当前位置:文档之家› Calculations of single-inclusive cross sections and spin asymmetries in pp scattering

Calculations of single-inclusive cross sections and spin asymmetries in pp scattering

蓄电池放电容量测试仪

蓄电池放电容量测试仪产品功能 ●测试电压范围宽,覆盖10V-300V电压范围电池组放电测试,最大放电电流达到120A,用户只需要一台RTKR-8400蓄电池放电容量测试仪就可以满足多种电压等级的电池组测试,大大节约购买仪表资金,而且方便实用 ●支持恒流、恒功率、恒阻值三种放电测试模式,能满足多种测试要求。当需要检测蓄电池容量时,可以选择恒流放电模式,准确测试蓄电池组的实际容量;当需要检测蓄电池带载能力时,可以选择恒功率测试模式,准确模拟蓄电池组真实负载时的后备供电时间。恒阻值放电模式多用于直流电流输出性能检测 ●5.7英寸超大触摸屏:采用大尺寸触摸屏,可直接在屏上进行点击操作,简单明了。放电过程中可查看所有的放电参数,并且可显示单体电压柱状图 ●采用蓝牙无线单体监测模块:兼容2V/6V/12V单体电压监测

●每个无线监测模块可同时监测4个单体:相比每个模块监测一只单体电压方法,需要配置的模块数量只是其1/4(48V只需6个监测模块),让无线模块接线操作更加简便 ●在线补偿式放电功能:在线放电时,主机显示电流=电池组放电电流=主机内部假负载电流+实际负载电流,由于在线放电时实际负载电流会随着在线电压的变化而变化,主机内部假负载电池也会自动进行调整,以保证蓄电池组一直以真正的恒流方式放电 ●单体电压停机门限可设置多节:如此可在一次连续不中断的放电测试中发现多节落后单体电池 ●功耗部分采用航空合金电热元件:电热转换效率高,安全系数高,体积小、重量轻 ●放电电流自动计算功能:内置各小时率放电系数,可放电根据被测电池的标称容量和需要的放电率来自动计算需要设置的放电电流 ●测试过程中,各单体电压实时检测和显示:并在主机屏幕上呈现出各单体电压柱状图的变化轨迹,还能自动实时呈现出电压最高与最低的单体,帮助您快速分析单体变化的趋势●放电参数预设功能:允许预先内置多达8种常用的放电参数设置,很多情况下无须重新设置放电参数,方便使用者放电操作,加快测试速度。使用者也可以对内置的预放参数进行修改 蓄电池放电容量测试仪技术参数

RTBO-4815蓄电池智能活化仪使用说明书

RTBO-4815蓄电池智能活化仪RTBO-4815Online Battery Discharge Tester 使用说明书 User's Manual 武汉锐拓普电力设备有限公司 W uhan Retop Electric Device Co.,L TD

目录 1概述(2) 1.1设备特点(2) 1.2系统组成(2) 1.3设备型号(2) 2主要技术参数(3) 3.基本工作原理(4) 4.使用与操作说明(5) 4.1设备面板说明(5) 4.2使用环境要求(5) 4.3仪器连接(5) 4.4通信故障模块修复配置(6) 4.5设备启动与参数预置(7) 4.6放电执行与监视(8) 4.7在线放电方式(9) 4.8离线放电方式(11) 4.9数据处理(12) 5故障模块修复(13) 6使用注意事项(14) 7售后服务(14) 8RTBO前台软件操作说明(15)

1.概述 1.1设备特点 在所有信息化、自动化程度不断提高的运行设备、运行网络系统中,不间断供电是一个最基础的保障.而无论是交流还是直流的不间断供电系统,蓄电池作为备用电源在系统中起着极其重要的作用。平时蓄电池处于浮充备用状态,一旦交流电失电或其它事故状态下,蓄电池则成为负荷的唯一能源供给者。 我们知道,蓄电池除了正常的使用寿命周期外,由于蓄电池本身的质量如材料、结构、工艺的缺陷及使用不当等问题导致一些蓄电池早期失效的现象时有发生。为了检验蓄电池组的可备用时间及实际容量,保证系统的正常运行,根据电源系统的维护规程,需要定期或按需适时的对蓄电池组进行容量的核对性放电测试,以早期发现个别的失效或接近失效的单体电池予以更换,保证整组电池的有效性;或者对整组电池的预期寿命作出评估. 武汉锐拓普电力设备有限公司经多年研制,以其专有技术,开发成功系列化的、智能化程度和精度极高的RTBO-4815蓄电池智能活化仪。本测试仪可在蓄电池在线状态下,作为放电负载,通过连续调控放电电流,实现设定值的恒流放电。在放电时,当蓄电组端电压或单体电压,跌至设定下限值、或设定的放电时间到、或设定的放电容量到,仪器自动停止放电,并记录下所有有价值的、连续的过程实时数据. 本测试仪系统对单体电池的电压监测信息,采用无线中继接入,简单、安全、精确. 本仪器有非常人性化的人机界面,不仅可以在菜单的提示下完成各种设置和数据查詢,而且放电的过程数据,均保存在设备的内存中,通过数据接口可以读取、转存,并通过上位机的专用软件,对数据进行分析,生成需要的曲线和报表. 本仪器有完善的保护功能,不仅有声、光告警,而且还有明确的界面提示. 本仪器体积小、重量轻、使用简单、测量精度高,规格齐全.可使用于24V、48V、72V、110V、220V、480V、600V等系列的蓄电池组。 1.2系统组成 RTBO-4815蓄电池智能活化仪是由主机、单体电池检测模块和测试电缆组成. 主机由彩色显示触摸屏、数据处理单元、数据采集单元、辅助电源单元、放电单元和面板操作单元组成. 1.3设备型号 本测试仪型号为:RTBO—XX YY 表征:RTBO—蓄电池容量测试仪型号 XX—放电电压等级 YY—放电电流等级

