当前位置:文档之家› 固体物理--能带理论

固体物理--能带理论

固体物理--能带理论
固体物理--能带理论

固体物理中关于能带理论的认识

摘要:本文运用能带理论就晶体中的电子行为作一些讨论,以期对能带理论的

概念更细致的把握。

关键词:能带理论电子共有化绝热近似平均场近似周期场假定

引言

能带理论(Energy band theory)是研究晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论,对于晶体中的价电子而言,等效势场包括原子核的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场。能带理论认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动。

1 能带理论的假定

能带理论是目前的固体电子理论中最重要的理论。量子自由电子理论可作为一种零级近似而归入能带理论。能带理论是一个近似理论,下面对该理论所作的假定作为一探讨。

实际晶体是由大量电子和原子核组成的多粒子体系。如果不采用一些简化近似,从理论上研究固体的能级和波函数是极为困难的。

1.1 绝热近似

考虑到电子与核的质量相差悬殊。可以把核与电子的运动分开考虑,相当于忽略了电子——声子相互作用。电子运动时,可以认为核是不动的。电子是在固体不动的原子核产生的势场中运动。

1.2 平均场近似

因为所有电子的运动是关联的。可用一种平均场来代替价电子之间的相互作用,即假定每个电子所处的势场都相同。使每个电子的电子间相互作用能仅与该电子的位置有关,而与其它电子的位置无关,在上述近似下,每个电子都处在同样的势场中运动,既所有电子都满足同样的薛定谔方程,只要解得方程,就可得晶体电子体系的电子状态和能量。使多电子问题简化为一个单电子问题,所以上述近似也称单电子近似。

1.3 周期场假定

薛定谔方程中势能项是原子实对电子的势能,具有与晶格相同的周期性。代表一种平均势能,应是恒量。因此,在单电子近似和晶格周期场假定下,就把多电子体系问题简化为在晶格周期势场的单电子定态问题,上述在单电子近似基础上的固体电子理论称能带论。

2 电子的共有化运动

我们知道,由于原子核对电子的静电引力, 使得电子只能围绕原子核在一定

的轨道上运动。由于电子在空间运动的范围受到限制,电子在能量上就呈现出不连续的状态, 电子的能量只能取彼此分立的一系列可能值——能级。

晶体是由大量的原子在空间有规则地周期性地排列而成的。相邻原子间距只有几个埃的能量级,例如,硅的原子间距为4.2埃。因此,晶体中的原子状态和孤立原子中的电子状态不同,特别是外层电子的状态会有显著的变化。

原子中的电子分列在内外层电子轨道上,每一层轨道对应于确定的能量。当原子间相互接近形成晶体时,不同原子的内外层个电子轨道之间就有一定的交迭,相邻原子最外层轨道上交迭最多,内层轨道交迭较少。

当原子组成晶体后, 由于电子轨道间的交迭,电子不再完全局限于某一个原子中,他可以由一个原子转移到相邻的原子上去,而且可以从相邻的原子再转移到更远的原子上去,以致任何一个电子可以在整个晶体中从一个原子转移到另一个原子,而不再专属于哪一个原子所有, 这就是晶体中电子共有化运动。

应该注意到,不同原子的相似轨道才有相近的能量,电子只能在相似轨道上进行转移。因此,产生共有化运动是由于不同原子的相似轨道间的交迭而引起的。每一个原子能级结合成晶体后,引起“与之相应”的共有化运动。例如,3s轨道引起“3s”的共有化运动,2p轨道引起“2p”的共有化运动。从共有化运动来看,当电子“经过”每一个原子时,他的运动仍接近于原来的原子轨道(3s或2p)上的运动,从原子运动的观点看,共有化运动就是电子由一个轨道转移到另一个相似的轨道,如下图所示。

3 能带的一般解释

晶体中电子共有化运动引起了能级的分裂,我们以最外层的价电子为例来说明。假如晶体中包含N个原子(N约为1022数量级),原子最外层的价电子是一个,它的能量级为En,当这些原子相距很远时,每个原子的价电子的能级都是En,所以是互不相关的能级。但是,当N个原子组成晶体后每个价电子的运动都受到其它原子核的影响,它们的能级也会发生变化。根据泡利不相容原理,一块晶体中的电子运动状态不能相同。为了容纳原来属于N个单个原子的所有价电子,原来分属于N 个单个原子的相同的价电子能级就必须分裂成属于整个晶体的N个能量稍有差别的能级。这些能级相互靠得很近,分布在一定的能量区域,通常把这N个相互靠得很近的能级所占据的能量区域称为能带,如下图所示。

