当前位置:文档之家› 气相色谱与气质联用原理简介(精)

气相色谱与气质联用原理简介(精)

气相色谱与气质联用原理简介(精)
气相色谱与气质联用原理简介(精)

色谱法也叫层析法, 它是一种高效能的物理分离技术, 将它用于分析化学并配合适当的检测手段,就成为色谱分析法。

色谱法的最早应用是用于分离植物色素, 其方法是这样的:在一玻璃管中放入碳酸钙, 将含有植物色素 (植物叶的提取液的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗, 随着石油醚的加入, 谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带, 继续冲洗就可分别接得各种颜色的色素, 并可分别进行鉴定。色谱法也由此而得名。

现在的色谱法早已不局限于色素的分离, 其方法也早已得到了极大的发展, 但其分离的原理仍然是一样的。我们仍然叫它色谱分析。

一、色谱分离基本原理:

由以上方法可知,在色谱法中存在两相, 一相是固定不动的, 我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。

色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。

使用外力使含有样品的流动相(气体、液体通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时, 混合物中的各组分与固定相发生相互作用。

由于混合物中各组分在性质和结构上的差异, 与固定相之间产生的作用力的大小、强弱不同, 随着流动相的移动, 混合物在两相间经过反复多次的分配平衡, 使得各组分被固定相保留的时间不同, 从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合, 实现混合物中各组分的分离与检测。

二、色谱分类方法:

色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。

从两相的状态分类:

色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC 和液相色谱法(LC 。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气 -液色谱、气 -固色谱、液 -固色谱、液 -液色

气相色谱仪的组成 :载气处理控制系统:专用气源,进入气体恒定; 进样装置:液体样品手动进样:实验室; 气体样品定量管进样:工业色谱柱:分离混合样品组分:填充、毛细管。吸附 (固、分配 (液检测器和记录仪:热导、电离 2. 定性和定量分析色谱图分析组分物质; 分析组分含量。基线滞留时间:峰值最大;死时间; 峰高、峰宽、半峰宽; 峰面积、分辨率 3. 定性分析滞留时间法:滞留时间一定, 由此判别组分。加入纯物质法:加入后分析色谱峰值判别。 4. 定量分析定量进样法:面积归一化法:外标法:智能化

GC7890F 气相色谱仪操作规程, 填充柱恒温操作 1. 打开载气高压阀, 调节减压阀至所需压力(载气输入到 GC7890系列气相色谱仪的压力必须在 0.343MPa

~0.392MPa ,如果使用氢气为载气时, 输入到气相色谱仪的载气入口压力应为

0.343MPa 。打开净化器上的载气开关阀,用检漏液检漏,保证气密性良好。调节载气稳流阀载气使流量达到适当值(查 N2或 H2流量输出曲线 7890II 用刻度~流量表 ,通载气 10min 以上。 2. 打开电源开关,根据分析需要设置柱温、进样温度和 FID 检测器的温度(FID 检测器的温度应>100℃。 3. 打开空气、氢气高压阀,调节减压阀至所需压力 (空气输入到 GC7890系列气相色谱仪的压力必

须在 0.294MPa ~0.392MPa , 氢气输入到 GC7890系列气相色谱仪的压力必须在 0.196MPa ~ 0.392MPa 。打开净化器的空气、氢气开关阀, 分别调节空气和氢气针形阀使流量达到适当值 (查空气和 H2流量输出曲线针形阀刻度~流量表。 4. 按[基流 ]键, 观察此时的基流值。

5. 按 [量程 ]键,设置 FID 检测器微电流放大器的量程。按 [衰减 ]键,设置输出信号的衰减值。

6. 打开 T2000P 色谱工作站点击电脑桌面上图标打开 T2000P 色谱工作站,进入通道 1, 点击【样品项】 ,选择【添加】 ,进入样品项设置界面,点击【新建】按钮,进入【新建一个样品项】的窗口,根据提示完成样品信息和使用方法的设置,并点击【完成】按钮确认,即可完成样品项设置,回到“ 样品项设置==》通道1” 界面,点击【加入】 ,然后点击【关闭】 , 此时界面回到通道 1。选择刚刚加入的样品项,让其反蓝显示,点击图标(即数据采集开始图标 ,色谱工作站开始走基线。

