不如液压式柔和、行驶舒适性差;所以气压制动因而一般只用于中、重型汽车上。

下面主要以斯太尔8X4载重汽车为例介绍气压制动传动装置主要部件的结构组成。 1.空气压缩机 空气压缩机是全车制动系气路的气源,斯太尔6X4载重汽车空气压缩机为单缸混合冷却式,气缸体为风冷,气缸盖通过发动机冷却系统水冷。它固定在发动机前端左侧的支架上,它的传动齿轮与其曲轴为高扭矩自锁连接,在正时齿轮室中悬臂安装,由发动机曲轴通过中间齿轮、喷油泵齿轮、空气压缩机传动轴驱动转动,其构造如图18. 5所示,与汽车发动机机构相似,它主要由空气压缩机壳体1、活塞2、曲轴3、单向阀4等组成。 壳体由气缸体、气缸盖组成,壳体是铸铁的,外面带有用于空气冷却的散热筋片,里面是用于产生压缩空气的气缸。进、排气阀门采用舌簧结构,进气口经气管通向空气滤清器;出气口则经气管通向空气干燥器。润滑油由发动机主油道经油管、滚珠轴承,进入曲轴箱,然后经正时齿轮室回到油底壳。 活塞通过连杆与曲轴相连,连杆轴承合金直接浇注在连杆大头和连杆瓦盖上,活塞通过活塞环与气缸密封。 曲轴两端通过滚珠轴承支承在曲轴箱内,?前后有轴承盖,前端伸出盖外用半圆键及螺母固装传动齿轮,前端孔内分另1J装有防止漏油的油封。 发动机运转时,空气压缩机随之转动,当活塞下行时,进气阀门被打开,外界空气经空气滤清器、进气道进人气缸。当活塞上行时,?进气阀门被关闭,气缸内空气被压缩,出气阀门在压缩空气的作用下被打开,压缩空气由空气压缩机出气口经管路、空气干燥器进人储气筒和四管路保护阀。

