当前位置:文档之家› 汽车设计转向系统

汽车设计转向系统

汽车设计转向系统
汽车设计转向系统

第一节概述

转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。有些汽车还装有防伤机构和转向减振器。采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。

对转向系提出的要求有:

1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。

2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。

4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。

5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。

6)操纵轻便。

7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。

8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。

9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

10)进行运动校核,保证转向盘与转向轮转动方向一致。

正确设计转向梯形机构,可以使第一项要求得到保证。转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。通常用转向时驾驶员作用·在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。没有装置动力转向的轿车,在行驶中转向,此力应为50—100N;有动力转向时,此力在20—50N。当货车从直线行驶状态,以10km /h速度在柏油或水泥的水平路段上转入沿半径为12m的圆周行驶,且路面干燥,若转向系没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。·近年来,电动、电控动力转向器已得到较快发展,不久的将来可以转入商品装车使用。电控动力转向可以实现在各种行驶条件下转动转向盘的力都轻便。

第二节 转向系主要性能参数

一、转向器的效率

功率P 1从转向轴输入,经转向摇臂轴输出所求得的效率称为正效率,用符号

η+表示,η+=(P 1—P 2)/P l ;反之称为逆效率,用符号η-表示,η- =(P 3—P 2)/P 3。式中,P 2为转向器中的摩擦功率;P 3为作用在转向摇臂轴上的功率。为了保证转向时驾驶员转动转向盘轻便,要求正效率高。为了保证汽车转向后转向轮和转向盘能自动返回到直线行驶位置,又需要有一定的逆效率。为了减轻在不平路面上行驶时驾驶员的疲劳,车轮与路面之间的作用力传至转向盘上要尽可能小,防止打手又要求此逆效率尽可能低。

1.转向器的正效率η+

影响转向器正效率的因素有:转向器的类型、结构特点、结构参数和制造质量等。 (1)转向器类型、结构特点与效率 在前述四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显的低些。 同一类型转向器,因结构不同效率也不一样。如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以选用滚针轴承、圆锥滚子轴承和球轴承等三种结构之一。第一种结构除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还存在滑动摩擦损失,故这种转向器的效率ly+仅有54%。另外两种结构的转向器效率,根据试验结果分别为70%和75%。

转向摇臂轴轴承的形式对效率也有影响,用滚针轴承比用滑动轴承可使正或逆效率提高约10%。

(2)转向器的结构参数与效率 如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆和螺杆类转向器,其效率可用下式计算

)

tan(tan 00

ρααη+=

+ (7--1)

式中,αo 为蜗杆(或螺杆)的螺线导程角;ρ为摩擦角,ρ=arctanf ;f 为摩擦因数。 2.转向器逆效率η-

根据逆效率大小不同,转向器又有可逆式、极限可逆式和不可逆式之分。

路面作用在车轮上的力,经过转向系可大部分传递到转向盘,这种逆效率较高的转向器属于可逆式。它能保证转向后,转向轮和转向盘自动回正。这既减轻了驾驶员的疲劳,又提高了行驶安全性。但是,在不平路面上行驶时,车轮受到的冲击力,能大部分传至转向盘,造成驾驶员“打手”,使之精神状态紧,如果长时间在不平路面上行驶,易使驾驶员疲劳,影响安全驾驶。属于可逆式的转向器有齿轮齿条式和循环球式转向器。

不可逆式转向器,是指车轮受到的冲击力不能传到转向盘的转向器。该冲击力由转向传动机构的零件承受,因而这些零件容易损坏。同时,它既不能保证车轮自动回正,驾驶员又缺乏路面感觉;因此,现代汽车不采用这种转向器。

极限可逆式转向器介于上述两者之间。在车轮受到冲击力作用时,此力只有较小一部分传至转向盘。它的逆效率较低,在不平路面上行驶时,驾驶员并不十分紧,同时转向传动机构的零件所承受的冲击力也比不可逆式转向器要小。

如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,则逆效率可用下式计算

0tan tan αραη)

(-=

- (7—2)

式(7—1)和式(7—2)表明:增加导程角αo,正、逆效率均增大。受η-增大的影响,αo 不宜取得过大。当导程角小于或等于摩擦角时,逆效率为负值或者为零,此时表明该转向器是不可逆式转向器。为此,导程角必须大于摩擦角。通常螺线导程角选在8°~10°之间。 二、传动比的变化特性 1.转向系传动比

转向系的传动比包括转向系的角传动比wo i 和转向系的力传动比p i

从轮胎接地面中心作用在两个转向轮上的合力2Fw 与作用在转向盘上的手力Fh 之比,称为力传动比,即 ip=2Fw /Fh 。

转向盘转动角速度 ωw 与同侧转向节偏转角速度 ωk 之比,称为转向系角传动比wo i ,即;

k

k k w wo d d dt d dt d i β?

β?ωω===

式中,d φ 为转向盘转角增量;d βk 为转向节转角增量;dt 为时间增量。它又由转向器角传动比iw 和转向传动机构角传动比iw ′ 所组成,即 iwo=iw iw ′ 。 转向盘角速度ωw 与摇臂轴转动角速度ωK 之比,称为转向器角传动比iw ′, 即

p

p p w w d d dt d dt d i β?

β?ωω=

==

。 式中,d βp 为摇臂轴转角增量。此定义适用于除齿轮齿条式之外的转向器。

摇臂轴转动角速度ωp 与同侧转向节偏转角速度ωk 之比,称为转向传动机构的角传动比

iw ′,即k

k

k p k p w d d dt d dt d i ββββωω=

==’。 2.力传动比与转向系角传动比的关系

轮胎与地面之间的转向阻力Fw 和作用在转向节上的转向阻力矩 Mr 之间有如下关系

a

M F r

W =

(7—3) 式中,α为主销偏移距,指从转向节主销轴线的延长线与支承平面的交点至车轮中心平面与支承平面交线间的距离。

作用在转向盘上的手力Fh 可用下式表示

SW

h

h D M F 2=

(7—4) 式中,Mh 为作用在转向盘上的力矩;Dsw 为转向盘直径。 将式(7—3)、式(7—4)代入 ip=2Fw /Fh 后得到

a

M D M i h sw

r P =

(7—5)

分析式(7—5)可知,当主销偏移距a 小时,力传动比 ip 应取大些才能保证转向轻便。通常轿车的 a 值在0.4~0.6倍轮胎的胎面宽度尺寸围选取,而货车的d 值在40~60mm 围选取。转向盘直径 Dsw 根据车型不同在JB4505—86转向盘尺寸标准中规定的系列选取。 如果忽略摩擦损失,根据能量守恒原理,2Mr /Mh 可用下式表示

wo k

h r i d d M M ==β?