7. 待 FID 检测器的温度升高到 100℃以上,按 [点火 ]键, 点燃 FID 检测器的火焰。

8. 点火后再观察基流值,如果此时基流显示值大于原来的显示值 , 说明 FID 的火焰已点燃 (色谱工作站上基线急剧上升后将回到高于点火前基线的位置。

9. 进样分析点火后让基线走一段时间,平稳后点击色谱工作站上■ 图标(即数据采集结束图标 ,停止走基线,色谱工作站处于等待状态,用微量进样器进样,同时按下信号遥感器, 色谱工作站开始数据采集。待峰出完后,点击■ 图标,停止数据采集。在停止采集后,可以在通道 1界面“ 已完成进样” 这里找到刚刚采集的谱图名, 让其反蓝显示, 然后点击按钮, 进入“ 再处理” 界面;点击按钮,进入“ 报告预览” 界面;在这两个界面下,都可以看到需要的信息,如保留时间,峰面积等。 10. 关机时,先关闭高效净化器的氢气和空气开关阀,以切断 FID 检测器的燃气和助燃气将火焰熄灭。然后设置柱箱、检测器、进样器的温度至 30℃, 气相色谱仪开始降温,在柱箱温度低于 80℃以下才能关闭电源,最后再关闭载气。

气 -质联用 GC/MS被广泛应用于复杂组分的分离与鉴定 ,其具有 GC 的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。

接口:由 GC 出来的样品通过接口进入到质谱仪,接口是色质联用系统的关键。 l 接口作用:l 压力匹配——质谱离子源的真空度在 10-3Pa ,而 GC 色谱柱出口压力高达 105Pa ,接口的作用就是要使两者压力匹配。 l 组分浓缩——从 GC 色谱柱流出的气体中有大量载气,接口的作用是排除载气, 使被测物浓缩后进入离子源。常见接口技术有:l 分子分离器连接 (主要用于填充柱 l 扩散型——扩散速率与物质分子量的平方成反比, 与其分压成正比。当色谱流出物经过分离器时, 小分子的载气易从微孔中扩散出去,被真空泵抽除,而被测物分子量大,不易扩散则得到浓缩。 l 直接连

接法(主要用于毛细管柱 l 在色谱柱和离子源之间用长约 50cm ,内径 0.5mm 的不锈钢毛细管连接,色谱流出物经过毛细管全部进入离子源,这种接口技术样品利用率高。 l 开口分流连接 l 该接口是放空一部分色谱流出物,让另一部分进入质谱仪, 通过不断流入清洗氦气, 将多余流出物带走。此法样品利用率低。离子源离子源的作用是接受样品产生离子,常用的离子化方式有:l 电子轰击离子化(electron impact ionization, EI lEI 是最常用的一种离子源,有机分子被一束电子流(能量一般为 70eV 轰击,失去一个外层电子,形成带正电荷的分子离子(M+ , M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 lEI 特点:l 电离效率高,能量分散小,结构简单,操作方便。 l 图谱具有特征性,化合物分子碎裂大,能提供较多信息, 对化合物的鉴别和结构解析十分有利。 l 所得分子离子峰不强, 有时不能识别。 l 本法不适合于高分子量和热不稳定的化合物。 l 化学离子化(chemical ionization , CI l 将反应气(甲烷、异丁烷、氨气等与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一