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

电动汽车制动能量回收控制策略的研究

摘要:电动汽车的驱动电机运行在再生发电状态时,既可以提供制动力,又可以给电池充电回收车体动能,从而延长电动车续驶里程。对制动模式进行了分类,并详细探讨了中轻度刹车时制动能量回收的机制和影响因素。提出了制动能量回收的最优控制策略,给出了仿真模型及结果,最后基于仿真模型及XL型纯电动车对控制算法的效果进行了评价。关键词:制动能量回收电动汽车镍氢电池Simulink模型电动汽车(EV)的研究是在环境保护问题及能源问题日益受到关注的情况下兴起的。在EV性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。尽管蓄电池技术有了长足进步,但由于受安全性、经济性等因素的制约,近期不会有大的突破。因此如何提高EV能量利用率是一个非常关键的问题。制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的行驶距离延长百分之十到百分之三十。目前国内关于制动能量回收的研究还处在初级阶段。制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。研制一种既具有实际效用、又符合司机操作习惯的系统是有一定难度的。本文对上述问题作了一些积极的探索,并得出了一些有益的结论。1制动模式电动汽车制动可分为以下三种模式,对不同情况应采用不同的控制策略。1.1急刹车急刹车对应于制动加速度大于2m/s2的过程。出于安全性方面的考虑,急刹车应以机械为主,电刹车同时作用。在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械制动力。1.2中轻度刹车中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程与停止过程。电刹车负责减速过程,停止过程由机械刹车完成。两种刹车的切换点由电机发电特性确定。1.3汽车长下坡时的刹车汽车长下坡一般发生在盘山公路下缓坡时。在制动力要求不大时,可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。限制因素主要为电池的最大可充电时间。由于电动汽车主要工作在城市工况下,所以本文将研究重点放在中轻度电刹车上。2制动能量回收的约束条件实用的能量回收系统应满足以下要求:(1)满足刹车的安全要求,符合驾驶员的刹车习惯。刹车过程中,对安全的要求是第一位的。需要找到电刹车和机械刹车的最佳覆盖区间,在确保安全的前提下,尽可能多地回收能量。具有能量回收系统的电动汽车的刹车过程应尽可能地与传统的刹车过程近似,这将保证在实际应用中,系统有吸引力,可以为大众所接受。(2)考虑驱动电机的发电工作特性和输出能力。电动汽车中常用的是永磁直流电机或感应异步电机,应针对不同的电机的发电效率特性,采取相应的控制手段。(3)确保电池组在充电过程中的安全,防止过充。电动汽车中常用的电池为镍氢电池、锂电池和铅酸电池。充电时,避免因充电电流过大或充电时间过长而损害电池。由以上分析可得能量回收的约束条件:(1)根据电池放电深度的不同,电池可接受的最大充电电流。(2)电池可接受的最大充电时间。(3)能量回收停止时电机的转速及与此相对应的充电电流值。本项目原型车为XL型纯电动车,驱动采用异步交流电机,额定功率为20kW,峰值功率为60kW,额定转矩为53Nm,峰值转矩为290Nm,持续输出三倍额定转矩时间不小于30s,额定转速为3600r/min,最高转速为9000r/min。蓄电池采用24节100Ah镍氢电池,其瞬时充电电流可达1.5C(C为电池放电倍率),即150A。在充电电流为0.5C时,可持续安全充电。实验表明,在电机转速为500r/min时,充电电流小于6A。可设此点为电刹车与机械刹车的切换点。3制动能量回收控制算法3.1制动过程分析经推导可得,一次刹车回收能量E=K1K2K3(ΔW-FfS)。特定刹车过程中,车体动能衰减ΔW为定值。特定车型的机械传动效率K1和滚动摩擦力Ff基本上是固定的。对蓄电池来说,制动能量回收对应于短时间(不超过20s)、大电流(可达100A)充电,因此能量回收约束条件(2)可忽略,充电效率K3也可认为恒定。对于电机来说,在制动过程

车辆制动能量回收

低碳世博,能源再利用—— 基于超级电容的城市轨道车辆制动能量回收 1 概述 由于城市轨道车辆具有运量大、速度快、安全、准点、保护环境、节约能源和用地等特点,世界各国普遍认识到,解决城市交通问题的根本出路在于优先发展以轨道交通为骨干的城市公共交通系统。随着我国经济的高速发展、城市化进程的不断加快,城市轨道交通将在我国城市公共交通运输中占有越来越越重要的地位。到目前为止我国已有北京、上海、广州、深圳、武汉等城市已经运行,截至2009年9月,我国有27个城市正在筹备建设城市轨道交通,其中22个城市的轨道交通建设规划已经获得国务院批复。至2015年,北京、上海、广州、深圳等22个城市将建设79条轨道交通线路,总长度为2259.84公里,计划总投资8820.03亿元。 城市轨道交通列车的特点就是线路的站间距短,列车运行时频繁地起动、制动,基本上在列车达到最高速时很快就会制动。目前,我国地铁列车大都采用接触网/轨直流供电, 牵引系统大都是变压变频的交流传动系统。列车牵引时从电网吸收能量,制动时采用反馈制动把制动能量反馈回电网, 根据经验,地铁再生制动产生的能量除了一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其他相邻列车吸收利用外,剩余部分将主要被列车的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。当列车发车密度较低时,再生能量被其他车辆吸收的概率将大大降低。资料表明,当列车发车间隔大于10 min 时,再生制动能量被吸收的概率几乎为零,此时绝大部分制动能量将被车辆吸收电阻吸收,变成热能并向四外散发,这必将使隧道和站内的温度升高。目前国内城市轨道交通在地面采用电阻能耗吸收装置处理列车运行过程中的再生能量,这不仅浪费能量,而且也增加了站内空调通风装置的负担,并使城轨建设费用和运行费用增加。如能将这部分能量储存再利用,这些问题将迎刃而解。 2 可行性分析 城市轨道交通车辆制动能量是否具有回收的可行性,需要对制动能量进行合理计算,并根据其大小确定制动能量是否具有实际回收价值。现以一列上海轨道交通2号线6节车辆编组为例(4节动车,2节拖车),设轨道车辆的制动初速度为70km/h (V1) ,制动末速度为8km/h (V2),M为车辆和载客质量,则利用公式(1)计算电制动能量。(1)