镍基合金粉末

镍基合金粉末 1.JN-NiCrBSi镍基自溶性合金粉末 关键词:镍基自熔性粉末、热喷涂合金粉末 特点:JN-NiCrBSi是硬度高的一种合金粉末,粉末的自溶性、润湿性和喷焊性能好,喷焊沉积层耐蚀、耐磨、耐滑动磨损性 用途:主要适合于汽车活塞环,气门、密封环、柱塞和轴等表面强化。 JN-NiCrBSi合金粉末化学成份wt% 2.Ni15镍基自溶性合金粉末 关键词:镍基自熔性粉末耐磨喷涂粉末镍基合金粉末 特点:JN.Ni15是硬度较低的镍、硼、硅、铜合金粉末、自溶性、润湿性较好、易加工、耐蚀。 用途:适用于铸造件,模具等缺陷修复。 粉末熔融温度:1050~1150°C 喷焊沉积层硬度:HB150~180 粉末粒度范围:-150目(一步法) JN.Ni15合金粉末化学成份wt% 3.Ni17镍基自溶性合金粉末 关键词:镍基自溶性合金粉末耐磨喷涂粉末 特点:JN.Ni17是较低硬度的合金粉末,粉末的自溶性和喷焊性能都好,喷焊沉积层耐蚀,易加工成形。 用途:适用于修复玻璃模具、铸铁、机床、轴等。 粉末熔融温度:1050~1150°C 喷焊沉积层硬度:HB170~210

粉末粒度范围:-150目(一步法) JN.Ni17合金粉末化学成份wt% 4.Ni20镍基自溶性合金粉末 关键词:镍基自溶性合金粉末耐磨喷涂粉末镍基合金粉末 特点:JN.Ni20是较低硬度的合金粉末,粉末的自溶性、润湿性和喷焊性能好、喷焊沉积层耐蚀、耐高温氧化性能好、易加工成形。 用途:适用于修复玻璃模具、铸铁、机床、轴类等表面强化及修复。 粉末熔融温度:1040~1100°C 喷焊沉积层硬度:HRC17~23 Ni20合金粉末化学成份wt% 5. Ni25镍基自溶性合金粉末 关键词:镍基合金粉末、耐磨喷涂粉、自溶性镍基合金粉末 特点:JN.Ni25是硬度低的合金粉末,粉末的自溶性、润湿性和喷焊性能好、喷焊沉积层耐蚀、耐急冷、耐热性能好、易加工等特点。 用途:适用于修复玻璃、塑料、橡胶等模具的表面强化及修复。 粉末熔融温度:1050~1120°C 喷焊沉积层硬度:HRC23~28 粉末粒度范围:-150目、-320目(一步法)、-150目~+320目(二步法) Ni25合金粉末化学成份wt%

蓄电池充放电试验

蓄电池放电试验方案 批准: 审核: 编写: 重庆大唐国际彭水水电开发有限公司设备部 二〇一二年七月二日

蓄电池放电试验方案 本次试验按DL/T724-2000-6.3.3阀控蓄电池核对性放电要求进行全核对性放电试验。 一、计划时间: 开关站直流Ⅰ组蓄电池充放电试验:2012年07月11日08:00至2012年07月14日23:00 开关站直流Ⅱ组蓄电池充放电试验:2012年07月15日08:00至2012年07月19日23:00 地下厂房直流Ⅰ组蓄电池充放电试验:2012年07月29日08:00至2012年08月01日23:00 地下厂房直流Ⅱ段充电装置试验:2012年08月02日08:00至2012年08月05日23:00 大坝直流充电装置试验:2012年08月11日08:00至2012年08月14日23:00 二、组织措施 现场指挥:李正家 成员:谭小华(工作负责人)、刘宏生、肖琳、肖力、陈灏、刘应西、韦黎敏、运行当班值 三、试验前准备工作 1、设备部

1)外观检查:蓄电池槽、盖、安全阀、极柱封口剂等的材 料应具有阻燃性,用目测检查蓄电池外观,蓄电池的外观不应有裂纹、变形及污迹; 2)极性检测:用万用表检查蓄电池极性; 3)开路电压检查:蓄电池在环境温度5℃~35℃的条件 下完全充电后静置至少24h,测量蓄电池的开路电压应符开路电压最大最小电压差值不大于; 4)蓄电池连接压降:蓄电池间的连接条电压降应不大于 8mV; 5)内阻测试:制造厂提供的蓄电池内阻值应与实际测试的 蓄电池内阻值一致,允许偏差范围为±10%。 2、发电部 退出需放电试验的运行蓄电池组。 三、试验步骤 1、蓄电池核容试验: 1)以×10小时放电率电流对电池组充电,连续充电至少 72小时,直至3小时内充电电流基本稳定不变(电池组充满状态),静置1到2小时,电池组温度与周围温度基本一致后对电池组进行放电,放电电流为10小时放电率电流(120A),连续放电10小时(放电过程中调整负载,始终保持放电电流不变)或端电压达到终止电压或单个电池电压低于时,停止放电,记录连续放电时间,由此算出容量。

数字音频矩阵 Audio Matrix 使用说明书

序言 本手册以全功能音频处理器矩阵的使用方法作为示例,并可作为其它型号处理器的使用参考。 本手册只作为用户操作指示,不作为维修服务用途。 本手册为本公司生产商版权所有,未经许可,任何单位或个人不得将本手册之部分或其全部内容作为商业用途。