个质量数的 (M+1 离子, 或称为准分子离子。准分子离子也可能失去一个 H2 , 形成 (M-1 离子。 lCI 特点 l 不会发生象 EI 中那么强的能量交换,较少发生化学键断裂,谱形简单。 l 分子离子峰弱,但(M+1 峰强,这提供了分子量信息。场致离子化(field ionization, FI l 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。场解吸离子化(field desorption ionization, FD l 用于极性大、难气化、对热不稳定的化合物。负离子化学离子化(negative ion chemical ionization , NICI l 是在正离子 MS 的基础上发展起来的一种离子化方法, 其给出特征的负离子峰,具有很高的灵敏度(10-15 g 。质量分析器其作用是将电离室中生成的离子按质荷比(m/z大小分开,进行质谱检测。常见质量分析器有 l 四极质量分析器(quadrupole analyzer l 原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后, 在极性相反的电极间振荡, 只有质荷比在某个范围的离子才能通过四极杆, 到达检测器, 其余离子因振幅过大与电极碰撞, 放电中和后被抽走。因此,改变电压或频率, 可使不同质荷比的离子依次到达检测器, 被分离检测。扇形质量

分析器 l 磁式扇形质量分析器(magnetic-sector mass analyzer l 被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:l l当 H , V 一定时, 只有某一质荷比的离子能通过狭缝到达检测器。 l 特点:分辨率低,对质量同、能量不同的离子分辨较困难。 l 双聚焦质量分析器(double-focusing mass assay l 由一个静电分析器和一个磁分析器组成, 静电分析器允许有某个能量的离子通过, 并按不同能量聚焦, 先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 l 离子阱检测器(ion trap detector l 原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。检测器检测器的作用是将离子束转变成电信号,并将信号放大, 常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子, 被喷射出的电子由于电位差被加速射向第二个倍增器电极, 喷射出更多的电子, 由此连续作用, 每个电子碰撞下一个电极时能喷射出 2-3个电子,通常电子倍增器有 14级倍增器电极,可大大提高检测灵敏度。 GC-MS 的常用测定方法 l 总离子流色谱法(total ionization chromatography , TIC ——类似于 GC 图谱,用于定量。 l 反复扫描法(repetitive scanning method , RSM ——按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图, 可进行定性。 l 质量色谱法(mass chromatography, MC ——记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内, 任何一个质量数都有与总离子流色谱图相似的质量色谱图。l 选择性离子监测(selected ion monitoring, SIM ——对选定的某个或数个特征质量峰进行单离子或多离子检测, 获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高 2-3个数量级。质谱图——为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为 100%,其它峰以此峰为准,确定其相对强度。

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图

钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

气相色谱仪原理、结构及操作

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 2.1 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

气相色谱-质谱联用技术

气相色谱-质谱联用技术 本章目录(查看详细信息,请点击左侧目录导航) 第一节气相色谱质谱联用仪器系统 一、GC-MS系统的组成 二、GC-MS联用中主要的技术问题 三、GC-MS联用仪和气相色谱仪的主要区别 四、GC-MS联用仪器的分类 五、一些主要的国外GC-MS 联用仪产品简介 第二节气相色谱质谱联用的接口技术 一、GC-MS联用接口技术评介 二、目前常用的GC-MS接口 第三节气相色谱质谱联用中常用的衍生化方法 一、一般介绍 二、硅烷化衍生化 三、酰化衍生化 四、烷基化衍生化 第四节气相色谱质谱联用质谱谱库和计算机检索 一、常用的质谱谱库 二、NIST/EPA/NIH库及其检索简介 三、使用谱库检索时应注意的问题 四、互联网上有关GC-MS和的信息资源 第五节气相色谱质谱联用技术的应用 一、GC-MS检测环境样品中的二噁英 二、GC-MS在兴奋剂检测中的应用 三、GC-MS区分空间异构体 四、常用于GC-MS 检测提高信噪比的方法 五、GC-MS(TOF)的应用 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现 GC-M S系统的组成 气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即