制动系统-各种阀类原理介绍

制定系统简要介绍一:制动系统零部件的介绍 2、制动系统零部件的接口标示 0——真空接口 1——进气接口 2——出气接口 3——排气接口(通大气) 4——控制接口(进入部件) 5——备用 6——备用 7——防冻液接口 8——润滑油接口(空气压缩机用) 9——冷却液接口(空气压缩机用)

3、制动系统零部件的工作原理 A、气制动阀 用途: 在双回路主制动系统的制动过程和释放过程中实现灵敏的随动控制。 工作原理: 在顶杆座a施加制动力,推动活塞c下移,关闭排气口d,打开进气门j,从11口来的压缩空气到达A腔,随后从21口输出到制动管路I。同时气流经孔D到B腔,作用在活塞f上,使活塞f 下行,关闭排气孔h,打开进气门g,由12口来的压缩空气到达c腔,从22口输出送到制动管路II。 解除制动时,21、22口的气压分别经排气门d和h从排气口3排向大气。 当第一回路失效时,阀门总成e推动活塞f向下移动,关闭排气门h,打开进气门g,使第二回路正常工作。当第二回路失效时,不影响第一回路正常工作。

B、快放阀 用途: 该总成可迅速地将制动气室中的压缩空气排入大气,以便迅速地解除制动工作原理: 气路中没有压力时,阀片a在本身弹力的作用下,使进气口和排气口处于关闭状态。 制动时,压缩空气从1口进入,将阀片a紧压在排气口上,气流经A腔从2口进入制动气室。 解除制动时,1口压力下降阀片a在气室压力作用下,关闭进气口,气室压力从2口进入3口迅速排入大气。 C、挂车阀 a、挂车阀(不带接流装置) 挂车控制阀(不带节流) 用途: 用以控制挂车或半挂车的制动,装于牵引车上。

适用于挂车是双管路制动系统,牵引车主制动是双回路系统,停车或是断气式制动。 工作原理: 图一:不带越前装置。 正常行使时,从手制动阀来的压缩空气从43口进入,使进气门h关闭、排气门C打开,2口无气压输出。 当操纵牵引车行车制动时,从制动阀第一回路来的压缩空气从41口进入A 腔,作用在活塞A上,使排气门C关闭,进气门h开启,2口则有输出。2口输出气压值的大小与41口气压值成正比例。当第一回路失效时,41口无气压出入,此时从制动阀第二回路来的压缩空气从42口进入。E腔,作用在膜片e上,使排气门C关闭,进气门h开启,2口有输出。2口输出气压值大小与42口气压值成正比例。当解除制动时,41、42口气压下降而43口气压上升、进气门h关闭,排气门C打开,B腔气压(2口气压)从排气口3进入大气。 图二:带越前装置。 原理同图一,越前作用是通过调节螺钉(i)调节弹簧(h)的力,使2口相对与41口的压力越前值最大可达100Kpa。 B、挂车阀(带接流装置) 用途 用以控制挂车或半挂车的制动,装于牵引车上。适用于挂车是是双回路制动系统,停车或紧急制动为断气式制动。 具有当挂车制动系统控制管路断裂或漏气会自动引起挂车制动的功能。 工作原理: 正常行驶时,从空压机来的压缩空气从11口进入,使柱塞i处于上面的位置,节流阀体上的节流通道全部打开,气压从21口输出直挂车充气双接头,一方面给挂车充气,另一方面又回到12口的输入c腔。当挂车控制管路连接断裂或漏气,则制动时在22口不能建立压力,从41口输入G腔的压缩空气。使柱塞i下移,节流孔被堵住,使11口到21口的气流受到很大的节流作用,同时进气门C打开,因而挂车充气管路中的压力很快经12口,进气阀门C从22口排入大气。阀的其它部分工作原理同不带节流装置的挂车控制阀。