2 (7—6) 将式(7—6)代人式(7—5)后得到

a

D i i sw

wo P 2=

(7—7) 当 α 和 Dsw 不变时,力传动比 ip 越大,虽然转向越轻,但 iwo 也越大,表明转向不灵敏。

3.转向系的角传动比iwo

转向传动机构角传动比,除用 iw ′=d βp /d βk 表示以外,还可以近似地用转向节臂臂长L 2与摇臂臂长L l 之比来表示,即 iw ′=d βp /d βk i ≈L 2/L l 。现代汽车结构中,L 2与L 1的比值大约在0.85~1.1之间,可近似认为其比值为 iwo ≈iw=d φ/d β 。由此可见,研究转向系的传动比特性,只需研究转向器的角传动比 iw 及其变化规律即可。 4.转向器角传动比及其变化规律

式(7—7)表明:增大角传动比可以增加力传动比。从 ip=2Fw /Fh 式可知,当Fw 一定时,增大ip 能减小作用在转向盘上的手力Fh ,使操纵轻便。

考虑到 iwo ≈iw ,由 iwo 的定义可知:对于一定的转向盘角速度,转向轮偏转角速度与转向器角传动比成反比。角传动比增加后,转向轮偏转角速度对转向盘角速度的响应变得迟钝,使转向操纵时间增长,汽车转向灵敏性降低,所以“轻”和“灵”构成一对矛盾。为解决这对矛盾,可采用变速比转向器。

齿轮齿条式、循环球式、蜗杆指销式转向器都可以制成变速比转向器。下面介绍齿轮齿条式转向器变速比工作原理。

根据相互啮合齿轮的基圆齿距必须相等, 即 P bl =P b2。其中齿轮基圆齿距P bl =πm l cos α1,

齿条基圆齿距 P b2=πm2cosα2。由上述两式可知:当齿轮具有标准模数m1和标准压力角α1与一个具有变模数m2、变压力角α2的齿条相啮合,并始终保持 m1cosoαl=m2cosoα2时,它们就可以啮合运转。如果齿条中部(相当汽车直线行驶位置)齿的压力角最大,向两端逐渐减小(模数也随之减小),则主动齿轮啮合半径也减小,致使转向盘每转动某同一角度时,齿条行程也随之减小。因此,转向器的传动比是变化的。图7—14是根据上述原理设计的齿轮齿条式转向器齿条压力角变化示例。从图中可以看到,位于齿条中部位置处的齿有较大压力角和齿轮有较大的节圆半径,而齿条齿有宽的齿根和浅斜的齿侧面;位于齿条两端的齿,齿根减薄,齿有陡斜的齿侧面。

循环球齿条齿扇式转向器的角传动比 iw=2πr/P (式7—13)。因结构原因,螺距 P 不能变化,但可以用改变齿扇啮合半径 r 的方法,达到使循环球齿条齿扇式转向器实现变速比的目的。

随转向盘转角变化,转向器角传动比可以设计成减小、增大或保持不变的。影响选取角传动比变化规律的因素,主要是转向轴负荷大小和对汽车机动能力的要求。若转向轴负荷小,在转向盘全转角围,驾驶员不存在转向沉重问题。装用动力转向的汽车,因转向阻力矩由动力装置克服,所以在上述两种情况下,均应取较小的转向器角传动比并能减少转向

盘转动的总圈数,以提高汽车的机动能力。

转向轴负荷大又没有装动力转向的汽车,因转向阻力矩大致与‘车轮偏转角度大小成正比变化,汽车低速急转弯行驶时的操纵轻便性问题突出,故应选用大些的转向器角传动比。汽车以较高车速转向行驶时,转向轮转角较小,转向阻力矩也小,此时要求转向轮反应灵敏,转向器角传动比应当小些。因此,转向器角传动比变化曲线应选用大致呈中间小两端大些的下凹形曲线,如图7—15所示。

转向盘在中间位置的转向器角传动比不宜过小。过小则在汽车高速直线行驶时,对转向盘转角过分敏感和使反冲效应加大,使驾驶员精确控制转向轮的运动有困难。直行位置的转向器角传动比不宜低于15~16。

三、转向器传动副的传动间隙Δt

1.转向器传动间隙特性

传动间隙是指各种转向器中传动副(如循环球式转向器的齿扇和齿条)之间的间隙。该间隙随转向盘转角φ的大小不同而改变,并把这种变化关系称为转向器传动副传动间隙特性(图7—16)。研究该特性的意义在于它与直线行驶的稳定性和转向器的使用寿命有关。

直线行驶时,转向器传动副若存在传动间隙,一旦转向轮受到侧向力作用,就能在间隙Δt的围,允许车轮偏离原行驶位置,使汽车失去稳定。为防止出现这种情况,要求传动副的传动间隙在转向盘处于中间及其附近位置时(一般是10°~15°)要极小,最好无间隙。

转向器传动副在中间及其附近位置因使用频繁,磨损速度要比两端快。在中间附近位置因磨损造成的间隙大到无法确保直线行驶的稳定性时,必须经调整消除该处间隙。调整后,要求转向盘能圆滑地从中间位置转到两端,而无卡住现象。为此,传动副的传动间隙特性,应当设计成在离开中间位置以后呈图7—16所示的逐渐加大的形状。图中曲线1表明转向器在磨损前的间隙变化特性,曲线2表明使用并磨损后的间隙变化特性,并且在中间位置处已出现较大间隙,曲线3表明调整后并消除中间位置处间隙的转向器传动间隙变化特性。

2.如何获得传动间隙特性

循环球式转向器的齿条齿扇传动副的传动间隙特性,可通过将齿扇齿做成不同厚度来获取必要的传动间隙。即将中间齿设计成正常齿厚,从靠近中间齿的两侧齿到离开中间齿最远的齿,其厚度依次递减。

如图7—17所示,齿扇工作时绕摇臂轴的轴线中心O转动。加工齿扇时使之绕切齿轴线O1转动。两轴线之间的距离n称为偏心距。用这种方法切齿,可获得厚度不同的齿扇齿。其传动特性可用下式计算

[]

22122cos cos tan 2n R n n R t p p d -+--=?ββα (7—8)

式中,αd 为端面压力角;R 为节圆半径;βp 为摇臂轴转角;R 1为中心O 1到b 点的距离;n 为偏心距。

偏心距n 不同,传动副的传动间隙特性也不同。图7—18示出偏心距n 不同时的传动间隙变化特性。n 越大,在同一摇臂轴转角条件下,其传动间隙也越大。一般偏心距n 取0.5mm 左右为宜。

第四节 机械式转向器的设计与计算

一、转向系计算载荷的确定

为了保证行驶安全,组成转向系的各零件应有足够的强度。欲验算转向系零件的强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的摩擦阻力等。

精确地计算出这些力是困难的。为此推荐用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩Mn(N ·mm)

p

G f

M R 3

13

=

(7—9) 式中,f 为轮胎和路面间的滑动摩擦因数,一般取0.7;Gl 为转向轴负荷(N);p 为轮胎气

压(MPa)。

作用在转向盘上的手力为

+

=

ηw SW R

h i D L M L F 212 (7—10)

式中,L l 为转向摇臂长;L 2为转向节臂长;Dsw 为转向盘直径;iw 为转向器角传动比; η+为转向器正效率。

对给定的汽车,用式(7—10)计算出来的作用力是最大值。因此,可以用此值作为计算载荷。然而,对于前轴负荷大的重型货车,用上式计算的力往往超过驾驶员生理上的可能,在此情况下对转向器和动力转向器动力缸以前零件的计算载荷,应取驾驶员作用在转向盘轮缘上的最大瞬时力,此力为700N 。 二、齿轮齿条式转向器的设计

齿轮齿条式转向器的齿轮多数采用斜齿圆柱齿轮。齿轮模数取值围多在2~3mm 之间。主动小齿轮齿数多数在5—7个齿围变化,压力角取20°,齿轮螺旋角取值围多为9°~15°。齿条齿数应根据转向轮达到最大偏转角时,相应的齿条移动行程应达到的值来确定。变速比的齿条压力角,对现有结构在12°一35°围变化。此外,设计时应验算齿轮的抗弯强度和接触强度。