GC-MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。GC-MS逐步成为分析复杂混合物最为有效的手段之一。 GC-MS联用仪系统一般由图11-3-1所示的各部分组成。 气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。 GC-M S联用中主要的技术问题 气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题: 1.仪器接口 众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,最后和载气一起流出色谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。

气相色谱仪原理和使用

实验七气相色谱仪原理和使用 一、目的要求 1、掌握气相色谱仪结构、工作原理和内标法应用。 2、熟悉气相色谱仪的操作 3、了解气相色谱法在中药分析中的应用。 二、基本原理 仪器工作原理图 样品测定原理 牛黄解毒片由牛黄、雄黄、石膏、大黄、黄芩、桔梗、冰片、甘草组成。其中冰片为龙脑和异龙脑的混合物,具挥发性。因此本实验采用GC法,对牛黄解毒片中所含冰片进行测定,并用内标法计算含量。 三、仪器与试药 1、气相色谱仪GC9800F(上海科创色谱仪器有限公司)、微量进样器。 2、水杨酸甲酯、乙醚、醋酸乙酯(AR)。 3、冰片对照品(中国药品生物制品检定所)。 4、牛黄解毒片(市售品)。 四、操作步骤 1、讲述仪器结构:N2钢瓶、空气钢瓶、氢气发生器,气体净化器;进样器、橡

胶垫片、衬管;柱温箱、毛细管柱、分流管、尾吹管;FID检测器 2、讲述仪器操作(详见附录): (1)顺时针打开氮气和空气钢瓶、接通氢气发生器电源。 (2)接通仪器电源。 (3)设置气化、柱箱、检测器温度,并运行。 (4)确定各气体流量。 (5)打开FID电源,设置灵敏度和衰减。 (6)打开电脑,打开N2000在线,选择通道1,设置方法、信息等。 (7)查看基线。 (8)点火。 (9)待基线稳定后进样。 (10)进入N2000离线,查看色谱图和数据。 (11)记录所需色谱峰保留时间、峰面积、分离度、塔板数、对称因子等。(12)利用内标法进行样品溶液浓度的计算。 (13)柱的老化。 (14)关机 3、样品分析 色谱条件以二甲基聚硅氧烷(SE-30)为固定相;柱温为130℃,气化室为200℃,; 载气为N 2;柱前压0.06MPa;H 2 0.03MPa(20ml/min);空气0.03MPa;尾吹0.03MPa; FID检测器,控制温度200℃。 校正因子测定 内标溶液配制取水杨酸甲酯0.5g,精密称定,置250ml量瓶中,加乙酸乙酯至刻度,摇匀,作为内标溶液(2mg/ml)。(已备) 对照品溶液配制取冰片对照品20mg,精密称定,置10ml量瓶中,加内标溶液至刻度,摇匀,作为对照品溶液(2mg/ml)。(已备) 测定校正因子取冰片对照品溶液1μl注入气相色谱仪,测定3次,计算校正因子。 测定法取本品6片,去薄膜衣,研细,取0.5g,精密称定,置15ml带塞试管中,加入乙醚10ml,密塞,冰水浴超声提取10min。提取液分两次转移至8ml 离心管中,离心(3000rpm,10min),倾出上清液,沉淀用5ml乙醚洗涤1次,离心,合并上清液,挥干,残渣用内标溶液溶解,移置10ml量瓶中,并稀释至刻度,摇匀,用微孔滤膜(0.45μm)滤过,取续滤液,即得。精密吸取1μl,注入气相色谱仪,测定,按内标法计算含量。(已备)