刹车系统工作原理

拒绝专业术语简述刹车系统工作原理 2010-04-22 22:00:14复制本文地址传给QQ/MSN线上好友 【大字中字小字】【打印】【发表评论】 在汽车之家的性能测试环节中,加速和刹车是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车刹车好不好,但问题在于速度慢多数情况下不会有什么太大问题而刹车不好很可能关系到生命安全,所以今天我们就来说说汽车的刹车。 刹车系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,刹车时刹车系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里刹车到静止可能只需要XX秒而已,可见刹车系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急刹车中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。 我们先从刹车总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的刹车总泵”小得可怜“,甚至让人怀疑它是否能提供足够的刹车力。其实完全不必为此

担心,因为刹车系统运用了”帕斯卡定律“。 帕斯卡定律: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。 简单来说就是我们踩下制动踏板后施加到刹车总泵液体上的压强等于刹车盘活塞处的液体压强,但因为压强等于单位面积的压力,所以只要增大活塞的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形活塞,左侧活塞直径是2英寸,右侧活塞直径是6英寸,也就是左侧活塞的3倍,那么如果给左侧活塞施加一定量的力,那么右侧活塞将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

电动车制动能量回收.

电控制动是趋势谈电动车制动解决方案 [汽车之家技术] 围绕电动车的话题更多的集中在续航里程、电池类型、充电方式及时间等一些使用的问题上,今天我们来聊聊别的话题,电动技术在代替了传统动力技术后,引发的变革确实是巨大的,这也影响到了车辆的技术开发,制动系统就是要谋变的其中一环。 图中所示为传统制动系统,驾驶员控制踏板,与踏板相连的是真空助力器,它负责将驾驶员施予踏板的力放大并推动主泵活塞进行制动压力,最后,制动分泵由活塞推动制动片夹紧制动盘,从而实现制动力。 这里面涉及到一个很重要的部件——真空助力器,如果它的工作状态不好,驾驶员踩制动踏板时就会觉得很硬,没有经验的驾驶员就会误以为没有制动功能了。而真空助力器的真空环境是由发动机提供的,较为传统的方式是从进气歧管处引出一根气管通向真空助力器,为了确保真空环境的稳定性,有些发动机还专门为

真空助力器设计了一个由凸轮轴驱动的机械真空泵,在此之前,还有厂商用电子真空泵来弥补“真空”。 传统动力汽车,制动系统可以从发动机处获得真空源从而让真空助力器为驾驶员提供辅助作用,那电动车的动力系统不具备制造真空的能力,制动助力的问题将如何解决? 解决这个问题现在有两种模式,一种是在现有的结构基础上去解决真空 源的问题,另一种则是采用新的技术原理,彻底舍弃真空在制动系统中的用途,重新设计制动系统技术结构。不仅是汽车行业,在各行各业面临新老更替时都少不了这样的做事逻辑。 ● 利用现有基础进行技术改进 利用现有结构基础进行技术改进的方式是目前绝大多数厂商在新能源车中采用的方式,原有的真空助力器以及相关管路得到保留,管路的另一端连接的电子真空助力泵,当传感器监测到助力器真空度不足时,电子真空泵开始工作维持真空环境,通过这样的方式,确保真空助力器能够像原先一样为驾驶员提供辅助作用。不过,这样的电子真空助力泵的噪音较大,此外更重要的是,电子真空泵的工作稳定性以及寿命都不太适合当做主要及唯一的真空源供应部件(原先在传统汽车上,它只是辅助维持真空环境)。显然,这样的方案是来自传统的汽车研发理念,而并非是站在新能源车的开发角度来解决问题。 ● 舍弃真空在制动系统中的用途