目录 安全操作指南 (2) 一、产品概述 (3) 1.1产品外观 (3) 1.2功能介绍 (3) 1.3产品参数 (3) 二、前后面板接口说明 (5) 2.1 前面板说明 (5) 2.2 背板接口说明 (5) 2.4 GPIO说明 (6) 三、软件操作说明 (6) 3.1网页控制和软件下载 (6) 3.2 系统流程 (10) 3.3 软件特色 (10) 3.4 菜单栏和状态栏 (15) 3.4.1文件 (15) 3.4.2设备设置 (15) 3.5 处理器模块 (22) 3.5.1输入设置 (22) 3.5.2扩展器 (23) 3.5.3均衡器 (23) 3.5.4压缩器 (25) 3.5.5自动增益 (26) 3.4.6自动混音器 (26) 3.5.7反馈/回声/噪声消除 (28) 3.5.8延时器 (30) 3.5.9分频器 (30) 3.5.10 限幅器 (31) 3.5.11 输出设置 (32) 附1:串口通信协议 (33) 附2:GPIO说明 (34)

安全操作指南 为确保设备可靠使用及人员的安全,在安装、使用和维护时,请遵守以下事项: 1.在设备安装时,应确保电源线中的地线接地良好,机箱接地点良好接地,请 勿使用两芯插头。确保设备的输入电源为100V-240V 、50/60Hz的交流电。 2.保持工作环境的良好通风,以便于设备在工作时所发的热量及时排出,以免 温度过高而损坏设备。 3.在潮湿结露环境或长时间不使用时,应关闭设备总电源。 4.在下列操作之前一定要将设备的交流电源线从交流供电插座拔下: A.取下或重装设备的任何部件。 B.断开或重接设备的任何电器插头或连接。 5.设备内有交流高压部件,非专业人士未经许可,请勿擅自拆解设备,以免发 生触电危险。更不要私自维修,以免加重设备的损坏程度。 6.不要将任何腐蚀性化学品或液体洒在设备上或其附近。

DCE4850智能蓄电池放电仪

DCE4850 智能蓄电池放电仪 一、产品特点 ● 采用蓝牙无线单体监测技术,避免了有线监测复杂的接线方式,每个无线模块都可支持 2V/6V/12V单体电压监测。 ● 每个无线监测模块可同时监测4个单体,相比每个模块监测一只单体电压方法,需要配置 的模块数量只是其1/4(48V只需6个监测模块),让无线模块接线操作更加简便。 ● 支持多组(最多4组)蓄电池组离线或在线放电测试,能同时测试到每一组蓄电池组的实 际放电电流。(同时测试多组须增加选配电流钳) ● 电流连续可调,自动保持恒定。在线放电时,主机显示电池组放电总电流=主机内部假负 载总电流+实际负载总电流,由于在线放电时实际负载总电流会随着在线电压的变化而变化,主机内部假负载总电流也会自动进行调整,以保证蓄电池组一直以真正的恒定电流放电。如果同时测试多组电池,主机上除显示放电总电流外,还会显示各组电池的实际放电电流。 ● 单体电压停机门限可设置多节,普通容量测试仪的单体电压停机门限自动默认为一节电 池,任意一节单体电池电压到达门限,主机即停止放电,而本容量测试仪可人工设定N节单体电池电压达到停机门限才停止放电,如此可在一次连续不中断的放电测试中发现多节落后单体电池。 ● 可并接多台小巧的恒流扩展模块,满足更大放电电流的需要,主机可控制恒流模块同时启 动和同时停止。 ● 功耗部分采用航空合金电热元件,电热转换效率高,安全系数高,体积小、重量轻; ● 放电电流自动计算功能,内置各小时率放电系数,用户可根据被测电池的标称容量和所需 要的放电小时率来自动计算需要设置的放电电流大小。 ● 智能菜单式操作,使用者无需培训,即可轻松操作。 ● 英寸超大触摸屏:采用超大触摸屏,可直接在屏上进行点击操作,简单明了。放电过程中 可查看所有的放电参数,并且可显示单体电压柱状图。 ● 放电测试过程中,各单体电压实时检测和显示,并在主机屏幕上呈现出各单体电压柱状图 的变化轨迹(可显示各单体电池起始电压位置和当前电压位置),还能实时显示一组电池中电压最高与最低的单体编号和数值,避免用户看走眼。

音频矩阵说明

PEAVEY 可编程数字处理器 Digitool MX介绍与使用 一、前、后面板控制旋钮及接口介绍: (一)、前面板: 1.数据轮 这个旋钮的操作可以在显示屏上显示出来,它的功能要比屏幕右边的三个旋钮更强大。转动它可以翻看不同的功能,并且可以选择和使用里面的功能。 2.LCD 显示屏 一些参数的设置及改变、功能的选择等等都可以在这个LCD 屏上显示出来。 3.参数控制旋钮 这三个旋钮可以改变设置及调整显示效果(对比度等)。他们各自的单独的功能根据LCD 屏上显示的菜单的不同也是各不相同的。 4.活动LED 状态指示灯 这些LED 指示灯(8 路输入和8 路输出)会显示相应的输入和输出。(二)、背面板: 5.电源插口 6.电源开关 7.RJ-45 输入/输出接口 用来连接到 RS-485 控制总线。

用于连接外部 0 到10V 的直流电压控制信号。 10.输入和输出 用于模拟信号的输入和输出。 二、导航显示屏: 位于前面板显示屏可以显示导航菜单及内部的编辑操作等。显示屏左边的大数据轮,控制显示屏上光标的移动。 (1)选择显示屏上的选项: 数据轮除了可以移动光标外,还可以选择屏幕上的菜单。 (2)参数控制旋钮: 在显示屏右边有 3 个参数控制旋钮。它们转动的时候,显示屏右边的相对应的3 个小方框中的参数也会随之变化。在Mix 菜单中他们控制的参数如图1 所示: (图1) (3)Mix(混合)菜单: 从混合菜单中可以看到 8 个输出通道。从图1 中可以看到混合菜单的组成以及可以调节的一些参数。转动数据轮选择相应的输入或输出,其相应的数据也会在右边的小方框中显示出来。屏幕上左边的8 个通道是输入通道,右面的是输出通道,图中箭头所指的是其中一个。注意,图1 所示菜单中,每次只能显示一个输出混合。 (4)混合菜单控制旋钮: 这三个旋钮在 Mix 菜单中分别控制的是输出电平、(输入到输出的)混合电平及主输出电平。