JJF气相色谱仪质谱联用仪

台式气相色谱质谱联用仪校准规范 1范围 本规范适用于离子阱和四极杆型台式气相色谱 -质谱联用仪(以下简称台式GC-MS)的校准,其它类型台式GC-MS的校准可参照此规范进行。 2引用文献 JJF 1001—1998通用计量术语及定义 JJF 1059-1999测量不确定度评定与表示 GB/T 15481—1995校准和检验实验室能力的通用要求 GB/T 6041 — 2002质谱分析方法通则 JJG (教委)003—1996有机质谱仪检定规程 JJG 700-1999气相色谱仪检定规程 OIML/TC16/SC2/R83 Gas chromatograph/mass spectrometer system for an alysis of rganic polluta nts in water 使用本规范时,应注意使用上述引用文献的现行有效版本。 3术语和计量单位 3.1分辨力(resolution) 分辨两个相邻质谱峰的能力,对于台式 GC-MS以某离子峰峰高50%处的峰宽度(简称半峰宽)表示,记为W1/2,单位u。 3.2基线噪声(baseline noise 基线峰底与峰谷之间的宽度,单位计数。 3.3信噪比(signal-to-noise ratio) 待测样品信号强度与基线噪声的比值,记为SN。 3.4质量色谱图(mass chromatogram质谱仪(和色谱图是两回事) 质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中 以一个或多个离子强度随时间变化的谱图,称为质量色谱图。 3.5质量准确性(mass accuracy 仪器测量值对理论值的偏差。 3.6u (atomic mass unit) 原子质量单位。 4概述 气相色谱-质谱联用仪是将气相色谱仪与质谱仪通过一定接口耦合到一起的分析仪 器。样品通过气相色谱的分离后的各个组分依次进入质谱检测器,组分在离子源被电离, 产生带有一定电荷、质量数不同的离子。不同离子在电场和 /或磁场中的运动行为不同,米用不同质量分析器把带电离子按质荷比(m/z)分开,得到依质量顺序排列的质谱图。通过对质谱图的分析处理,可以得到样品的定性、定量结果。气相色谱-质谱联用仪主要包括

气相色谱仪工作原理(精)

系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统, 样品溶液经进样器进入流动相, 被流动相载入色谱柱(固定相内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附-解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪, 数据以图谱形式打印出来高效液相色谱仪主要有进样系统、输液系统、.分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。 1.进样系统 液相色谱仪 一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。 2.输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l .47~4.4X107Pa ,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH 值,或改用竞争性抑制剂或变性剂等。这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。 3.分离系统该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm (需要两根连用时,可在二者之间加一连接管),内径为2~5mm ,由" 优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm 粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000? )和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA )后,就可以把成纤维细胞中的一种糖蛋白分离出来。另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低

气相色谱质谱联用原理和应用

气相色谱质谱联用原理 和应用 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC-MS) 具有灵敏度

气象色谱仪的工作原理

气相色谱是对气体物质或可以在一定温度下转化为气体的物质进行检测分析。由于物质的物性不同,其试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,虽然载气流速相同,各组份在色谱柱中的运行速度就不同,经过一定时间的流动后,便彼此分离,按顺序离开色谱柱进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。这就是气象色谱仪的工作原理。 特点 2001型气相色谱仪,是由微型计算机控制的多功能实验室用分析仪器,具有热导池、氢焰离子化、电子捕获、火焰光度、氮磷五种检测器,可配填充柱或毛细管柱。仪器可进行恒温操作或五阶程序升温操作。仪器集成度高,设计先进,实现了较高程度自动化,可通过键盘实现检测器参数、温度参数设置。可对填充柱及毛细管及柱头压力实时显示,仪器采用单气路结构。2001型气相色谱仪结构合理性能稳定可靠,操作简单,维修方便。可应用于包装、油墨、石油、化工、农药、医药卫生、商品检验、环境保护以及高等院校等生产及科研部门。 (一)检测器部分 根据不同的样品分析要求,有五种检测器可供选择 △FID氢火焰检测器 △TCD热导池检测器 △ECD电子捕获检测器 △NPD氮磷检测器 △FPD火焰光度检测器 (二)进样器部分 为了得到可靠的检测数据,适应不同的分析要求,同时具有填充柱和毛细管柱两个进样口。具有柱头进样、玻璃内衬进样、分流/不分流进样器。可满足不同口径的毛细管、填充柱分析。进样口具有先进的进样导向器,各种口径毛细管的玻璃内衬带有特质弹簧,能自动找平衡定位。 (三)柱箱部分 仪器的大柱箱紧凑、风道布局合理、适度均匀、升温/降温速度快,因此,改善了分析结果的重现性,提高了分析能力。自动后开门,从350℃降至60℃仅需8分钟。 (四)键盘/显示部分 全中文键盘输入方式,采用大屏幕LCD显示器,左四行为设置区,右四行为实际显示区,清晰、直观、方便。 (五)气路部分 采用背压控制方式,可准确制毛细管柱的载气流速。用质量型流量调节阀决定总流量,用背压阀控制毛细管柱输入压力,还可用隔膜清洗阀调节对进样垫进行吹扫的