列车再生制动能量回收的方法及分析

列车再生制动能量回收的方法及分析 城市轨道交通是耗电大户。而如何高效利用电能是目前城市轨道交通节能技术的关键问题。车辆在运行过程中,由于站间距一般较短,因此要求起动加速度和制动减速度比较大,并具有良好的起动和制动性能。城轨交通供电系统一直采用二极管整流技术实现交流电源到直流牵引电源的转换,特别是采取24脉波整流技术后,与电网的谐波兼容问题得到较好地解决。该技术虽然可以较好地满足车辆牵引取流的需求,但是此类系统存在以下问题: (1)只能实现能量的单向流动,对于需要频繁起动和制动的地铁、轻轨等交通工具,制动能量的回收有着很大的潜力。车辆再生制动产生的反馈能量一般为牵引能量的30%甚至更多。而这些再生能量除了按一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其它相邻列车吸收利用外,剩余部分将主要被车辆的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。如果在一列地铁列车刹车时附近没有其他列车加速运行,那它所回馈的电能中只有30%~50%能被再次利用(尤其是在低电压、高电流的网络系统里)。如果当列车发车的间隔大于10 min时,再生制动能量被相邻列车吸收重新利用的概率几乎为零。 (2)由于制动电阻的发热引发站台和地下隧道热量积累、温度上升,某些城轨系统隧道温度高达50℃,不得不加大通风设备的容量,造成严重的二次能耗; (3)对于车载制动电阻模式制动电阻增加车体自重造成的电能消耗十分可观; (4)牵引网上同时在线运行的车辆有十几对甚至几十对,负荷的变化造成牵引网压波动严重,不利于车辆平稳、可靠运行。可见车辆的制动能量至今还是一种没有被很好地开发利用的能量。 目前,在我国大力提倡节能降耗的形势下,城轨供电系统的发展进度已滞后列车车辆技术的发展,多个待建的城市轨道线路,如无锡、苏州、长沙、西安、深圳和广州等多条线路,都提出了对现有牵引供电系统进行技术改造的需求或者是寻求更好的储能装置去回收这些多余的再生能量。再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。 首先介绍储能型回收装置 (1)蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。