电池充放电原理,及如何选择电池充放电测试仪

锂离子脱嵌和充放电原理 从微观世界(原子级)来观察电池正负极的结构,各极活性物质的结晶结构为层叠状,这种结构使锂离子的嵌入(脱嵌)变得容易。锂离子在分子间作用力的作用下为固定状态。当对正负极施加电场时,锂离子只需要较低的能量就能发生迁移,进行嵌入。锂离子电池充放电的机制也可以用图1 来说明。图中方程式中的正极活性物质为锰酸锂。 图1 放电时电极周围的变化 图1 是放电时锂离子嵌入和迁移的示意图。在负极,碳层之间存在锂离子,负极比正极的能量高。外部存在负载时,负极的锂离子释放电子,向能量低的正极迁移。从负极脱嵌的锂离子,通过电解液和隔膜小孔向正极迁移,嵌入层状结构的正极活性物质中。同时,电子被接收,锂离子被固定而变得稳定。如果过放电,锂离子过多地聚集在正极,会使内阻增大,电池发热,导致急剧劣化。从图1 中可见,负载电流(电池容量)几乎是由可移动的锂离子数量决定的。电子从集流体活性物质中穿过,到达外部端子。正极的集流体为铝,负极的集流体为铜。这样做的理由是:在正负极各自的电势下,铝和铜是不会被锂离子

掺杂(渗透)的金属。 充电时电极周围的变化 图2 显示了充电时锂离子的嵌入和迁移过程。 图2 充电时,外部电压施加在外部端子上,强制产生与放电反应相反的反应。由此,正极的锂离子释放电子,在电场作用下通过电解液迁移到负极,嵌入负极的活性物质内部。同时,电子被接收,锂离子被负极活性物质固定。锂离子在电解液中快速迁移,在负极表面减速,在负极活性物质内部非常缓慢地扩散。这与汽车离开高速公路,进入普通公路,然后驶入自家附近街道的过程相似。充电时,锂离子在负极表面呈现拥堵状态。 充电时电池在劣化 作为电解液的有机溶剂在正极分解,在负极表面与锂离子发生反应,形成固体电解质界面膜(SEI)。因此,迁移的锂离子数量减少,导致电池容量下降。充电时,在负极表面刻意制造这个让化学反应容易发生的状态。这与后面讲到的电池劣化相关内容也有关联。另外,过充电使锂离子在负极过多聚集,内阻

智能蓄电池放电无线监测仪技术规范书

产品技术规范书 设备名称: 智能蓄电池放电无线监测仪型号: 生产厂家: 产品编码: 品牌:

一、概述 智能蓄电池放电无线监测仪是专门针对蓄电池组进行核对性放电实验、容量测试、电池组日常维护、工程验收以及其它直流电源带载能力的测试而设计。采用最新的无线通讯技术,通过PC机监控软件可对蓄电池放电过程进行实时监测,监控每节电池的放电过程。 智能蓄电池放电无线监测仪功耗部分采用新型PTC陶瓷电阻作为放电负载,完全避免了红热现象,安全可靠无污染。整机由微处理器控制,液晶显示、中文菜单。外观设计新颖,体积小、重量轻、移动方便。各种放电参数设定完成后,自动完成整个恒流放电过程。完全实现智能化。使整个放电过程更安全。 智能蓄电池放电无线监测仪系列便携、智能化的专业设计使放电测试工作变得简捷、轻松,大大降低了专业维护人员的劳动强度,也提高了放电测试的科学性和智能化。 二、主要功能特点 ●采用PTC陶瓷电阻,避免了红热现象,使整个放电过程更安全。 ●具有无线通讯功能,无线采集盒与放电主机及上位机监控PC机三者之间通过无线方式 进行通讯。简化接线,灵活方便。 ●无线采集盒可对每节电池进行监测,实现对电池组放电过程的完整监控。 ●设备安装、调试、维护简便,各采集模块前后采用隔离技术,安全性、可靠性程度高●配备的PC机监测系统,可实时监测整个放电过程,并把监测到的总电压、放电电流和 各单体电池电压等数据进行分析、并可生成相应的数据报表。直观反应蓄电池组性能的曲线,图形、报表等,并可打印、查询。 ●有USB接口,可将放电过程的数据存入U盘,并导入PC机。PC数据管理软件可对 电池放电的过程进行分析、并可生成相应的数据报表。使数据的转存更加方便。 ●采用智能单片机ARM控制、液晶中英文显示。菜单操作简单明了。 ●自动保护功能,设定放电时长到、放电容量到;蓄电池组电压低于设定的最低保护电压; 负载连线出现异常等,自动停止放电并报警,同时自动记录停机方式。 ●可设定测试/放电终止条件,包括单体电池电压、电池组终止电压、放电电流、放电时 间。 ●可通过短时放电(10分钟)来预估蓄电池组容量。 ●可记录测试/放电过程每节电池放电情况,主要是电池组总容量、总电压、总电流以及 电压最低的单体电池的电压变化情况。 三、主要技术参数