主动小齿轮选用16MnCr5或15CrNi6材料制造,而齿条常采用45钢制造。为减轻质量,壳体用铝合金压铸。

三、循环球式转向器设计 (一)主要尺寸参数的选择 1.螺杆、钢球、螺母传动副

(1)钢球中心距D 、螺杆外径D ,、螺母径D 2 尺寸D 、D l 、D 2如图7—19所示。钢球中心距是基本尺寸,螺杆外径D 1、螺母径D 2及钢球直径d 对确定钢球中心距D 的大小有影响,而D 又对转向器结构尺寸和强度有影响。在保证足够的强度条件下,尽可能将D 值取小些。选取D 值的规律是随着扇齿模数的增大,钢球中心距D 也相应增加(表7—1)。设计时先参考同类型汽车的参数进行初选,经强度验算后,再进行修正。螺杆外径D l 通常在20~38mm 围变化,设计时应根据转向轴负荷的不同来选定。螺母径D 2应大于D l ,一般要求D 2—D l = (5%~10%)D 。

2)钢球直径d 及数量n 钢球直径尺寸d 取得大,能提高承载能力,同时螺杆和螺母传动机构和转向器的尺寸也随之增大。钢球直径应符合国家标准,一般常在7~9mm 围选用(表7—1)。

增加钢球数量n ,能提高承载能力,但使钢球流动性变坏,从而使传动效率降低。因为钢球本身有误差,所以共同参加工作的钢球数量并不是全部钢球数。经验证明,每个环路中的钢球数以不超过60粒为好。为保证尽可能多的钢球都承载,应分组装配。每个环路中的钢球数可用下式计算

d

DW

d DW n παπ≈=

0cos

式中,D 为钢球中心距;W 为一个环路中的钢球工作圈数;n 为不包括环流导管中的钢球数;α0为螺线导程角,常取α0=5°~8°,则cos α0≈1。

(3)滚道截面 当螺杆和螺母各由两条圆弧组成,形成四段圆弧滚道截面时,见图7—20,钢球与滚道有四点接触,传动时轴向间隙最小,可满足转向盘自由行程小的要求。图中滚道与钢球之间的间隙,除用来贮存润滑油之外,还能贮存磨损杂质。为了减少摩擦,螺杆和螺母沟槽的半径R 2应大于钢球半径d/2,一般取R 2 =(0.51~0.53)d 。

(4)接触角θ 钢球与螺杆滚道接触点的正压力方向与螺杆滚道法面轴线间的夹角称为

接触角θ,如图7—20所示。θ角多取为45°,以使轴向力和径向力分配均匀。 (5)螺距P 和螺旋线导程角αo 转向盘转动φ角,对应螺母移动的距离S 为

π

?2P

S =

(7—11)

式中,P 为螺纹螺距。

与此同时,齿扇节圆转过的弧长等于s ,相应摇臂轴转过βp 角,其间关系可表示如下

r s p β= (7—12)

式中,r 为齿扇节圆半径。

联立式(7—11)、式(7—12)得P P

rr

βπ?2=,将φ对βp ,求导得循环球式转向器角传动比iw 为

P

rr

i w π2=

(7—13) 由式(7—13)可知,螺距P 影响转向器角传动比的值。在螺距不变的条件下,钢球直径d 越大,图7—19中的尺寸b 越小,要求b=P-d ﹥2.5mm 。螺距P 一般在12~18mm 选取。 前已述及导程角αo 对转向器传动效率有影响,此处不再赘述。

(6)工作钢球圈数W 多数情况下,转向器用两个环路,而每个环路的工作钢球圈数W 又与接触强度有关:增加工作钢球圈数,参加工作的钢球增多,能降低接触应力,提高承载能力;但钢球受力不均匀、螺杆增长而使刚度降低。工作钢球圈数有1.5和2.5圈两种。一个环路的工作钢球圈数的选取见表7—1。

表7—1 循环球式转向器主要参数

2.齿条、齿扇传动副设计

如图7—21所示,滚道相对齿扇作斜向进给运动加工齿扇齿,得到变厚齿扇。如图7—22所示,变厚齿扇的齿顶和齿根的轮廓面是圆锥的一部分,其分度圆上的齿厚是变化的,故称之为变厚齿扇。

图7—22中,若0—0截面的原始齿形变位系数ζ=0,且I—I剖面和Ⅱ—Ⅱ剖面分别位于0—0剖面两侧,则I—I剖面的齿轮是正变位齿轮,Ⅱ—Ⅱ剖面中的齿轮为负变位齿轮,故变厚齿扇在整个齿宽方向上,是由无数个原始齿形位移系数逐渐变化的圆柱齿轮所组成。

对齿轮来说,因为在不同位置的剖面中,其模数m不变,所以它的分度圆半径r和基圆半径r b相同。因此,变厚齿扇的分度圆和基圆均为一圆柱,它在不同剖面位置上的渐开线齿形,都是在同一个基圆柱上所展出的渐开线,只是其轮齿的渐开线齿形相对基圆的位置不同而已,所以应将其归人圆柱齿轮的畴。

变厚齿扇齿形的计算,如图7—23所示。一般将中间剖面1—1规定为基准剖面。由1—1剖面向右时,变位系数ξ为正,向左则由正变为零(0—0剖面),再变为负。若0—0剖面距1—1剖面的距离为αo,则其值为αo=γ1m/tanγ,是切削角,常见的有6°30’和7°30,两种。在切削角γ一定的条件下,各剖面的变位系数ξ取决于距基准剖面1—1的距离a。

进行变厚齿扇齿形计算之前,必须确定的参数有:模数m,参考表7—2选取;法向压力角αo,一般在20°~30°之间;齿顶高系数x1,一般取0.8或1.0;径向间隙系数,取0.2;整圆齿数z,在12~15之间选取;齿扇宽度B,一般在22~38mm。

表7—2 循环球式转向器齿扇齿模数

齿扇齿模数m/mm3.03.54.04.55.06.06.5

轿车排量/mL

500

1000~

1800

1600~

2000

20002000

前轴负荷

/N

3500~

3800

4700~

7350

7000~

9000

8300~

11000

10000~

11000

货车和大客车

前轴负荷

/N

3000~

5000

4500~

7500

5500~

18500

7000~

19500

9000~

24000

17000~

37000

23000~

44000最大装载质

量/kg

350100025002700350060008000

四、循环球式转向器零件强度计算 1.钢球与滚道之间的接触应力σ

用下式计算钢球与滚道之间的接触应力σ

3

2

22

223)()(r R r R E F k -=σ

式中,k 为系数,根据A /B 值从表7—3查取,A= [(1/r) —(1/R2)]/2,

B=[(1/r) + (1/R 1)]/2;R 2为滚道截面半径;r 为钢球半径;R l 为螺杆外半径;E 为材料弹性模量,等于2.1X105

N /mm2;F 3为钢球与螺杆之间的正压力,可用下式计算

θ

αcos cos 02

3n F F =

式中,αo 为螺杆螺线导程角;θ为接触角;n 为参与工作的钢球数;F 2为作用在螺杆上的轴向力,见图7—24。

当接触表面硬度为58—64HRC 时,许用接触应力 [σ]=2500N /mm 2

。 表7—3 系数七与止/召的关系

2.齿的弯曲应力σw

用下式计算齿扇齿的弯曲应力 2

6bs

Fh

w =

σ 式中,F 为作用在齿扇上的圆周力;h 为齿扇的齿高;b 为齿扇的齿宽;s 为基圆齿厚。

许用弯曲应力为[σw]=540N /mm 2

螺杆和螺母用20CrMnTi 钢制造,表面渗碳。前轴负荷不大的汽车,渗碳层深度在0.8~

1.2mm ;前轴负荷大的汽车,渗碳层深度在1.05~1.45mm 。表面硬度为58—63HRC 。 此外,应根据材料力学提供的公式,对接触应力进行验算。 3.转向摇臂轴直径的确定 用下式计算确定摇臂轴直径d