制动工况对对电动汽车制动回收能量影响的分析3

制动工况对电动汽车制动能量回收影响分析 前言 随着能源和环境问题日益突出,电动汽车已成为替代传统内燃机汽车的最佳选择。受限于当前技术条件,电动汽车续驶里程普遍较短,电动汽车节能技术成为电动汽车研究的重要方面,其中再生制动作为电动汽车节能主要手段,受到国内外学者广泛关注[1-2]。设计阶段的电动汽车结构和动力系统设计、运行阶段的控制策略和制动工况等都是影响再生制动能量回收效果的因素[3]。 目前,制动工况方面的分析研究,多集中对制动工况进行解耦,分别研究制动初速度和制动强度对制动回收能量效果的影响[4-6],并未综合分析制动工况各因素影响能量回收效果之间的耦合关系,或分析制动强度与制动初始速度对能量回收效果贡献大小。 制动工况分为两种,单次制动工况和循环制动工况[7],循环制动工况多用在试验条件下对电动车性能测试,日常驾驶中更多应用的是单次制动工况。单次制动工况为本文研究工况,其影响因素包含两个方面:制动强度(z )和制动初速度。 本文以较为普遍的集中电机前轴驱动电动汽车为研究对象,采用制动稳定性较好的理想制动力分配策略,利用Matlab/Simulink 与Isight 建立联合仿真平台,对由制动初速度和制动强度组成的连续设计空间进行试验设计(DOE)。采用最优拉丁超立方设计(Optimal latin hypercube design ,OptLHD)对连续设计空间进行采样,分析制动回收能量与制动初速度和制动强度之间的关系,分析制动工况对制动能量回收的主效应和交互效应,和影响制动能量回收的主次因素。 1制动能量回收影响因素分析 再生制动时受各种阻力损耗、摩擦制动器消耗、电机和电池工作特性和效率、相关部件工作效率等方面的影响,未能将制动动能完全转化为电能存储在蓄电池中。综上各方面将主要因素分为一下三类: (1)影响制动总能量的因素,制动总能量计算公式为()222 1e s v v m E -=(式中,E 为制动总能量,kJ ;m 为电动车整备质量,kg ;s v 和e v 分别为为车辆制动初始和终止速度,1s m -?),得出影响因素主要是制动初速度、电动汽车整备质量等。 (2)影响可回收能量的因素,如制动强度、车辆结构(滚动阻力消耗、空气阻力消耗等)、制动力分配策略(摩擦制动损耗)等。 (3)影响再生制动回收能量的因素,如驱动系统布置、电机和电池工作特性、传动系统特性、各部件及传递线路损耗、控制器损耗等。 以上影响因素主要归为四个方面:车辆结构、动力系统结构、制动工况、制动控制策略,在设计阶段车辆结构、动力系统结构和控制策略确定后,制动工况成为可根据驾驶员主观操纵的影响再生制动能量回收效果的唯一因素。 2仿真模型与验证 2.1理想再生制动力分配策略 本文采用文献[8]中制定的理想制动力分配策略。理想再生制动力分配策略可以保证前后轴制动力得到合理分配,制动稳定性好,该策略包含制动力在前后轴的分配及在电机制动力与摩擦制动力之间的分配两部分。分配电机制动力和摩擦制动力时要优先利用电机制动力,不足部分再由摩擦制动力补充。 2.2建立仿真模型 使用MATLAB/Simulink 建立整车、电机、电池和控制策略等模型,整车参数如表1所示。

关于制动能量回收

第一篇章:制动能量回收系统简介 制动能量回收系统定义 制动能量回收系统是指一种应用在汽车或者轨道交通上的系统,能够将制动时产生的热能转换成机器能、并将其存储在电容器内,在使用时可迅速将能量释放,又名MINI Clubman。MINI Clubman从一开始就凭借独特的概念,外向的设计以及别具魅力的发动机脱颖而出,为新一代MINI开发的三款高技术发动机确保了无时不在的运动驾驶乐趣和非凡的高效。而且MINI Clubman的所有发动机当然也标准装备了2008年车型为最大降低燃油消耗量而推出的全部新技术。 制动能量回收系统的优点 这些智能技术提高了发动机的效率,适度降低了耗油量,同时也进一步提高了驾驶乐趣。这里一个很好的例子就是制动能量回收系统,能源管理系统确保发动机的输出功率主要被转化成为驱动力,只有在应用制动时或发动机处于超速状态时才会转化成电能供车载系统使用。为了达到这个效果,发电机会在发动机输出功率,即加速或牵引汽车时自动与发动机脱离。因此,传统模式下发电机消耗和从汽车那里获得的动力现在全部用以实现更快更具动态的加速。因为在MINI回到超速状态或驾驶者应用制动时,发电机就会再次启动,从而确保车载系统能够得到充足的电力供应。 制动能量回收问题解决方案 可以通过在发动机与电机之间设置在车辆减速时,使发动机停止输出功率而得以解决。但制动能量回收还涉及到混合动力车的液压制动与制动能量回收的复杂平衡或条件优化的协调控制。那么,为什么可以通过驱动电机能够回收车辆的运动能量呢?概要地说,其原因就是电机工作的逆过程就是发电机工作状态。一般电学基础理论早已阐明,表示电机驱动的工作原理是Fleming(英籍工程师佛莱明)的左手定则,而表示发电原理的则

电动汽车制动能量回收控制策略的研究.