气相色谱-质谱联用技术..

气相色谱-质谱联用技术 气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。 1、产生背景 色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。 气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。 2、技术原理与特点 气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度。由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。 质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。其主要特点是迁建的结构鉴定能力,能给出化合物的分子量、分子式及结构信息。在一定条件下所得的MS碎片图及相应强度,犹如指纹图,易与辨识,方法专属灵敏。但质谱拘束最大的不足之处在与要求样品是单一组分,无法满足复杂物质的分析。

实验三 气相色谱-质谱联用仪定性分析液体混合物

实验三气相色谱-质谱联用仪定性分析液体混合物 一、实验目的 1. 了解质谱检测器的基本组成及功能原理 2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。 二、实验原理 气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。目前,小型台式GC-MS已成为很多实验室的常规配置。 1. 质谱仪的基本结构和功能 质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。 质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。 气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。接口一般应满足如下要

气相色谱质谱联用仪操作规程

气相色谱质谱联用仪操作规程(定性部分) 1.开机 ①打开高纯氦气钢瓶的阀门,调节出口压力为7kgf/cm2左右,然后依次打开GC电源和MS电源,点击软件[GCMS Real Time Analysis],选择用户名,登录后进入。 ②点击设定系统的配置。 ③点击[Vacuum Control] ,在随即出现的对话框中点击 [Auto Startup],启动真空系统。 2. 调谐 ①点击[GCMS Real Time Analysis]辅助栏中的[Turing],打开调谐窗口。 ②真空稳定后,点击[Peak Monitor View],进行泄漏检验。 确认m/z18、m/z28、m/z32、m/z69的关系及确认是否漏气:通常m/z18>m/z28, 表示不漏气;如果m/z28的强度同时大于m/z18,m/z69的两倍,表明漏气。 ③点击[Auto Tuning Condition],设置调谐条件。 通常使用默认的条件。 ④点击[Start Auto Tuning],进行自动调谐。 ⑤结束后,输出调谐报告。 在调谐报告中确认峰形、半峰宽、基峰、检测器电压和m/z502的丰度等。 一般的要求如下: 峰形:没有明显的分叉,峰形对称 半峰宽:m/z69、m/z219、m/z502的半峰宽与设定值相差0.1 基峰:在质谱图中,m/z28的强度在m/z69的50%以下 检测器电压:要求小于1.5Kv m/z502的丰度:大于2% 质量数准确性:质谱图中的测量值与标准值之间相差在0.1以内

⑥点击[File],选择[Save Tuning File As],保存调谐文件。 ⑦关闭调谐画面。 ************************************************************************ 注:检查漏气的方法如 1. 点击Tuning之中的Peak Monitor View 2. 在 Monitor Group菜单里选择[water,air],同时确认检测器的电压是0.7Kv。 3. 打开灯丝,观察m/z18、m/z28和m/z32的强度。如果需要比较m/z69的强度,请先关闭灯丝,选择打开PFTBA,等待10秒钟以上,再打开灯丝。将m/z32改成m/z69。如果发现有漏气的情况,将m/z69改成m/z43。 4. 使用石油醚,在怀疑有漏气的部位检查,如果有漏气,则m/z43的峰会非常大。 5. 确认漏气的部位,进行相应的处理。 ********************************************************************* 3. 分析条件的设定 ○1点击File》》New Method File,建立分析方法文件(如果使用现有的分析方法, 点击File》》New Method File,调出所需方法文件):