2.0τR

KM d =

式中,K 为安全系数,根据汽车使用条件不同可取2.5~3.5;M R 为转向阻力矩;τ。为扭转强度极限。

摇臂轴用20CrMnTi 钢制造,表面渗碳,渗碳层深度在0.8~1.2mm 。前轴负荷大的汽车,渗碳层深度为1.05~1.45mm 。表面硬度为58~63HRC 。

汽车现代设计理论与方法

汽车现代设计理论与方法试题答案 1、用结构框图表示并行工程的一般步骤,列出每一步中涉及到的关键技术。 (1)并行工程的产品开发工程: (2)并行工程的运行模式: (3)并行工程(CE)的关键技术: ①多功能集成产品开发团队; ②产品开发的过程建模; ③产品生命周期数字化建模; ④产品数字管理; ⑤质量功能配置; ⑥面向X的设计; ⑦并行工程集成框架。

2、简述动态设计包括的主要内容,动态设计过程采用的建模方式是什么? 主要内容: 所谓“动态设计”是指机械结构和机器系统的动态性能在其图纸的设计阶段就应得到充分考虑,整个设计过程实质上是运用动态分析技术、借助计算机分析、计算机辅助设计和仿真来实现的,达到缩短设计周期、提高设计效率和设计水平的目的。 机械系统的动态特性是指机械系统本身的固有频率、阻尼特性和对应于各阶固有频率的振型以及机械在动载荷作用下的响应。 机械系统动态设计的主要包括两个方面: 1)建立一个切合实际的机械系统动态力学模型,从而为进行机械系统动态力学特性分析提供条件; 2)选择有效的机械系统动态优化设计方法,以获得一个具有良好的机械系统动态性能的产品结构设计方案。 机械系统的建模方法分为两大类:理论建模法、实验建模法。 (1) 理论建模法按机械系统不同而采用不同的技巧,因而有多种方法(一般主要采用有限元方法和传递矩阵法); (2)实验建模法是指对机械系统(实物或模型)进行激振(输入),通过测量与计算获得表达机械系统动态特性的参数(输出),再利用这些动态特性参数,经过分析与处理建立系统的数。 3、什么是稳健设计?稳健设计中主要涉及了哪些模型和方法? 稳健性设计 ①起源:这种新的设计概念认为:使用最昂贵的高等级、一致性最好的元器件并不一定能组装出稳健性最好的整机,成本最高,并不一定质量最好。产品抗干扰能力的强弱主要取决于各种设计参数(因素)的搭配。设计参数搭配不同,输出性能的波动大小不同,平均值也不同。 ②目的:稳健设计的目的在于,使所设计的产品质量稳定、波动小,使生产过程对各种噪声不敏感。在产品设计过程中,利用质量、成本、效益的函数关系,在低成本的条件下开发出高质量的产品。 ③设计思想:把产品的稳健性设计到产品和制造过程中,通过控制源头质量来抵御大量的下游生产或顾客使用中的噪声或不可控因素的干扰。 数学模型或方法: 稳健性设计包括三个阶段:解决问题、解决方案、应用价值。系统设计是基础,参数设计是核心,容差设计是为满足其经济性。 其中主要采用正交表及统计等模型方法。例如:

汽车设计课程设计(货车)

沈阳航空工业学院 课程设计 (说明书) 课程名称汽车设计课程设计 专业机械设计制造及其自动化 班级 6406110 学号 200604061345 姓名刘大慧 指导教师王文竹

目录 1 汽车的总体设计- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1.1汽车总体设计的特点- - - - - - - - - - - - - - - - - - - - - 1 1.2汽车总体设计的一般顺序- - - - - - - - - - - - - - - - -- - - 1 1.3布置形式- - - - - - - - - - - - - - - - -- - -- - - - - - - -3 1.4轴数的选择- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4 1.5 驱动形式的选择- - - - - - - - - - - - - - - - - - - - - - - - - -- -4 2 载货汽车主要技术参数的确定- - - - - - - - - - - - - - - - - - - - -- - -5 2.1汽车质量参数的确定- - - - - - - - - - - - - - - - - - - - - - - - 5 2.1.1汽车载荷质量的确定- - - - - - - - - - - - - - - - - - - - - - - 5 2.1.2整车整备质量的预估- - - - - - - - - - - - - - - - - - - - - - - 5 2.1.3汽车总质量的确定- - - - - - - - - - - - - - - - - - - - - - - - 5 2.1.4汽车轴数和驱动形式的确定- - - - - - - - - - - - - - - - - - - - 5 2.1.5汽车的轴荷分配- - - - - - - - - - - - - - - - - - - - - - - - - 5 2.2汽车主要尺寸的确定- - - - - - - - - - - - - - - - - - - - - - - - 6 2.2.1汽车轴距L确定- - - - - - - - - - - - - - - - - - - - - - - - - 6 2.2.2汽车的前后轮距B1和B2- - - - - - - - - - - - - - - - - - - - - 6 2.2.3汽车前悬Lf和后悬LR的确定- - - - - - - - - - - - - - - - -- - 6 2.2.4汽车的外廓尺寸- - - - - - - - - - - - - - - - - - - - - - - - - - 6 2.3汽车主要性能参数的确定- - - - - - - - - - - - - - - - - - - - - --- - 7 2.3.1汽车动力性参数的确定- - - - - - - - - - - - - - - - - - - - - 7 2.3.2汽车燃油经济性参数的确定 - - - - - - - - - - - - - - - - - - 7 2.3.3汽车通过性性参数的确定- - - - - - - - - - - - - - - - -- - 8 2.3.4汽车制动性参数的确定 - - - - - - - - - - - - - - - - - - - - 8 3载货汽车主要部件的选择和布置- - - - - - - - - - - - - - - - - - - - - - - 9 3.1发动机的选择与布置- - - - - - - - - - - - - - - - - - - - - - -- --- 9 3.1.1发动机型式的选择- - - - - - - - - - - - - - - - - - - - - -- -- 9 3.1.2发动机主要性能指标的选择- - - - - - - - - - - - - - - - - - -- 9