在原子结合成晶体时,如果内层电子的轨道也有交迭,则价电子能级分裂成价电子能带的同时,其内层电子的能级也要分裂。根据同样道理,能量比价电子能级更高的激发态能级也要分裂,形成激发态能级。

在两个能带之间的区域中,不存在电子的能量,因此这个能量区域中也不可能有电子,这与单个原子两能级之间的能量区域中不可能有电子一样。我们称这两个能带之间的区域为“禁带”。每个能带和禁带的宽度是由各种晶体的具体原子结构和晶体结构决定的。一般约为零点几到几个电子伏特。

总结

从以上分析可知,能带理论是研究晶体中电子运动规律的一种近似理论。晶体由原子组成, 原子又包括原子核和最外层电子,它们均处于不断的运动状态。为使问题简化,首先假定晶体中的原子核固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子核周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。能带理论是现代晶体电子技术的理论基础,对于微电子技术的发展起了无可估量的作用。而且是说明晶体性质最重要的基础理论。它的出现是量子力学,量子统计理论在固体中最直接最重要的应用。

固体物理学概念和习题答案

《固体物理学》概念和习题 固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1 ])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?* 当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

固体物理总结能带理论完全版

精品文档

目录 一、本章难易及掌握要求 (1) 二、基本内容 (1) 1、三种近似 (1) 2、周期场中的布洛赫定理 (2) 1)定理的两种描述 (2) 2)证明过程: (2) 3)波矢k的取值及其物理意义 (3) 3、近自由电子近似 (3) A、非简并情况下 (4) B、简并情况下 (5) C、能带的性质 (6) 4、紧束缚近似 (6) 5、赝势 (9) 6、三种方法的比较 (10) 7、布里渊区与能带 (11) 8、能态密度及费米面 (11) 三、常见习题 (14) 简答题部分 (14) 计算题部分 (15)

一、本章难易及掌握要求 要求重点掌握: 1)理解能带理论的基本假设和出发点; 2)布洛赫定理的描述及证明; 3)一维近自由电子近似的模型、求解及波函数讨论,明白三维近自由电子近似的思想; 4)紧束缚近似模型及几个典型的结构的计算; 5)明白简约布里渊区的概念和能带的意义及应用; 6)会计算能态密度及明白费米面的概念。 本章难点: 1)对能带理论的思想理解,以及由它衍生出来的的模型的 应用。比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。 了解内容: 1)能带的成因及对称性; 2)费米面的构造; 3)赝势方法; 4)旺尼尔函数概念; 5)波函数的对称性。 二、基本内容 1、三种近似

在模型中它用到已经下假设: 1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。多体问题化为了多电子问题。 2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。多电子问题化为单电子问题。 3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。单电子在周期性场中。 2、周期场中的布洛赫定理 1)定理的两种描述 当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质: 形式一:()()n ik R n r R e r ψψ?+=r u u r r v u u v ,亦称布洛赫定理,反映了相邻原包之间 的波函数相位差 形式二:()()ik r r e u r ψ?=r r r r ,亦称布洛赫函数,反映了周期场的波函数可 用受)(r u k ?调制的平面波表示.其中()()n u r u r R =+r v u u v ,n R ρ取布拉 菲格子的所有格矢成立。 2)证明过程: a. 定义平移算符μT ,)()()()(3 32211321a T a T a T R T m m m m ? ??? = b . 证明μT 与?H 的对易性。ααHT H T = c.代入周期边界条件,求出μT 在μT 与?H 共同本征态下的本征值

固体物理学能带理论小结

能带理论 一、本章难易及掌握要求 要求重点掌握: 1)理解能带理论的基本假设和出发点; 2)布洛赫定理的描述及证明; 3)三维近自由电子近似的模型、求解及波函数讨论; 4)紧束缚近似模型及几个典型的结构的计算; 5)明白简约布里渊区的概念和能带的意义及应用; 6)会计算能态密度。 本章难点: 1)对能带理论的思想理解,以及由它衍生出来的的模型的 应用。比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。 了解内容: 1)能带的成因及对称性; 2)万尼尔函数概念; 3)波函数的对称性。 二、基本内容 1、三种近似 在模型中它用到已经下假设: 1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。故相对于电子,可认为离子不动,或者说电子的