简述气相色谱仪的原理组成及应用

简述气象色谱仪的原理组成及应用 气相色谱分析于1952 年出现,经过50 年的发展已成为重要的近代分析手段之一,由于它具有分离效能高,分析速度快,定量结果准,易于自动化等特点;且当其与质谱,计算机结合进行色-质联用分析时,又能对复杂的多组分混合物进行定性和定量分析。首先我们对气象色谱仪进行探讨: 1 气象色谱流程与分离原理 气象色谱仪分离的原理:分离原理是气体流动相携带混合物流过色谱柱中的固定相,混合物与固定相发生作用,并在两相间分配。由于各组分在性质和结构上的差异,发生作用的大小、强弱也有差异,因此不同组分在固定相中滞留时间有长有短,从而按先后不同的次序从固定相中流出,从而达到各组分分离的目的。 气象色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。可用流程方框图表示,如下图: 2 气象色谱仪的基本组成和核心部分 2.1气路控制系统 主要作用是为了保证进样系统、色谱柱系统和检测器的正常工作提供稳定的载气和有关检测器必须的燃气、助燃气以及辅助气体,气路控制系统的好坏将直接影响仪器的分离效率、灵敏度和稳定性,从而将直接影响定性定量的准确性。气路控制系统主要由开关阀、稳定阀、针型阀、压力表、电子流量计等部件组成。 2.3 色谱柱和柱箱 色谱柱的作用就是分离混合物样品中的有关组分。是色谱分析的关键部分,主要有填充柱和毛细柱两大类。色谱柱选用的正确与否,将直接影响分离的效率、稳定性和检测灵敏度。柱箱就是装接和容纳各种色谱柱的精密控温的炉箱,是色谱仪的重要组成部分之一,柱箱结构设计的合理与否,将直接影响整体性能。 2.4 检测器 检测器是气象色谱仪的心脏部分,它的功能就是把随载气流出色谱柱的各种组分进行非电量转换,将组分转变为电信号,便于记录测量的处理。检测器的性能直接影响整机仪器的性能,主要影响稳定性和灵敏度,检测器的性能也决定了该仪器的应用范围。一般色谱仪的检测器都有热导检测器和氢焰检测器: A 热导检测器的原理:气体具有热导作用,不同物质具有不同的热导系数,热导检测器就是根据不同物质热导系数的差别而设计的,它对有机、无机样品均匀响应,而不破坏样品,可用于常量分析。热导检测器是用热导