电动汽车制动能量回收控制策略的研究2008-01-20 摘要:电动汽车的驱动电机运行在再生发电状态时,既可以提供制动力,又可以给电池充电回收车体动能,从而延长电动车续驶里程。对制动模式进行了分类,并详细探讨了中轻度刹车时制动能量回收的机制和影响因素。提出了制动能量回收的最优控制策略,给出了仿真模型及结果,最后基于仿真模型及XL型纯电动车对控制算法的效果进行了评价。 关键词:制动能量回收电动汽车镍氢电池 Simulink模型 电动汽车(EV)的研究是在环境保护问题及能源问题日益受到关注的情况下兴起的。在EV性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。尽管蓄电池技术有了长足进步,但由于受安全性、经济性等因素的制约,近期不会有大的突破。因此如何提高EV能量利用率是一个非常关键的问题。 制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的行驶距离延长百分之十到百分之三十。 目前国内关于制动能量回收的研究还处在初级阶段。制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。研制一种既具有实际效用、又符合司机操作习惯的系统是有一定难度的。本文对上述问题作了一些积极的探索,并得出了一些有益的结论。 1制动模式 电动汽车制动可分为以下三种模式,对不同情况应采用不同的控制策略。 1.1急刹车 急刹车对应于制动加速度大于2m/s2的`过程。出于安全性方面的考虑,急刹车应以机械为主,电刹车同时作用。在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械制动力。 1.2中轻度刹车 中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程与停止过程。电刹车负责减速过程,停止过程由机械刹车完成。两种刹车的切换点由电机发电特性确定。

汽车制动系统工作原理详解

汽车制动系统工作原理详解 众所周知,当我们踩下制动踏板时,汽车会减速直到停车。但这个工作是怎么样完成的?你腿部的力量是怎么样传递到车轮的?这个力量是怎么样被扩大以至能让一台笨重的汽车停下来? 首先我们把制动系统分成6部分,从踏板到车轮依次解释每部分的工作原理,在了解汽车制动原理之前我们先了解一些基本理论,附加部分包括制动系统的基本操作方式。 基本的制动原理 当你踩下制动踏板时,机构会通过液压把你脚上的力量传递给车轮。但实际上要想让车停下来必须要一个很大的力量,这要比人腿的力量大很多。所以制动系统必须能够放大腿部的力量,要做到这一点有两个办法: 1、杠杆作用 2、利用帕斯卡定律,用液力放大 制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理: 杠杆作用、液压作用、摩擦力作用 杠杆作用

制动踏板能够利用杠杆作用放大人腿部的力量,然后把这个力量传递给液压系统。 如上图,在杠杆的左边施加一个力F,杠杆左边的长度(2X)是右边(X)的两倍。因此在杠杆右端可以得到左端两倍的力2F,但是它的行程Y只有左端行程2Y的一半。 液压系统 其实任何液压系统背后的基本原理都很简单:作用在一点的力被不能压缩的液体传递到另一点,这种液体通常是油。绝大多数制动系统也在此中放大制动力量。下图是最简单的液压系统: 如图:两个活塞(红色)装在充满油(蓝色)的玻璃圆桶中,之间由一个充满油的导管连接,如果你施一个向下的力给其中一个活塞(图中左边的活塞)那么这个力可以通过管道内的液压油传送到第二个活塞。由于油不能被压缩,所以这种方式传递力矩的效率非常高,几乎100%的力传递给了第二个活塞。液压传力系统最大的好处就是可以以任何长度,或者曲折成