重熔处理过程对镍基合金组织变化的影响

重熔处理过程对镍基合金组织变化的影响 【摘要】采用超音速大气等离子喷涂方法,在Q235A钢基体上制备了NiCrBSi涂层,并对涂层进行氧-乙炔火焰重熔处理。利用扫描电子显微镜对重熔前后的涂层进行微观结构分析,并采用X射线衍射方法研究其相组成。发现重熔处理后涂层中缺陷减少,形成Cr7C3、CrB、Cr2B等弥散分布于γ-Ni的硬质相,提高了涂层的显微硬度和耐磨损性能。 【关键词】NiCrBSi;重熔处理;硬质相 0 前言 磨损是最常见的材料失效形式之一,它所造成的经济损失是十分严重的。为了增加材料的耐磨性能,提高使用寿命,利用热喷涂技术,在工件表面喷涂一层硬度高耐磨损性能好的合金涂层是一种常用的方法。许多研究表明,喷熔涂层的耐磨损性能取决于零件磨损工况及喷熔涂层的显微组织结构等因素,而喷熔涂层的组织结构一方面与所选择的自熔合金粉末有关,另一方面与使用的喷熔工艺方法和参数有很大的关系[1]。镍基自熔性合金(NiCrBSi)具有较好的力学性能和耐蚀性,形成的NiCr、Cr2B、Cr5B3、CrB及一些碳化物有助于提高结合强度和硬度[2-3]。涂层的制备方法也有很多种,常见的有激光熔覆、火焰喷涂、等离子喷涂、高频感应熔覆、喷焊等等[4-7]。其中等离子喷涂方法使用较为普遍,其参数调整方便灵活,沉积效率高,在耐磨耐蚀涂层制备方面应用广泛。 本文主要探讨利用超音速等离子喷涂技术制备NiCrBSi合金涂层,并对喷涂后的涂层进行火焰重熔处理,之后对涂层的显微组织进行检测分析,了解其微观结构变化对机械性能的影响。 1 试验方法 所选用基体材料为碳素结构钢 Q235A,试样尺寸为80×40×5mm,表面经喷砂处理后粗糙度达到Ra=3.2μm,并用丙酮清洗。喷涂材料选用NiCrBSi合金粉末,粒子尺寸在50-150μm,形貌为球状,见图1。 图1 NiCrBSi合金粉末形貌 NiCrBSi合金粉末中各元素成分(wt%)如下:B,3.3%;C,0.8%;Cr,16%;Fe,10.8%;Si,4%;Ni,其余。 沉积涂层使用美国普莱克斯生产的超音速等离子喷涂设备,等离子枪为SG-100型。喷涂前利用等离子焰流对基体进行预热处理,喷涂工艺参数为:电压38V;电流500A;氩气40psi;氢气10psi;喷涂距离110mm。涂层的厚度约

蓄电池充放电仪使用说明书-天津

蓄电池充放电仪 使 用 说 明 书 广州泓淮电子科技有限公司

蓄电池充放电仪说明书 1、接线说明: 系统的接线示意图如下所示: 注意:蓄电池的正负极性不能接反! 2、放电操作 系统在启动后自动进入主界面:如下图所示: 蓄电池充放电仪 1.放电 2.充电 3.查询 4.设置 ××××-××-××××:××:××

1.1按下数字键“1”,进入放电界面,如下图所示: 放电参数设置 放电电压:×××.×V 放电电流:×××.×A 放电时间:××小时××分钟 保存数据:××(每隔多少秒) 设置放电电压:一般12V电池的放电电压下限为10.8V。设置放电电流:依据需求设置。 设置放电时间:依据需求设置。 设置保存数据:推荐设置为60。 1.2设置完参数后按下“确认”,如下图所示: 提示 启动放电? <确认>----确定 <返回>----取消 再按下“确认”键确定。 1.3启动放电后,可以看到放电监测界面,如下图所示:

电压:×××.×V 电流:×××.×A 温度:××.×℃容量:××××Ah 开始时间:××××--××--××××:××:×× 已放时长:××:××:×× 状态:放电保存位置:×× 在放电监测界面中,可以观察到详细的放电参数:如电压、电流、容量,还可以看到启动时间、已经放电多长时间等等。 在放电过程中,如果想要中止放电,则按下“停止”按键,然后再按“确认”即可。 当放电时间达到时,系统会自动停止放电,并将放电数据保存起来。 3、充电操作: 2.1在主界面中,按下数字键“2”,进入充电界面,如下图所 示: 充电参数设置 充电电压:×××.×V 充电电流:×××.×A 充电时间:××小时××分钟 保存数据:××(每隔多少秒)

视频矩阵的作用

视频矩阵的作用 在现代多媒体会议室,为了满足不同演示场合的需求,通常会具备多种不同的音视频信号源和显示终端,虽然这些音视频信号源和显示终端也可能会同时具备复合视频(Composite-Video)、超级视频(S-Video)、分量视频(Component-Video)甚至数字视频(DVI、SDI)的接口,但目前在多媒体视像会议中被普遍使用的还是复合视频矩阵,主要的原因在如下几方面: 复合视频具备良好的稳定性、兼容性和通用性,传输带宽小,传输距离长。但色度和亮度共享4.2MHz(NTSC)或5.0~5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,对器材和传输线缆的要求标准不高,信号源丰富,预埋线缆投资较低。 超级视频(S-Video)虽然在减少亮度损耗、亮度/色度串扰方面明显优于复合视频,但对于目前常见的液晶投影机、DLP投影机并达不到非常明显的区别,而且预埋线缆投资是复合视频的两倍,所以在工程长距离传输没有得到普遍的使用。 分量视频在信号格式的级别上已经明显高于复合视频或超级视频,但目前在会议室多数是为电脑显示(VGA或RGBHV信号格式)服务,对器材和传输线缆的要求很高(取决于预期的设计标准和投资预算),预埋线缆投资很高。 类似Y,R-Y,B-Y、Y,Cr,Cb的分量视频信号目前主要应用在广电行业,而且会逐渐向SDI或HD-SDI的数字信号格式过渡,由于信号源和资金预算的限制,会议室使用不多。DVI信号由于有效传输距离的限制(5米左右),目前没有得到广泛应用。 综上所叙,习惯上音视频矩阵没有特别的注明都默认是复合视频格式。以复合视频格式输出的主要设备有:摄像机、实物展台、有线电视解调器、远程视像会议、磁带录像机、DVD光碟机等,音视频矩阵在系统中介于视频源与显示或复用终端之间,负责将不同的音视频信号源按用户的意愿进行集中调控。 按照输入、输出通道的不同,常见的视频矩阵一般有8×2、8×4、8×8、16×4、16×8、16×16、32×8、32×16、32×32、64×16、64×32、64×64、128×128等。常规的理解是乘号前面的数字代表输入通道的多少,乘号后面的数字代表输出通道的多少。不论矩阵的输入输出通道多少,它们的控制方法都大致相同:前面板按键控制、分离式键盘控制、第三方控制(RS-232/422/485等),早期有一些国产矩阵通过继电器吸合控制,这种技术目前已经淘汰。 与BGBHV矩阵一样,设计一个视频矩阵的基本原则也是根据信号源和显示终端数量的多少以决定矩阵的通道数,由于矩阵规格的差异(通道数的多少)在价格上的体现非常明显,在预算一定的情况下,使选择一个矩阵的通道数也会变得比较敏感,对于以后的扩展也是一个考验。除此之外,下面叙述的几个技术指标也是作为器材选型需要考虑的重要因素。