运动可随时调整来适合离子的运动。多体问题化为了多电子问题。 2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。多电子问题化为单电子问题。 3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。单电子在周期性场中。 2、周期场中的布洛赫定理 1)定理的两种描述 当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质: 形式一:()()n ik R n r R e r ψψ?+=,亦称布洛赫定理,反映了相邻原包之间 的波函数相位差 形式二:()()ik r r e u r ψ?=,亦称布洛赫函数,反映了周期场的波函数可 用受 ) (r u k 调制的平面波表示.其中()()n u r u r R =+,n R 取布拉 维格子的所有格矢成立。 2)证明过程: a. 定义平移算符T ,)()()()(332211321a T a T a T R T m m m m = b . 证明T 与?H 的对易性。α αHT H T = c.代入周期边界条件,求出T 在T 与?H 共同本征态下的本征值 λ。即?? ???+=+=+=)()( ()() ()(332211a N r r a N r r a N r r ψψψψψψ3 2 1 321,,a k i a k i a k i e e e ???===λλλ d. 将λ代入T 的本征方程中,注意T 定义,可得布洛赫定理。

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

固体物理学概念和习题答案

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。

《固体物理学》基础知识训练题及其参考标准答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一 套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶 格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

大学固体物理考试题及答案参考培训课件

固体物理练习题 1.晶体结构中,面心立方的配位数为 12 。 2.空间点阵学说认为 晶体内部微观结构可以看成是由一些相同的点子在三维空间作周期性无限分布 。 3.最常见的两种原胞是 固体物理学原胞、结晶学原胞 。 4.声子是 格波的能量量子 ,其能量为 ?ωq ,准动量为 ?q 。 5.倒格子基矢与正格子基矢满足 正交归一关系 。 6.玻恩-卡曼边界条件表明描述有限晶体振动状态的波矢只能取 分立的值 , 即只能取 Na 的整数倍。 7.晶体的点缺陷类型有 热缺陷、填隙原子、杂质原子、色心 。 8.索末菲的量子自由电子气模型的四个基本假设是 自由电子近似、独立电子近似、无碰撞假设、自由电子费米气体假设 。 9.根据爱因斯坦模型,当T→0时,晶格热容量以 指数 的形式趋于零。 10.晶体结合类型有 离子结合、共价结合、金属结合、分子结合、氢键结合 。 11.在绝对零度时,自由电子基态的平均能量为 0F 5 3E 。 12.金属电子的 B m ,23nk C V = 。 13.按照惯例,面心立方原胞的基矢为 ???? ?????+=+=+=)(2)(2) (2321j i a a k i a a k j a a ρρρρρρρ ρρ ,体心立方原胞基矢为 ???? ?????-+=+-=++-=)(2)(2) (2321k j i a a k j i a a k j i a a ρρρρρρρρρ ρρρ 。 14 .对晶格常数为a 的简单立方晶体,与正格矢k a j a i a R ???22++=正交的倒格子晶面族的面

指数为 122 , 其面间距为 a 32π 。 15.根据晶胞基矢之间的夹角、长度关系可将晶体分为 7大晶系 ,对应的只有14种 布拉伐格子。 16.按几何构型分类,晶体缺陷可分为 点缺陷、线缺陷、面缺陷、体缺陷、微缺陷 。 17. 由同种原子组成的二维密排晶体,每个原子周围有 6 个最近邻原子。 18.低温下金属的总摩尔定容热容为 3m ,bT T C V +=γ 。 19. 中子非弹性散射 是确定晶格振动谱最有效的实验方法。 1.固体呈现宏观弹性的微观本质是什么? 原子间存在相互作用力。 2.简述倒格子的性质。 P29~30 3. 根据量子理论简述电子对比热的贡献,写出表达式,并说明为什么在高温时可以不考虑电子对比热的贡献而在低温时必须考虑? 4.线缺陷对晶体的性质有何影响?举例说明。 P169 5.简述基本术语基元、格点、布拉菲格子。 基元:P9组成晶体的最小基本单元,整个晶体可以看成是基元的周期性重复排列构成。 格点:P9将基元抽象成一个代表点,该代表点位于各基元中等价的位置。 布拉菲格子:格点在空间周期性重复排列所构成的阵列。 6.为什么许多金属为密积结构?