制动能量回收系统

制动能量回收系统 目录 概述 制动能量回收系统又名Braking Energy Recovery System:是指一种应用在汽车或者轨道交通上的系统,能够将制动时产生的热能转换成机器能、并将其存储在电容器内,在使用时可迅速将能量释放, 制动能量回收原理 制动能量回收是现代电动汽车与混合动力车重要技术之一,也是它们的重要特点。在一般内燃机汽车上,当车辆减速、制动时,车辆的运动能量通过制动系统而转变为热能,并向大气中释放。而在电动汽车与混合动力车上,这种被浪费掉的运动能量已可通过制动能量回收技术转变为电能并储存于蓄电池中,并进一步转化为驱动能量。例如,当车辆起步或加速时,需要增大驱动力时,电机驱动力成为发动机的辅助动力,使电能获得有效应用。 一般认为,在车辆非紧急制动的普通制动场合,约1/5的能量可以通过制动回收。制动能量回收按照混合动力的工作方式不同而有所不同。 比如在丰田普锐斯混合动力车上,车辆运动能量能够通过液压制动和能量回收制动的协调控制回收。但在本田Insight混合动力车上,由于发动机与驱动电机连接,所以不能够消除发动机制动。因此,在制动时发动机全部气门关闭,以消除泵气损失,而只存在发动机本身的纯粹的机械摩擦损失。 在发动机气门不停止工作场合,减速时能够回收的能量约是车辆运动能量的1/3。通过智能气门正时与升程控制系统使气门停止工作,发动机本身的机械摩擦(含泵气损失)能够减少约70%。回收能量增加到车辆运动能量的2/3。 制动能量回收液压制动协调控制的概况 制动能量回收问题解决方案 可以通过在发动机与电机之间设置离合器,在车辆减速时,使发动机停止输出功率而得以解决。但制动能量回收还涉及到混合动力车的液压制动与制动能量回收的复杂平衡或条件优化的协调控制。那么,为什么可以通过驱动电机能够回收车辆的运动能量呢?概要地说,其原因就是电机工作的逆过程就是发电机

新能源电动汽车回收系统(DOC)

现代汽车电子技术 题目:电动助力转向系统 摘要 本文从全球环境污染和能源短缺等严峻问题阐述了发展电动汽

车的重要性和必要性,着重分析概括了电动汽车制动能量回收系统的研究现状 关键字电动汽车制动能量回收系统 1 引言 目前,普通燃油汽车在国内外仍占据绝大部分汽车市场。汽车发动机燃烧燃料产生动力的同时排放出大量尾气,其成分主要有二氧化碳(CO2),一氧化碳(CO),氮氧化合物(NO X)和碳氢化合物(HC),还有一些铅尘和烟尘等固体细微颗粒物,虽然现代汽车技术已经使汽车尾气排放降到很低,但由于汽车保有量持续高速增加,汽车排放的尾气还是会对人类的生存环境造成很严重的影响,例如近年来不断加剧的温室效应,光化学烟雾,城市雾霾等大气污染现象。 内燃机汽车消耗的能源主要来自石油,石油属于不可再生资源,目前全球已探明的石油总量为12000.7亿桶,按现在的开采速度将只够开采40.6年左右,即使会不断发现新的油田,但总会有消耗的一天。全球交通领域的石油消耗占石油总消耗的57%,由于汽车的保有量持续快速增长(主要来自发展中国家),到2020年预计这一比例将达到62%以上,2010年我国的石油对外依存度已达到53.8%,到2030年预计这一比例将达到80%以上,可见石油资源的短缺将会直接影响我国的能源安全,经济安全和国家安全,不利于我国长期可持续的发展,因此探索石油以外的汽车动力能源是21世纪迫切需要解决的问题。 电动汽车具有无污染,已启动,低噪声,易操纵等优点,相关的技术研究已趋成熟,是公认的未来汽车的主流。自1997年10底丰田推出混合动力车型Prius 以来,电动汽车越来越受市场的欢迎,近年来不少国内外汽车生厂商已向市场推出不少种类的电动汽车,在混合动力汽车领域,日本的丰田和本田不管从技术研发还是在市场销售,宣传等方面已经走在世界的前列,推出了诸如Pius,Insight,Fit,Civic 等量产化混合动力车型,其他国外汽车制造商在本田和丰田之后也相继推出相应的车型,例如宝马3系,5系,7系,8系都推出了相应的混合动力车型,大众途锐的混合动力版,特斯拉推出的MODEL S 纯电动车,国内汽车生产商比亚迪在电动汽车领域已经走在前列,相继推出包含“秦”在内的许多种混合动力车型。

相关主题
文本预览
相关文档 最新文档