钽的沸点是5427 ℃,熔点2996 ℃,属难熔金属,熔点比常用的其他

钽的技术参数 钽的沸点是5427 ℃,熔点2996 ℃,属难熔金属,熔点比常用的其他金属都高钽在空气中300 ℃开始会与氧反应,700 ℃开始于氮反应,在含氢气体中350 ℃开始与氢反应,在氨气中300 ℃开始与氮反应,均会生成脆性化合物。因此钽设备和容器在操作时如会接触空气,操作温度一般不宜超过250 ℃,如可不与空气等环境接触,才可考虑是否能在较高的温度下使用。钽的焊接和热处理应在真空中或在惰性气体保护下进行,即300 ℃以上的热过程都应在真空或惰性气体保护下进行。钽常用惰性气体保护焊,氩气纯度不宜低于 99.999% ,不但焊接熔池部位应有惰性气体保护,焊完冷却中的焊缝及热影响区在250 ℃以上时也应有惰性气体保护,因而需用保护拖罩。最好在温度降到200 ℃以下再停供惰性气体。应保证焊接接头与每道焊缝表面呈银白色或淡黄色。淡蓝色应磨去,不应出现深蓝、灰白或白色粉末。 钽主要用作耐腐蚀材料,钽表面生成 Ta 2 O 5 薄膜,有很好的耐腐蚀性。一般而言,钽的耐蚀性优于钛、锆、铌,可以认为是耐蚀性最好的工程材料。在硝酸、王水、盐酸、磷酸、有机酸等强腐蚀介质中常有优异的腐蚀性,但也不能认为钽在任何腐蚀性介质中都能耐蚀,如在一些温度和浓度的发烟硫酸、氢氟酸、氢硅酸、氟硅酸、氟硼酸、氢氧化钠、氢氧化钾、亚硝酸钾、氯化铝、氟化铝、氯、溴(甲醇中)等介质溶液中都曾得到过不耐腐蚀或腐蚀性不良的使用或试验结果。钽及钽合金压力加工材可采用真空电弧或真空电子束熔炼的牌号和用粉末冶金方法制造的牌号。由于粉末冶金制品力学性能有时不够稳定,塑性偏低,焊接性能差,一般不再压力容器中应用,只在流体机械的流体部件上应用。 钽及钽合金在压力容器中已有较多使用,但各国的正式压力容器标准规范中还没有具体内容。压力容器主用应用纯钽,其具有较好的耐蚀性和塑性,在要求较高的强度时才使用 Ta-2.5W 和 Ta-10W 钽合金。

BTS-2002电池综合测试仪说明书

目录 1.前言 (2) 2.功能概述 (3) 3.仪器外观 (5) 4.接线方式 (6) 5.主功能菜单 (7) 6.电池静态参数测量模式 (8) 7.电池容量测量模式 (12) 8.单独充电模式 (14) 9.单独放电模式 (14) 10.程控电源模式 (14) 11.程控电子负载模式 (15) 12.电压与内阻表模式 (16) 13.仪器校准模式 (16) 14.读码功能(DS2502兼容码) (17) 15.仪器特性指标 (18)

前言 常见的可充电电池包含锂电池,镍镉电池,镍氢电池,以及密封铅酸蓄电池等。 其中,锂电池具有容量大,重量轻,循环次数高等特点,广泛应用于移动电话,PDA,数码相机,摄像机,笔记本电脑等领域,是目前最为先进的可充电电池。这里所指锂电池是成品锂电池包,由锂电芯(锂离子电芯或者锂聚合物电芯)加锂电池保护板组成。 镍镉电池是比较早应用的可充电电池,具有成本较低,低内阻,能够大电流放电的特点,至今在一些电动工具、电动车上面有广泛应用。 镍氢电池和镍镉电池类似,但是因为不含重金属,所以对环境的污染较小,目前在一些常见的消费类电子产品中应用广泛,已基本取代以前镍镉电池的应用领域。 小型密封铅酸电池,又称免维护铅酸电他,目前工艺成熟,目前主要应用在固定式后备电源场合,如不间断电源,应急照明灯等等场合。 针对这些可充电电池的生产检测需要,特研制了专用的可充电电池综合检测仪,本测试仪可以对电池的一些基本参数做一个定量的精确的测量,可以测量电池的开路电压,内阻,充电,放电性能,电池容量特别针对锂电池的功能还有过充电保护,过放电保护,过电流保护,短路保护等功能,并测出过相应的数值,极大的方便了电池的生产和售前售后服务工作。采用非常简单的几个步骤就可以直观的判断电池的性能和好坏,同时也具有快速筛选的功能,可以设定测量参数的上限和下限,可以容易的从一批电池成品中快速检测出不良电池,提高生产效率。另外,也附加了一些特别的功能,使之具有一些通用仪器设备的特征,扩大了设备的使用灵活性,以及具有应用范围广泛的特点。 此外,本测试仪可根据客户的需要提供软件升级服务,在基本型号的基础上,可以通过软件升级为可连接电脑的型号,可以通过电脑来设置和保存测试数据,自动记录测试结果。也可以通过电池条码来记录每块电池的测试数据,有利于生产质量的分析控制,产品追朔等等。另外,可以通过加装硬件升级模块来提高电压和内阻的测试精度上升一个数量级,来满足更苛刻的质量要求。