浅析现代汽车车身设计方法

龙源期刊网 https://www.doczj.com/doc/452277378.html, 浅析现代汽车车身设计方法 作者:刘义 来源:《科技资讯》2011年第07期 摘要:针对现代汽车车身的作用及结构特点,分析了车身设计的要求与特点,并论述了基于CAX的现代汽车车身设计方法此方法在汽车设计理念、数学建模中具有快速、高效的特点。 关键词:车身设计汽车外形设计方法 中图分类号:U270 文献标识码:A 文章编号:1672-3791(2011)03(a)-0105-01 车身是汽车的四大总成之一,随着汽车服务领域的不断扩大和需求日益多样化、个性化车 身设计己后来居上逐渐占据主导地位。据统计,客车轿车和多数专用汽车的车身质量约占整车 质量的40%~60%;货车车身质量约占整车质量的16%~30%;而各车型车身的制造成本占整车的白分比甚至还略高于上述给出的上限值。从节能、节材等儿个方面来看,车身设计的潜力则 更大。 国内外汽车生产的实践充分说明:整车生产能力的发展取决于车身的生产能力;汽车的更新换代在很大程度上也取决于车身;在基本车型达到饱和情况下,只有依赖于车身改型或改装才能打开销的路。传统的汽车车身设计方法的整个过程是基于手工设计完成的、一般分为起步设计与技术工艺设计的两个阶段。整个过程的特点是通过实体、图纸、模型、样板等来表达信息, 需要制作个尺寸油泥模型、样车以及三次风洞试验等阶段;同时需要进行车身原始数据的保留、车身主图板和车身主模型制作。因此,进行优化车身设计改良,不仅可以节约制造物理样机所需要的时间与经费,而且能够获得较最佳的设计力案;同时能够准确快捷的确定、修改设计缺陷,逐步优化设计力案。从源头提高了产品的设计质量,大大缩短了产品的开发周期及费用。 1 车身的作用及结构特点 车身的主要作用是载运乘客或货物,相当于临时住所或流动仓库,是一个受到质量和空间限制的活动建筑物,其详细作用因车而异。就轿车车身而言其作用概括起来有以下5点:(1)实现整车功能;(2)为乘客提供舒适的乘坐环境;(3)为乘客提供安全保护;(4)减少空气阻力;(5)增强轿车的美观性。 车身的特点主要体现在车身的涉及面广、车身材料种类多、车身造型发展迅速等几个方面。车身的结构特点主要在于组成车身外形的各个零部件(即所谓的车身覆盖件)的材料薄、尺寸大、形状复杂且多为自由曲面。 2 对车身设计的要求与特点分析

汽车设计课程设计

XX大学 汽车设计课程设计说明书设计题目:轿车转向系设计 学院:X X 学号:XXXXXXXX 姓名:XXX 指导老师:XXX 日期:201X年XX月XX日

汽车设计课程设计任务书 题目:轿车转向系设计 内容: 1.零件图1张 2.课程设计说明书1份 原始资料: 1.整车性能参数 驱动形式4 2前轮 轴距2471mm 轮距前/后1429/1422mm 整备质量1060kg 空载时前轴分配负荷60% 最高车速180km/h 最大爬坡度35% 制动距离(初速30km/h) 5.6m 最小转向直径11m 最大功率/转速74/5800kW/rpm 最大转矩/转速150/4000N·m/rpm 2.对转向系的基本要求 1)汽车转弯行驶时,全部车轮应绕顺时转向中心旋转; 2)操纵轻便,作用于转向盘上的转向力小于200N; 3)转向系的角传动比在15~20之间,正效率在60%以上,逆效率在50%以上;4)转向灵敏; 5)转向器和转向传动机构中应有间隙调整机构; 6)转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

目录 序言 (4) 第一节转向系方案的选择 (4) 一、转向盘 (4) 二、转向轴 (5) 三、转向器 (6) 四、转向梯形 (6) 第二节齿轮齿条转向器的基本设计 (7) 一、齿轮齿条转向器的结构选择 (7) 二、齿轮齿条转向器的布置形式 (9) 三、设计目标参数及对应转向轮偏角计算 (9) 四、转向器参数选取与计算 (10) 五、齿轮轴结构设计 (12) 六、转向器材料 (13) 第三节齿轮齿条转向器数据校核 (13) 一、齿条强度校核 (13) 二、小齿轮强度校核 (15) 三、齿轮轴的强度校核 (18) 第四节转向梯形机构的设计 (21) 一、转向梯形机构尺寸的初步确定 (21) 二、断开式转向梯形机构横拉杆上断开点的确定 (24) 三、转向传动机构结构元件 (24) 第五节参考文献 (25)

越野车转向系统的设计

毕业设计 题目:越野车转向系统设计与优化学生姓名: 学号: 专业: 年级: 指导老师: 完成日期:

目录 第一章电动转向系统的来源及发展趋势 (1) 第二章转向系统方案的分析 (3) 1.工作原理的分析 (3) 2. 转向系统机械部分工作条件 (3) 3.转向系统关键部件的分析 (4) 4.转向器的功用及类型 (5) 5.转向系统的结构类型 (5) 6.转向传动机构的功用和类型 (7) 第三章转向系统的主要性能参数 (8) 1. 转向系的效率 (8) 2. 转向系统传动比的组成 (8) 3. 转向系统的力传动比与角传动比的关系 (8) 4. 传动系统传动比的计算 (9) 5. 转向器的啮合特征 (10) 6. 转向盘的自由行程 (11) 第四章转向系统的设计与计算 (12) 1. 转向轮侧偏角的计算(以下图为例) (12) 2. 转向器参数的选取 (12) 3. 动力转向机构的设计 (12) 4. 转向梯形的计算和设计 (14)

第五章结论 (16) 谢辞 (17) 参考文献 (18) 附录 (19)

转向系统设计与优化 摘要 汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。 关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。

汽车设计课程设计

西安交通大学 汽车设计课程设计说明书 载货汽车汽车动力总成匹配与总体设计 姓名: 班级: 学号: 专业名称: 指导老师: 日期:2104/12/1

题目: 设计一辆用于长途运输固体物料,载重质量20t 的重型货运汽车。 整车尺寸:11980mm×2465mm×3530mm 轴数:4;驱动型式:8×4;轴距:1950mm+4550mm+1350mm 额定载质量:20000kg 整备质量:11000kg 公路最高行驶速度:90km/h 最大爬坡度:大于30% 设计任务: 1) 查阅相关资料,根据题目特点,进行发动机、离合器、变速箱传动轴、 驱动桥、车轮匹配和选型; 2) 进行汽车动力性、经济性估算,实现整车的优化匹配; 3) 绘制车辆总体布置说明图; 4) 编写设计说明书。 本说明书将从整车主要目标参数的初步确定、传动系各总成的选型、整车性能计算、发动机与传动系部件的确定四部分来介绍本课程设计的设计过程。

1.整车主要目标参数的初步确定 1.1发动机的选择 1.1.1发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。设计要求该载货汽车的最高车速是90km/h ,那么发动机的最大功率应该大于等于以该车速行驶时的行驶阻力功率之和,即: )76140 3600( 1 3 max max max a D a a T e u A C u f g m P ?+??≥ η (1-1) 式中 max e P ——发动机最大功率,kW ; T η——传动系效率(包括变速器、传动轴万向节、主减速器的传动效率),参考传动部件传动效 率计算得:95%95%98%96%84.9%T η=???=,各传动部件的传动效率见表1-1; 表1-1传动系统各部件的传动效率 a m ——汽车总质量,a m =31 000kg (整备质量11 000kg,载重20 000kg ); g ——重力加速度,g =9.81m /s 2 ; f ——滚动阻力系数,由试验测得,在车速不大于100km/h 的情况下可认为是常数。轮胎结构、 充气压力对滚动阻力系数有较大影响,良好路面上常用轮胎滚动阻力系数见表1-2。取0.012f =。 表1-2良好路面上常用轮胎滚动阻力系数 D C ——空气阻力系数,取D C =0.9;一般中重型货车可取0.8~1.0;轻型货车或大客车0.6~0.8;