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都就是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:就是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴就是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可瞧作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可瞧作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ= 几何结构因子:对于一定的入射方向,晶胞所有原子或离子沿某一方向的散射波动幅

固体物理--能带理论

固体物理中关于能带理论的认识 摘要:本文运用能带理论就晶体中的电子行为作一些讨论,以期对能带理论的 概念更细致的把握。 关键词:能带理论电子共有化绝热近似平均场近似周期场假定 引言 能带理论(Energy band theory)是研究晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论,对于晶体中的价电子而言,等效势场包括原子核的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场。能带理论认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动。 1 能带理论的假定 能带理论是目前的固体电子理论中最重要的理论。量子自由电子理论可作为一种零级近似而归入能带理论。能带理论是一个近似理论,下面对该理论所作的假定作为一探讨。 实际晶体是由大量电子和原子核组成的多粒子体系。如果不采用一些简化近似,从理论上研究固体的能级和波函数是极为困难的。 1.1 绝热近似 考虑到电子与核的质量相差悬殊。可以把核与电子的运动分开考虑,相当于忽略了电子——声子相互作用。电子运动时,可以认为核是不动的。电子是在固体不动的原子核产生的势场中运动。 1.2 平均场近似 因为所有电子的运动是关联的。可用一种平均场来代替价电子之间的相互作用,即假定每个电子所处的势场都相同。使每个电子的电子间相互作用能仅与该电子的位置有关,而与其它电子的位置无关,在上述近似下,每个电子都处在同样的势场中运动,既所有电子都满足同样的薛定谔方程,只要解得方程,就可得晶体电子体系的电子状态和能量。使多电子问题简化为一个单电子问题,所以上述近似也称单电子近似。 1.3 周期场假定 薛定谔方程中势能项是原子实对电子的势能,具有与晶格相同的周期性。代表一种平均势能,应是恒量。因此,在单电子近似和晶格周期场假定下,就把多电子体系问题简化为在晶格周期势场的单电子定态问题,上述在单电子近似基础上的固体电子理论称能带论。 2 电子的共有化运动 我们知道,由于原子核对电子的静电引力, 使得电子只能围绕原子核在一定

固体物理总结材料能带理论完全版

标准文案

目录 一、本章难易及掌握要求 (1) 二、基本容 (1) 1、三种近似 (1) 2、周期场中的布洛赫定理 (2) 1)定理的两种描述 (2) 2)证明过程: (2) 3)波矢k的取值及其物理意义 (3) 3、近自由电子近似 (3) A、非简并情况下 (4) B、简并情况下 (5) C、能带的性质 (6) 4、紧束缚近似 (6) 5、赝势 (9) 6、三种方法的比较 (10) 7、布里渊区与能带 (11) 8、能态密度及费米面 (11) 三、常见习题 (14) 简答题部分 (14) 计算题部分 (15)

一、本章难易及掌握要求 要求重点掌握: 1)理解能带理论的基本假设和出发点; 2)布洛赫定理的描述及证明; 3)一维近自由电子近似的模型、求解及波函数讨论,明白三维近自由电子近似的思想; 4)紧束缚近似模型及几个典型的结构的计算; 5)明白简约布里渊区的概念和能带的意义及应用; 6)会计算能态密度及明白费米面的概念。 本章难点: 1)对能带理论的思想理解,以及由它衍生出来的的模型的 应用。比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。 了解容: 1)能带的成因及对称性; 2)费米面的构造; 3)赝势方法; 4)旺尼尔函数概念; 5)波函数的对称性。 二、基本容 1、三种近似