视频矩阵的工作原理

视频矩阵的工作原理 在一个完整的安防电视监控系统中,一般由摄像机、监视器等设备组成,如何实现视频信息资源的共享分配、切换和显示,如何实现摄像机对监视器的顺序切换显示或分组切换显示,完成这个切换功能的设备就是视频矩阵切换器。 矩阵切换系统的作用、分类和使用场合 一个完整的安防电视监控系统通常由摄像机、监视器等设备组成,如何实现视频信息资源的共享分配、切换和显示,如何实现摄像机对监视器的顺序切换显示或分组切换显示,完成这个切换功能的设备就是视频矩阵切换器。 如在会议室中,一般输入设备很多:有摄像机、DVD、VCR、实物展台、台式电脑,以及笔记本电脑等等,而显示终端则较少,包括投影机、等离子、大屏幕显示器等,若想共享和分配这些输入设备的显示信息,矩阵即可发挥重要的作用。其可将信号源设备的任意一路的信号传输至任一路显示终端上,并可以做到音频和视频的同步切换,使用方便。在安防行业,通过视频矩阵和电视墙的配合,操作人员可以在电视墙或者任何一个分控点看到任意一个摄像机的图像。 矩阵主机即是通过交叉开关切换的方法,将X路视频输入信号任意输出至Y路监看设备或其它的电子装置(设备)。一般情况下矩阵的输入通道数大于输出通道数即X>Y,当然也有X<Y的矩阵主机。有一些视频矩阵带有音频切换功能,能将视频和音频信号进行同步切换,这种矩阵也被称为视音频同步切换矩阵。视频矩阵可以运用在很多场合,如安防行业的监控中心,教育行业的多媒体教室、会议室等,相对来说,监控行业使用的视频矩阵较多。 矩阵种类很多,根据接口类型可分为VGA矩阵、AV矩阵、光矩阵等;根据接口数量来划分,则包括8进2出、128进32出、1024进64出等;还可根据处理的信号类型划分为模拟矩阵与数字矩阵,当然还有混合矩阵。混合型视频矩阵的概念比较广,既可以是模拟和数字和混合,也可以是CVBS和RGB矩阵的混合等;根据档次分有电信广播级的同步切换矩阵和普通的视频矩阵,广播级的矩阵主机切换图像的时候利用在视频信号的场消隐信号期间进行,切换过的图像没有闪烁非常平稳。多媒体教室安防行业和会议室等使用的矩阵不是同步切换矩阵,这种矩阵在图像切换的瞬间会随机性地出现图像抖动现象,主要是由于切换图像的时候,有可能在上一个图像场扫描的中间进行,但这种抖动持续的时间非常短,一般不超过1秒,不影响观看效果,切换后的图像画面清晰稳定。本文主要介绍的是在安防行业中使用的视频矩阵。 模拟视频矩阵系统工作原理介绍 目前安防中使用的矩阵较多为模拟视频矩阵,其主要用来对模拟视频信号进行切换和分配,一般情况下由视频矩阵主机和配套的一个或者多个控制键盘组成,矩阵主机内含音视频输入模块、音视频输出模块、中心控制模块、报警模块、电源模块等;控制键盘由按键、显示、摇杆、权限控制锁等构成。

难熔金属粉末冶金制备新技术

难熔金属的粉末冶金制备新技术 何勇学号:153312086 粉末冶金研究院 摘要:本文简要介绍了几种难熔金属的制备新技术,包括三种现代粉末冶金烧结技术(微波烧结、放电等离子烧结、选择性激光烧结)与两种近静成型技术(3D打印、金属粉末注射成形)。介绍其制备方法的基本原理、技术优势以及应用现状,并在最后简单阐述材料制备技术的发展趋势。先进烧结技术具有烧结温度低、烧结速度快、晶粒组织细化、结构均匀可控等优点,同时节约能源,生产效率高,是未来难熔金属制品致密化过程的优良选择;近静成型技术摒弃了传统材料制品制备和加工分开进行的传统工艺,大大缩短了生产周期,已成为当今难熔金属材料研究的热点,在高新尖端领域拥有十分可观的前景。 关键词:难熔金属;制备工艺技术;粉末冶金 Abstract: This paper briefly introduces several new techniques of preparation of refractory metal, including three modern sintering technologies such as microwave sintering and two kinds of near net shape techniques. The basic principles,advantages and research status of these methods are claimed in the main paragraph. At the last part, some development trend of refractory metal materials are listed briefly.Not only do they possess unique advantages on rapid heating rate, short sintering time, inhibiting grain growth and controlling microstructure, but also show enormous industrial application value and prospect in terms of short production cycle and high efficiency energy saving, so the new sintering techniques have become a present research focus in material field.Near net shape technology has a very considerable prospects in the high-tech frontier because it greatly shortens the production cycle. Key words: refractory metal; preparation technique; powder metallurgy