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

现代汽车设计方法概论

现代汽车设计方法概论 计算机学院 张洋 10061089 2012年4月23日

一、汽车概述 1、汽车工业的发展 汽车诞生于德国、成长于法国、成熟于美国、发展于欧洲、挑战于日本。 1886年德国人奔茨和戴姆勒发明了汽车后,在欧洲出现了一些生产汽车的公司。最早成立的汽车公司有德国的奔驰公司、戴母勒公司、法国的标致公司、雷诺公司、英国的奥斯汀公司、意大利的菲亚特公司等,欧洲是汽车工业的摇篮。德国人发明了汽车,而促进汽车发展的是法国人。 1891年法国人阿尔芒?标致对汽车结构进行了重新设计:发动机前置,后轮驱动,脱离了马车式的设计思路,奠定了传动系的基本构造,汽车制造也从德国移向了法国。但手工生产,追求豪华,成本高,限制了汽车工业的发展。 ●第一次变革(成熟于美国) 1903年,亨利?福特汽车公司成立。1908年推出了大众化的T型车,使家庭轿车的梦想成为现实,在长达20年的T型车生产期间,T型车被称为“运载整个世界”的工具。 1913年福特汽车公司在汽车城底特律市建成了世界上第一条汽车装配流水线,使T 型车成为大批量生产的开端,1915年,福特汽车公司的产量占美国各公司总产量的70%,而德、英、法等欧洲各国的汽车总产量也不过是美国汽车产量的5%。 1908年美国通用汽车公司成立。由于亨利?福特不注重T型车的改进,使其显得单调、简陋。1927年带有豪华饰件的通用公司的雪佛兰型汽车赢得了人们的普遍欢迎,击败了独霸世界汽车市场20年的福特T型汽车,使其最终退出了汽车舞台。 ●第二次变革(发展于欧洲) 欧洲人不甘心美国汽车一统天下,但又无法在规模和价格上与美国竞争,因此,采用了: 1、品种多样化 利用自己的技术优势,针对美国车型单一、体积庞大、油耗高等弱点开发了多姿多彩的新产品,如发动机前置前驱动,发动机后置后驱动,承载式车身,微型节油车等,尽量适应不同的道路条件、个人爱好等要求,与美国汽车公司抗衡。

汽车设计(课程设计)钢板弹簧(DOC)

汽车设计——钢板弹簧课程设计 专业:车辆工程 教师:R老师 姓名:XXXXXX 学号:200XYYYY 2012 年7 月3 日

课程设计任务书 一、课程设计的性质、目的、题目和任务 本课程设计是我们在完成基础课、技术基础课和大部分专业课学习后的一个教学环节,是培养我们应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。 1、课程设计的目的是: (1)进一步熟悉汽车设计理论教学内容; (2)培养我们理论联系实际的能力; (3)训练我们综合运用知识的能力以及分析问题、解决问题的能力。 2、设计题目: 设计载货汽车的纵置钢板弹簧 (1) 纵置钢板弹簧的已知参数 序号弹簧满载载荷静挠度伸直长度U型螺栓中心距有效长度 1 19800N 9.4cm 118cm 6cm 112cm 材料选用60Si2MnA ,弹性模量取E=2.1×105MPa 3、课程设计的任务: (1)由已知参数确定汽车悬架的其他主要参数; (2)计算悬架总成中主要零件的参数; (3)绘制悬架总成装配图。 二、课程设计的内容及工作量 根据所学的机械设计、汽车构造、汽车理论、汽车设计以及金属力学性能等课程,完成下述涉及内容: 1.学习汽车悬架设计的基本内容 2.选择、确定汽车悬架的主要参数 3.确定汽车悬架的结构 4.计算悬架总成中主要零件的参数 5.撰写设计说明书 6.绘制悬架总成装配图、零部件图共计1张A0。 设计要求: 1. 设计说明书 设计说明书是存档文件,是设计的理论计算依据。说明书的格式如下: (1)统一稿纸,正规书写; (2) 竖订横写,每页右侧画一竖线,留出25mm空白,在此空白内标出该页中所计算的主要数据; (3) 附图要清晰注上必要的符号和文字说明,不得潦草; 2. 说明书的内容及计算说明项目 (1)封面;(2)目录;(3)原始数据及资料;(4)对设计课题的分析;(5)汽车纵置钢板弹簧简图;(6)设计计算;(7)设计小结(设计特点及补充说明,鉴别比较分析,个人体会等);(8)参考文献。 3. 设计图纸 1)装配总图、零件图一张(0#);

汽车转向机构设计

目录 中文摘要、关键词 (1) 英文摘要、关键词 (2) 引言 (3) 第1章轿车转向系统总述 (4) 1.1轿车转向系统概述 (4) 1.1.1转向系统的结构简介 (4) 1.1.2轿车转向系统的发展概况 (4) 1.2轿车转向系统的要求 (5) 第2章转向系的主要性能参数 (7) 2.1转向系的效率 (7) 2.1.1转向器的正效率 (7) 2.1.2转向器的逆效率 (8) 2.2 传动比变化特性 (9) 2.2.1 转向系传动比 (9) 2.2.2 力传动比与转向系角传动比的关系 (9) 2.2.3 转向器角传动比的选择 (10) 2.3 转向器传动副的传动间隙 (10) 2.4 转向盘的总转动圈数 (11) 第3章轿车转向器设计 (12) 3.1 转向器的方案分析 (12) 3.1.1 机械转向器 (12) 3.1.2 转向控制阀 (12)

3.1.3 转向系压力流量类型选择 (13) 3.1.4 液压泵的选择 (14) 3.2 齿轮齿条式液压动力转向机构设计 (14) 3.2.1 齿轮齿条式转向器结构分析 (14) 3.2.3 参考数据的确定 (20) 3.2.4 转向轮侧偏角计算 (21) 3.2.5 转向器参数选取 (21) 3.2.6 选择齿轮齿条材料 (22) 3.2.7 强度校核 (22) 3.2.8 齿轮齿条的基本参数如下表所示 (23) 3.3 齿轮轴的结构设计 (23) 3.4 轴承的选择 (23) 3.5 转向器的润滑方式和密封类型的选择 (24) 3.6 动力转向机构布置方案分析 (24) 第4章转向传动机构设计 (26) 4.1 转向传动机构原理 (26) 4.2 转向传送机构的臂、杆与球销 (27) 4.3 转向横拉杆及其端部 (28) 第5章转向梯形机构优化 (30) 5.1 转向梯形机构概述 (30) 5.2整体式转向梯形结构方案分析 (30) 5.3 整体式转向梯形机构优化分析 (31) 5.4整体式转向梯形机构优化设计 (34) 5.4.1 优化方法介绍 (34) 5.4.2 优化设计计算 (35)

现代设计方法在汽车设计中的运用.