在模型中它用到已经下假设: 1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。多体问题化为了多电子问题。 2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。多电子问题化为单电子问题。 3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。单电子在周期性场中。 2、周期场中的布洛赫定理 1)定理的两种描述 当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质: 形式一:()()n ik R n r R e r ψψ?+=,亦称布洛赫定理,反映了相邻原包之间 的波函数相位差 形式二:()()ik r r e u r ψ?=,亦称布洛赫函数,反映了周期场的波函数可 用受 ) (r u k 调制的平面波表示.其中()()n u r u r R =+,n R 取布拉 菲格子的所有格矢成立。 2)证明过程: a. 定义平移算符T ,)()()()(3322113 2 1 a T a T a T R T m m m m = b . 证明T 与?H 的对易性。α αHT H T = c.代入周期边界条件,求出T 在T 与?H 共同本征态下的本征值

固体物理试题分析及答案

固体物理试题分析及答案

1 简述Drude模型的基本思想? 2 简述Drude模型的三个基本假设并解释之. ? 独立电子近似:电子与电子无相互作用; ? 自由电子近似:除碰撞的瞬间外电子与离子无相互作用; ? 弛豫时间近似:一给定电子在单位时间内受一次碰撞的几率为1/τ。 3 在drude模型下,固体如何建立热平衡? 建立热平衡的方式——与离子实的碰撞 ? 碰撞前后速度无关联; ? 碰撞后获得速度的方向随机; ? 速率与碰撞处的温度相适应。 4 Drude模型中对金属电导率的表达式。 5 在自由电子气模型当中,由能量均分定理知在特定温度T下,电子的动能为 。 6 在Drude模型当中,按照理想气体理论,自由电子气的密度为n·cm-3,比热Cv=(见上图)。 7 1853年维德曼和弗兰兹在研究金属性质时发现一个定律,即在给定温度下金属的热导系数和电导率的比值为常数。 8 简述Drude模型的不足之处? 、Drude模型的局限性 ? 电子对比热的贡献与温度无关,过大(102) ? 电子速度,v2,太小(102) ? 什么决定传导电子的数目?价电子? ? 磁化率与温度成反比?实际无关 ? 导体?绝缘体?半导体? 9 对于自由电子气体,系统的化学势随温度的增大而降低。 10 请给出Fermi-Dirac统计分布中,温度T下电子的能量分布函数,并进一步解释电子能量分布的特点。 在温度T下,能量为E的状态被占据的几率。式中E F是电子的化学势,是温度的函数。当温度 为零时,电子最高占据状态能量,称为费米能级。

11 比较分析经典Maxwel-Boltzman统计分布与Fermi-Dirac统计分布对解释自由电子气能量分布的不同之处. ? 基态,零度时,电子都处于费米能级以下 ? 温度升高时,即对它加热,将发生什么情况? ? 某些空的能级将被占据,同时,原来被占据的某些能级空了出来。 12 在自由电子气模型当中若电子的能量为E, 则波矢的大小为K= 。 13 若金属的体积为V,那么在k空间中,k的态密度为。 14 掌握费米半径和电子密度的关系。 15 若费米半径为,其中n为电子密度,那么费米能级EF= 。 16 当T=0K时,系统的每个电子的平均能量为。并能证明之。 17 在晶体中,能量为E的电子态单位体积地能态密度g(E)= 。 18 若能量为E的电子态,单位体积的能态密度g(ε)= 19 体积为V的晶体内含有N个自由电子,在基态T=0K时,压强P=,体弹性模量为B= 20 在索墨菲模型当中,自由电子气的密度为n·cm-3,比热Cv= 。 21 结合Fermi-Dirac统计分布和Pauli不相容原理解释为什么只有费米球表面附近的允许电子被激发? 只有费米球面向球外有空的k点,能够参与导电,费米球内的k点都被电子占据着,没有空的k点。

固体物理概念答案(可编辑修改word版)

1.基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3 全部端点的集合,A1,A2,A3 分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2.晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4 , 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/ n 与沿转轴方向平移t = j T 的复合操作n 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3.晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示;密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4.倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5.布拉格方程,劳厄方程,几何结构因子。 劳厄方程R m ? (s-s0 ) =S m 布拉格方程2d hkl sin=m 几何结构因子:对于一定的入射方向,晶胞所有原子或离子沿某一方向的散射波动