蓄电池放电仪主要功能

蓄电池放电仪主要功能 蓄电池放电仪主要是专门用于电力、电信、铁路、电池生产企业或其它行业对蓄电池组(24V、48V、110V、220V、400V、600V)、进行日常维护、容量检测以及检验直流电源带载能力而设计。功耗电元件采用新型PTC,体积小、重量轻、移动方便。整机由微处理器控制,液晶显示、中文菜单。放电电流以1A为单位(0A~300A)连续可设。放电参数可按键盘输入,也可由计算机下传设置。参数一旦设定,自动完成整个放电过程。完全实现智能化。可生成各种直观反应蓄电池组性能的曲线、柱图、报表等,并可放大、查询、打印。可以对电池性能进行分析。 1.微电脑控制、液晶显示、中文菜单;实时显示各种检测数据(电压、电流,放电开始时间及时长,容量、电压保护低限等)随时了解设备运行状态。 2.键盘操作:通过键盘设置各种放电参数及机器运行的各种指令(也可通过计算机下传)。 3.自动保护:设定放电时长或放电容量到,蓄电池组电压低于设定的保护电压或负载连线出现异常,自动停止放电并报警。同时自动记录停机方式。 4.掉电功能:在放电过程中如意外停电,自动保存所设置的放电参数,等来电后 自动持续放电,各种放电数据连续存储,且不会对设备造成损坏。 5.数据采集:放电开始二分钟以较快的的频率采集存储数据,以后每分钟一次。 便于对蓄电池组性能的分析。 6.数据处理:检测到的各种数据可通过232通讯口或USB口上传计算机,经专用软件(随机配置)进行处理,生成各种直观反应蓄电池组性能的曲线、柱图、报表等,并可放大、查询、打印。 7.修正功能:对电压、电流值无论在放电前或放电过程中都可进行修正(校验)。 8.数据存储:可自动存储每次放电不超过15小时连续八次的放电数据,掉电不丢失。 9.功耗元件:采用新型金属PTC,安全无污染、体积小、重量轻、散热快 尊敬的客户: 感谢您关注我们的产品,本公司除了有此产品介绍以外,还有10KV高压绝缘 垫,ZGF-2mA/60KV直流高压发生器,硅橡胶高压线,继电保护试验装置,微水测试仪,安全工器具力学性能试验机,双钳相位伏安表,100A回路电阻测试仪等等的介绍,您如果对我们的产品有兴趣,咨询。谢谢!

Ni自熔合金粉末

Ni60自熔合金粉末 Ni60自熔熔合金粉末是镍基自熔合金粉末系列中最重要牌号之一。其显著的特点是合金铁含量高(≤15%),而国外同类牌号粉末的铁含量低(≤5%)。表1列出Ni60合金成分(质量分数)与国外同类合金的比较。 Ni60粉喷焊层硬度在HRc60左右,与渗碳、渗氮、渗硼、镀铬和某些堆焊合金等表面硬化处理后的硬度相当,并具有优良的耐磨性、耐蚀性和抗高温氧化的综合性能,已被广泛用于冶金、机械、矿山、石油、化工、轻工、汽车等领域易损部件的修复和须保护,能几倍乃至几十倍地提高使用寿命,取得了显著的经济效益和社会效益。 二、Ni60粉末性能和喷焊层的性能 2、1 形貌 采用扫描电镜拍摄Ni60粉末形貌(见图1),表明研制的粉末球形良好、表面光洁。在喷焊时不堵塞喷炬孔道,易控制送粉量,适宜自动喷焊操作。 2、2 显影组织 经X 衍射仪结合金相显微镜分析与观察,Ni60粉末颗粒剖面金相组织为灰色衬底Ni-Si 固溶体,弥散分布Ni 3B 相。Ni60喷焊层显微组 织的观察与分析得出:喷焊层基体为白色 块状的含硅镍铬固熔体相;硬质相为黑色细小点状(Cr ,Fe)23C 6、灰色块状Ni 3B 和细小白色块状CrB 组成。12496喷焊层的组织结构与Ni60相似,因其铁含量低,在白色块状大小和数量上有些差异。 2、3 物理性能 Ni60粉末的密度、熔点、松装密度、振实密度、流动性以及氧含量与12496牌号的对

粉末中的氧含量是检验粉末质量的重要指标之一。氧含量高的粉末,喷焊层渣量多、表面质量差,因此要求粉末具有较低的氧含量。一般来说,合金液中的[O ]含量是很低 的,经分析其含量为0.0007%—0.0020%, 因此可以认为粉末中的氧含量主要是合金液 在雾化时二次氧化的结果。如果合金液中含有 与氧亲和力强的元素,那么氧含量会更高,而铝就是这种元素,它的吸氧能力超过了B 和Si 元素。图2 表明粉末中的氧含量与残余铝量的关系。 2、4 粒度分布 采用GBl430—79规定的铁粉粒度组成测 试方法,对Ni 60粉、10009和12496粉进行筛分测试,比较见图3。由图可见研制的合金粉末的粒度分布与进口12496粉末相当。 2、5 粉末的热膨胀系数 测得的Ni60热膨肤系数与12496合金接近(见图4),两种合金的热膨胀系数都较低,并随温度升高,热膨胀系数均增大。由此可见,工件在喷焊之前预热是必要和重要的,通过预 热处理可使喷焊层合金与工件的热膨胀系数 接近,以避免喷焊层开裂、剥落。 2、6 热导率 合金的热导率亦是制订粉末喷焊工艺的依据之一。采用T2型激光脉冲热导仪测定合金 热导率。测得的Ni60热导率与12496合金接近 (见图5),且两种合金的热导率都较低,并随温 度升高,热导率均增大。由此可见,工件在喷焊 后的冷却方式很重要,保温目的是减小喷焊层和 工件之间的降温速度,减小温度梯度队使喷焊层 不开裂裂、剥落。 2、7 喷焊层的硬度 2、7、1常温硬度 喷焊层硬度采用HR -150AT 型光学洛氏硬度计测定:由20炉Ni60试样测试数据统计得出, Ni60上限成分焊层硬度HRc62、中限成分焊层硬度HRc59,下限成分焊层硬度HRc55,相同条件下测得12496试样焊层硬度HRc58,可见两者硬度没有差别。

相关主题
文本预览
相关文档 最新文档