现代设计方法在汽车设计中的运用 1关于现代设计方法含义的简要阐述 据实践调查发现,与以往传统设计方法相较来说,现代设计方法具备鲜明层次特点。例如:以往传统汽车设计只能通过数学理论和动力系数获得最终设计方案,而现代设计方法可借助最先进电子设备, 准确找出设计期间存在的问题,进而利用计算机软件将其有效解决。随着社会经济的不断发展,越来越多先进电子设备开始应用到汽车设计中,通过对变速器和发动机的精准管控,不仅能极大简化汽车设计难度,还能尽可能在最短时间内提出一个相对完善设计方案[2]。经过反复实践CAD软件应用己逐渐趋于成熟化,拥有较多数据库,如汽车设计零件,甚至是较健全系统,在汽车设计过程中可根据自身实际需求选择恰当零件,借此极大缩短汽车设计时间。由此可知,将现代设计方法应用到汽车设计中不仅能缩短设计期限,提高汽车设计工作效率,确保设计具备适应性和经济性优势,还能确保设计完成的汽车更加满足汽车市场需求,推动我国汽车行业朝更好方向前进。 2现代设计方法在汽车设计中的具体应用 1)人机工程应用。通常可将该方面内容分为两点进行阐述。第一,汽车座持设计。在进行汽车造型设计时出现频率最高的便是座椅近似弧而设计形式,往往该种设计可对人体起到良好支撐作用,尤其是身体两侧和大腿部分。人体头部则可保证颈椎呈现自然放置状态, 避免因长时间停留对颈椎带来不利威胁。汽车结构设计期间应确保满足以下原则:①汽车座椅尺寸大小应根据人体尺寸严格把握,主要将舒适性放在首位;

②汽车座椅应具备调节功能,便于满足不同类型人乘坐需求;③根据座椅分布不均匀原则,可在座椅设计时重点考虑到人体背部和腰部支撑科学性。同时汽车座椅设计时还要保证位置和形状充分满足两个支撑点要求,其中一个支撐点设置在距离人体第4~5胸椎高度上,通常为肩靠,而第二个支撐点则需设置在腰部位置,通常为腰靠。其中肩靠设计可很好缓解乘坐人的颈椎压力,腰靠则能保证人体在正确坐姿情况下腰部曲线不发生任何变形情况,并且汽车座椅的采购选择还应尽可能具备无DU、耐用及阻燃等优势,因座椅材料是汽车的主要减震元件,所以为确保乘坐人员感受到舒适性应选择适宜靠背或是坐垫,进而为汽车操作舒适性提供良好保证,可为驾驶人员提供广阔视野范围。另外还应为汽车脚踏板等操作元件提供充足操作范围,进而便于更好满足其提出的便利性要求[2]。第二, 汽车设计过程中,方向盘大多都为圆盘形状,很符合人们的常规性使用习惯,直径大小在19mm?27mm之间,并且圆形盘还具备结构简单,工艺性能较佳及适应性较强等特点。同时方向盘上还包括众多使用功能,如车载电话、音响控制等,不仅能使驾驶人员在手不离开方向盘基础上顺利完成驾驶任务,还能避免因驾驶分心出现安全事故隐患。可能对汽车设计方向盘设置产生影响的三大要素如下:①汽车坐垫表面和方向盘之间的最短距离;②汽车方向盘最边缘位置到人体中心的最短距离;③方向盘最下边缘到人体大腿中心和汽车座椅靠背的最短距离等。2)虚拟技术应用。虚拟技术主要是指在进行汽车产品设计时, 确保整个 设计流程都能以计算机虚拟形式展现出来,进而能在计算机设备上实现 产品设计工作。例如:借助计算机技术可将汽车外观、形状及颜色等设 计完成,随后再利用计算机模拟手段选择合理汽车零件和设施设备,最

现代汽车整车制造四大工艺设计过程

现代汽车整车制造四大工艺过程 一、工艺基础—概念 1、工艺 即加工产品的方法(手段、过程)。是利用生产工具对原材料、毛坯、半成品进行加工,改变其几何形状、外形尺寸、表面状态和内部组织的方法。 2、工艺规程 规定产品或零部件制造工艺过程和操作方法等工艺规定(文件)。 3、工艺文件 指导工人操作和用于生产、工艺管理的各种技术文件。是企业组织生产、计划生产和进行核算的重要技术参数。 4、工艺参数 为达到加工产品预期的技术指标,工艺过程中选用和控制的有关量,如电流、电极压力压等。 5、工艺装备 产品制造过程中所用的各种工具的总称。包括刀具、夹具、模具、量具、检具、辅具、钳工工具和工位器具等。 6、工艺卡片(或作业指导书) 按产品的零、的某一工艺阶段编制的一种工艺文件。他以工序为单元,详细说明产品(或零、部件)在某一工艺阶段的工序号、工序名称、工序内容、工艺参数、操作要求以及采用的设备和工艺装备。包括冲压工艺卡片、焊接工艺卡片、油漆工艺卡片、装配工序卡片。 7、物料清单(BOM)

用数据格式来描述产品结构的文件。 8、外协件明细表 填写产品中所有外协件的图号、名称和加工内容等的一种工艺文件。 9、外购工具明细表 填写产品在生产过程中所需购买的全部刀具、量具等的名称、规格与精度等的一种工艺文件。 10、材料消耗工艺定额明细表 填写产品每个零件在制造过程所需消耗的各种材料的名称、牌号、规格、重量等的一种工艺文件。 11、材料消耗工艺定额汇总表 将“材料消耗工艺定额明细表”中的各种材料按单台产品汇总填列的一种工艺文件。 12零部件转移卡 填写各装配工序零、部件图号(代号)名称规格等的一种工艺。 二、工艺基础—管理 1、工艺管理内容包括: 产品工艺工作程序、产品结构工艺性审查的方式和程序、工艺方案设计、工艺规程设计、工艺定额编制、工艺文件标准化审查、工艺文件的修改、工艺验证、生产现场工艺管理、工艺纪律管理、工艺标准化、工艺装备编号方法、工艺装备设计与验证管理程序、工装的使用与维护、工艺规程格式、管理用工艺文件格式、专用工艺装备设计图样及设计文件格式。 2、工艺设计过程

汽车转向系统EPS设计(论文)

汽车转向系统EPS设计

毕业设计外文摘要

目录 错误!未定义书签。 1 引言?1 1.1汽车转向系统简介?1 1.2汽车转向系统的设计思路 (3) 1.3EPS的研究意义?4 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 11 3 电助力转向系统的设计? 3.1 动力转向机构的性能要求..................................... 11 3.2 齿轮齿条转向器的设计计算...................................... 11 3.3 转向横拉杆的运动分析[9]21? 3.4 转向器传动受力分析......................................... 22 4转向传动机构优化设计?24 4.1传动机构的结构与装配.......................................... 24 4.2利用解析法求解出内外轮转角的关系............................ 25 4.3 建立目标函数?27

5控制系统设计? 29 29 5.1 电助力转向系统的助力特性? 30 5.2 EPS电助力电动机的选择? 5.3 控制系统框图设计........................................... 3132 结论? 致谢................................................ 错误!未定义书签。参考文献......................................... 错误!未定义书签。

汽车设计转向系统

第一节概述 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。 机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。有些汽车还装有防伤机构和转向减振器。采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。 对转向系提出的要求有: 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。 2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。 3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。 4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。 5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。 6)操纵轻便。 7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。 8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。 9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 10)进行运动校核,保证转向盘与转向轮转动方向一致。 正确设计转向梯形机构,可以使第一项要求得到保证。转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。通常用转向时驾驶员作用·在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。没有装置动力转向的轿车,在行驶中转向,此力应为50—100N;有动力转向时,此力在20—50N。当货车从直线行驶状态,以10km /h速度在柏油或水泥的水平路段上转入沿半径为12m的圆周行驶,且路面干燥,若转向系没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。·近年来,电动、电控动力转向器已得到较快发展,不久的将来可以转入商品装车使用。电控动力转向可以实现在各种行驶条件下转动转向盘的力都轻便。