固体物理包括答案.doc

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003 级 2006 年 6 月

第一章晶体结构 1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个 Na+和一个 Cl -组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C 原子组成的C原子对。 由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: a1 a k) ( j 2 a2 a (k i) 2 a3 a ( i j) 2 相应的晶胞基矢都为: a a i , b a j, c a k. 2.六角密集结构可取四个原胞基矢 a ,a , a 与 a ,如图所示。试写出O A A 、 1234 1 3 A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数h k l m 。 解: (1).对于 O A1A3面,其在四个原胞基矢上的截 矩分别为:1,1,1 ,1。所以,其晶面2 指数为 1121 。 (2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1, 1 ,。 2 所以,其晶面指数为1120 。 (3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,1,,。 1

所以,其晶面指数为1100。 (4) .对于A1A2A3A4A5A6面,其在四个原胞基矢上的截矩分别为:,,,1。所以,其晶面指数为0001 。 3.如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为: 简立方:;体心立方:3 ;面心立方: 2 ;六角密集: 2 ;金刚石: 6 8 6 6 3 。 16 证明: 由于晶格常数为 a,所以: (1).构成简立方时,最大球半径为R m a ,每个原胞中占有一个原子,2 4 a 3 V m a3 3 2 6 V m a3 6 (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4R m 3a ,每个晶胞中占有两个原子, 3 2V m 4 3 3 3 2 a a 3 4 8 2V m 3 a3 8 (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4R m 2a ,每个晶胞占有4个原子, 3 4V m 4 2 2 3 4 a a 3 4 6 4V m 2 a3 6 (4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢 c 的长度的一半,由几何知识易知 c 4 6 R m。原胞底面边长为2R m。每个晶胞占有两个原子,3 2

固体物理基本概念题参考解答

固体物理概念题 1、自由电子气体模型的三个基本近似就是什么?两个基本参数就是什么? 自由电子近似;独立电子近似;弛豫时间近似 自由电子数密度;弛豫时间 2、名词解释:K空间;k空间态密度 把波矢k瞧做空间矢量,相应的空间称为k空间; K空间中单位体积内许可态的代表点数称为k空间态密度。 3、自由电子模型的基态费米能与激发态费米能的物理意义就是什么?费米能与哪些因素有关? 物理意义:费米面上单电子态的能量称为费米能,表示电子从低到高填满能级时其最高能级的能量。基费米能时指T=0 K时的费米能。激发态费米能指的就是T≠0 K时的费米能。 因素:费米能量与电子密度与温度有关。 4、何为费米面?金属电子气模型的费米面就是何形状? 费米面:在K空间将占据态与未占据态分开的界面。 金属电子气模型的费米面就是球形。 5、说明为什么只有费米面附近的电子才对比热、电导与热导有贡献? 对比热、电导与热导有贡献的电子就是其能态能够发生变化的电子,只有费米面附近的电子才能从外界获得能量发生能态跃迁。因为,在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上。只有费米面附近的电子吸收声子后能跃迁到费米面附近或以外的空状态上。对电导,考虑到泡利不相容原理的限制,只有费米面附近的电子才有可能在外电场作用下,进入较高能级,因而才会对金属电导率有贡献。热导与电导相似。 6、简述化学势的意义,它与费米能级满足什么样的关系。 化学势的意义就是:在体积不变的条件下,系统没增加一个电子所需要的自由能。在温度接近于0时,化学势与费米能近似相等。 7、什么就是等离子体振荡?给出金属电子气的振荡频率。 等离子体中的电子在自身惯性作用与正负电荷分离所产生的静电恢复力的作用下发生的简谐振荡称为等离子体振荡。 金属电子气的振荡频率 8.名词解释:晶格,单胞,原胞,基元,布拉维格子基矢 基元:在空间无限重复排列构成晶体的全同原子团 晶格:将基元抽象为格点,格点的集合称为晶格 晶胞:能够完整反映晶体的化学结构与晶体周期性的重复单元 原胞:体积最小的晶胞 布拉维格子基矢:原胞的基矢 9.在三维情况下有多少种不同类型的晶格满足点对称群的要求?它们可以划分为哪7个晶系? 14种布拉维格子,它们可以划分为7个晶系:三斜,单斜,正交,四方,三角,六角,立方。 10.什么就是晶面指数?什么就是方向指数?它们有何联系? 晶面指数:晶面在在坐标轴上的截距的倒数的最简整数比。 方向指数:垂直于晶面的矢量,晶面指数为(hkl),则方向指数为[hkl]

相关主题
文本预览
相关文档 最新文档