气相色谱仪的工作原理和应用

******************************************************************************* 气相色谱仪基本工作原理: 气相色谱仪根据试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组分就在其中的两相间进行反复多次(103-106)的分配(吸附-脱附-放出),由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离;分离后的组分按保留时间的先后顺序进入检测器,检测器根据组份的物理化学性质将组份按顺序检测出来并自动记录检测信号,产生的信号经放大后,在记录器上描绘出各组分的色谱峰;最终依据试样中各组分保留时间(出峰位置)进行定性分析或依据响应值(峰高或峰面积)对试样中各组分进行定量分析。 气相色谱仪主要性能特点: 1.高效能:可以分析沸点十分相近的组分和极为复杂的多组份混合物.例如,用毛细管可以分析轻油中150个组份. 2.高选择性:通过选用高选择性的固定液可对性质极为相似的组份进行有效分离.,如同位素,烃类的异构体等. 3.高灵敏度:配置高灵敏度的检测器可检测出10-11—10-13g/ml的物质,可用于痕量分析. 4.分析速度快:一次分析周期几分钟或十几分钟,某些快速分析几秒钟可以分析若干组分. 5.应用范围广:可以分析气体和易挥发的或可以转化为易挥发的液体和固体。 气相色谱仪主要组成部分: 1.气路系统:包括气源、气体净化、气体流速控制阀门和压力表等; 2.进样系统:包括进样器、汽化室(将液体样品瞬间汽化为蒸气)等; 3.分离系统:包括色谱柱和柱温控制装置(色谱柱箱)等; 4.检测系统:包括检测器,控温装置等; 5.操作系统:包括中文显示器、触摸式参数输入键盘。 6.记录系统:包括放大器、数据处理系统(色谱工作站)等。 气相色谱仪主要技术参数: 1.压力控制范围及精度; 2.流量控制范围及精度; 3.温度控制范围及精度; 4.升降温速率; 5.检测器灵敏度或检测限; 6.噪音; 7.漂移; 8.线性范围; 10.重复性; 11.色谱柱分离度。 *******************************************************************************

气相色谱-质谱联用(GC-MS)

气相色谱-质谱联用(GC-MS) 一、实验目的 1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法; 2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。 二、实验原理 气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。目前,小型台式GC-MS已成为很多实验室的常规配置。 1. 质谱仪的基本结构和功能 质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。 质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。

气相色谱-质谱联用技术在药物分析及体内药物分析中的应用

药物分析课程论文 气相色谱-质谱联用技术在药物分析及体内药 物分析中的应用 药物制剂09(1)班 指导教师:宋粉云 2012年10月

摘要:气相色谱-质谱联用法(GC-MS)是一种高效能、高选择性、高灵敏度的分离分析方法,其在很多领域的分离分析中都得到应用,本文主要综述气相色谱-质谱联用法在药物分析和体内药物分析中的使用,相信随着科学技术的发展,气相色谱-质谱联用法在药物分析中的使用将会越来越受到重视,其应用领域也将越来越广泛。 关键字:气相色谱法–质谱法联用、药物分析、体内药物分析 面对成分越来越复杂的分析样品, 以及痕量甚至超痕量水平的目标分析物, 如何能快速、准确的获取目标分析物的信息,是目前乃至未来样品分析技术研究领域中一个重要的环节。近几十年来, 体内药物分析技术经历了常规分析、光谱法分析、色谱法分析、色谱-质谱联用法分析等发展阶段,不断推动了药物代谢研究的发展。自从1957年JC Homlmes和FA Morrell首先实现气相色谱-质谱(gas chromatography-mass spectrometry, GC-MS) 联用以来, 该技术随着仪器的不断完善与发展, 检测技术的成熟与推广, 其应用范围越来越广。 GC-MS是一种高效能、高选择性、高灵敏度的分离分析方法,结合了色谱、质谱两者的优点,主要由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。当试样流经柱子时,根据个组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(即保留时间)流出柱子。流出柱子的分子被下游的质谱分析器所俘获,离子化、加速、偏向、最终分别测定离子化的分子。质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定的。样品通过气质联用色谱在短时间内即可实现样品的分离、分析、定性及定量, 使分析能够便捷,准确的进行,因此其在生物样品中的分析应用越来越广泛。 作为一种新型、先进的分离分析方法,气质联用色谱使药物分析:药物的成分、含量、未知物的定性变得简单、快捷,如今,该技术在药物分析中的地位已不可忽视,以下将主要介绍气质联用色谱法在药物分析及体内药物分析中的应用。 1. 气质联用色谱法在药物分析中的应用 1.1 GC-MS检测川芎中挥发油的化学成分 川芎(Ligusticumchuanxiong Hort.)是常用传统中药,川芎的挥发油具有较强的生理活性,如作用于心脑血管,改善微循环等[1]。这类中药材挥发油中主要含苯酞类化合

相关主题
文本预览
相关文档 最新文档