汽车设计课程设计轿车后轮制动器设计

目录 第1章概述 (1) 1.1 鼓式制动器的简介 (1) 1.2鼓式制动器的组成固件 (1) 1.3鼓式制动器的工作原理 (1) 1.4鼓式制动器的产品特性 (2) 1.5设计基本要求和整车性能参数 (2) 第2章鼓式制动器的设计计算 (2) 2.1车辆前后轮制动力的分析 (2) 2.2前、后轮制动力分配系数β的确定 (5) 2.3制动器最大制动力矩 (6) 第3章制动器结构设计与计算 (6) 3.1制动鼓壁厚的确定 (6) 3.2制动鼓式厚度N (6) 3.3动蹄摩擦衬片的包角β和宽度b (7) 3.4P的作用线至制动器中心的距离α (7) 3.5制动蹄支销中心的坐标位置是k与c (8) 3.6摩擦片摩擦系数f (8) 第4章制动器主要零部件的结构设计 (8) 4.1制动鼓 (8) 4.2制动蹄 (8) 4.3制动底板 (9) 4.4制动蹄的支承 (9) 4.5制动轮缸 (9) 4.6制动器间隙 (9) 第5章校核 (10) 5.1制动器的热量和温升的核算 (10) 5.2制动器的摩擦衬片校核 (11) 5.3驻车制动计算 (11)

第1章概述 1.1鼓式制动器的简介 鼓式制动器也叫块式制动器,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。近三十年中,鼓式制动器在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。 1.2 鼓式制动器的组成固件 鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄。制动时制动蹄鼓式制动器在促动装置作用下向外旋转,外表面的摩擦片压靠到制动鼓的内圆柱面上,对鼓产生制动摩擦力矩。 凡对蹄端加力使蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔。 以液压制动轮缸作为制动蹄促动装置的制动器称为轮缸式制动器;以凸轮作为促动装置的制动器称为凸轮式制动器;用楔作为促动装置的制动器称为楔式制动器。 鼓式制动器比较复杂的地方在于,许多鼓式制动器都是自作用的。当制动蹄与鼓发生接触时,会出现某种楔入动作,其效果是借助更大的制动力将制动蹄压入鼓中。楔入动作提供的额外制动力,可让鼓式制动器使用比盘式制动器所用的更小的活塞。但是,由于存在楔入动作,在松开制动器时,必须使制动蹄脱离鼓。这就是需要一些弹簧的原因。弹簧有助于将制动蹄固定到位,并在调节臂驱动之后使它返回。 1.3 鼓式制动器的工作原理 在轿车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力相等。但由于车轮是旋转的,制动鼓作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是从蹄的2~2.5倍,两制动蹄摩擦衬片的磨损程度也就不一样。 为了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,

现代设计方法

现代设计方法

现代设计方法 现代设计方法是随着当代科学技术的飞速发展和计算机技术的广泛应用而在设计领域发展起来的一门新兴的多元交叉学科。以满足市场产品的质量、性能、时间、成本、价格综合效益最优为目的,以计算机辅助设计技术为主体,以知识为依托,以多种科学方法及技术为手段,研究、改进、创造产品和工艺等活动过程所用到的技术和知识群体的总称。 1.并行设计 2.虚拟设计 3.绿色设计 4.可靠性设计 5.智能优化设计 6.计算机辅助设计 7.动态设计 8.模块化设计 9.计算机仿真设计10.人机学设计11.摩擦学设计12.疲劳设计13.反求设计 14.无障碍设计15.共用性设计 一、并行设计 并行设计是一种对产品及其相关过程(包括设计制造过程和相关的支持过程)进行并行和集成设计的系统化工作模式。强调产品开发人员一开始就考虑产品从概念设计到消亡的整个生命周期里的所有相关因素的影响,把一切可能产生的错误、矛盾和冲突尽可能及早地发现和解决,以缩短产品开发周期、降低产品成本、提高产品

质量。 并行设计作为现代设计理论及方法的范畴,目前已形成的并行设计方法基本上可以分为两大类:基于人员协同和集成的并行化。基于信息、知识协同和集成的并行化。 并行工程应用于整车项目开发案例研究 一般地,汽车整车产品开发共有4个大的阶段,即策划阶段、设计阶段、样品试制阶段和小批试制阶段。 以模、夹具的开发为例,运用并行工程,其与车身工程设计几乎同时进行,从整个计划第4个月开始介入,在整个开发周期的第22个月完成。而运用串行工程,其在车身工程设计完成后进行,从整个计划第15个月才介入,在整个开发周期的第34个月才完成。运用并行工程开发时间上节约近36%,整个产品开发周期可以缩短40%~50%。 设计部门不断预发布、评审、输出,相关部门评审、验证意见和建议不断反馈,然后设计不断更改,通过预发布和设计评审、修改若干个循环,这样可以把不必要的失误和不足消灭在设计阶段,同时优化设计。在各系统设计输出评审的时

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

汽车设计转向系设计说明书

课程汽车设计题目电动助力转向系设计说明书 姓名 学号 班级 指导教师 日期 2016年6月15日

目录 一. 轿车转向系设计方案的选择................................. - 1 - 1.轿车参数的确定 (1) 2.对转向系的要求 (2) 3.转向系结构设计 (2) 1)转向操纵机构 ......................................................................................- 2 - 2)转向传动机构 ......................................................................................- 3 - 3)机械转向器 ..........................................................................................- 3 - 二.转向系统的主要性能参数................................... - 4 - 1.转向系的效率 (4) 1)转向系的正效率...................................................................................- 4 - 2)转向系的逆效率...................................................................................- 5 - 2.转向系传动比的确定. (5) 1)转向系统传动比的组成........................................................................- 5 - 2)转向系统的力传动比和角传动比的关系..............................................- 6 - 3)传动系传动比的计算 ...........................................................................- 7 - 3.转向系传动副的啮合间隙 .. (7) 1)转向器的啮合特征 ...............................................................................- 7 - 2)转向盘的自由行程 ...............................................................................- 8 - 4.齿轮齿条式转向器的设计和计算 (8) 1)转向轮侧偏角的计算 ...........................................................................- 8 - 2)转向器参数的选取 ...............................................................................- 9 - 3)选择齿轮齿条材料 ...............................................................................- 9 - 4)轴承的选择 ........................................................................................ - 10 - 5.转向盘的转动的总圈数 (10) 三.电动助力转向系统设计.................................... - 10 - 1.转矩传感器 (10) 2.减速机构 (10) 3.电磁离合器 (10) 4.电动机 (11) 5.车速传感器 (11) 6.电子控制单元 (11) 四.转向梯形机构的设计...................................... - 11 - 1.转向梯形理论特性 (11) 2.转向梯形的布置 (12) 3.转向梯形机构尺寸的初步确定 (12) 4.梯形校核 (12) 一. 轿车转向系设计方案的选择 1.轿车参数的确定

相关主题
文本预览
相关文档 最新文档