当前位置:文档之家› 工程结构复杂应力分析任务指导书

工程结构复杂应力分析任务指导书

工程结构复杂应力分析任务指导书
工程结构复杂应力分析任务指导书

复杂应力电测实验任务指导书

一、实验特点:

所用知识基本是材料力学和电测基础知识,但内容作了扩展和延伸,不再是对常规构件的应力、应变量测量,而是在非常规构件上当多种应变信息耦合在一起时如何进行分离和提取,包括材料常数的信息提取,实验具有研究性、综合性和设计性。

课程实施:共18学时,课内12学时,课外6学时,实验室在指定的时间段开放,两人一组,自由选题,自主完成方案设计和实验,以课程报告形式结课。

课程注重学生的科学实验训练,强调学生的创新能力、动手能力以及理论联系实际的能力的培养。

二、实验条件

1.拉压加载装置:

台式,手动加载,配有5kN测力传感器及测力的数字显

示;测力系统精度:0.5 %± 1字;实验空间:高350,宽200,

厚度方向无限制;实验行程:40;装置外形尺寸:300 X 300 X

800,见右图。

2.TS3862型静态数字电阻应变仪(16通道);

3 ?单轴应变片10枚,万用表,游标卡尺,钢尺,502胶水,

剪刀、刀片、砂纸、酒精、丙酮棉、导线等;

4. 10种类型金属材质的测试构件,包括:

圆环构件、方框构件1 (面内加载)、方框构件2 (一边内侧变截面)、方框

构件3 (一边外侧变截面)、方框构件4 (一边内侧变截面、一边外侧变截面)

方框构件5 (离面加载)、异型截面方框、角形构件、不同截面组合构件、薄壁构件。构件尺寸自行测量。

、实验项目名称及内容

实验所给的测试构件均在材料弹性常数E、、G未知条件下进行,载荷施

加位置均在连接孔处,实施拉伸载荷。测量内容包括:(1)、非常规构件上多种应变信息耦合在一起时材料常数的信息提取;(2))测试构件在面内和离面载荷下的内力分离,关键几何位置测定,危险截面、危险点应力测定,载荷测定等实验方案设计和实验。

具体实验项目名称及内容如下:

1、材料常数未知、对心载荷下角形构件内力图测定的方案设计及实验,构件见图2;

内容包括:(1)、在给定加载方式的角形构件上设法测出完成实验任务所需的材料常数;(2)、在载荷已知条件下测定角形构件的内力分布,给出内力分布图(实验中所给的最大载荷不要超过3502。

图2角形构件示意图

2、不同截面组合构件离面拉伸载荷测定的方案设计及实验,构件见图3;

内容包括:(1)、在给定加载方式的组合构件上,设法测出完成实验任务所需的材料常数;(2)、假设所施加的载荷未知,测定组合构件的离面拉伸载荷。这个实验可直接通过实际加载数值来验证实验方案及结果。

图3不同截面组合构件

3、材料常数未知、离面拉伸载荷下对称方框载荷离面距离测定的方案设计及实验,构件及加载方式见图4;

内容包括:(1)、在给定加载方式的方框构件上,设法测出完成实验任务所需的材料常数;(2)、在载荷已知条件下,测定方框构件的离面距离。这个实验可直接通过实际加载的几何位置测量数值来验证实验方案及结果。

4、材料常数未知条件下圆环构件对称拉伸载荷测定的方案设计及实验,构件及加载方式见图5;

内容包括:(1)、在给定加载方式的圆环构件上,设法测出完成实验任务所需的材料常数;(2)、假设所施加的载荷未知,测定圆环构件的拉伸载荷。这个实验可直接通过实际加载数值来验证实验方案及结果。

图4方框构件离面拉伸图5圆环构件对称拉伸

5、材料常数未知条件下对称拉伸的圆环构件半径测定的方案设计及实验,构件及加载方式见图5;

内容包括:(1)、在给定加载方式的圆环构件上,设法测出完成实验任务所需的材料常数;(2)、在载荷已知条件下,根据测量的应变信息测定圆环构件的半径。这个实验可直接通过圆环构件的几何测量数值来验证实验方案及结果。

6材料常数未知、对称拉伸的对称方框构件内力图测定的方案设计及实验,构件及加载方式见图6;

内容包括:(1)、在给定加载方式的方框构件上设法测出完成实验任务所需的材料常数;(2)、在载荷已知条件下测定方框构件的内力分布,给出内力分布图。

7、材料常数未知、对称载荷下对称方框构件危险截面最大应力测定的方案设计及实验,构件及加载方式见图6;

内容包括:(1)、在给定对称加载方式的方框构件上设法测出完成实验任务所需的材料常数;(2)、在载荷已知条件下用实验手段确定方框构件的危险截面

及最大应力

8、材料常数未知条件下非对称方框拉伸载荷测定的方案设计及实验(方框一边 内侧变截面),构件及加载方式见图7;

内容包括:(1)、在给定加载方式的方框构件上,设法测出完成实验任务所 需的材料常数;(2)、假设所施加的载荷未知,测定方框构件(方框一边内侧变 截面)的拉伸载荷(需要考虑变截面区域和非变截面区域测量的结果比较)

。这

个实验可直接通过实际加载数值来验证实验方案及结果。 9、材料常数未知条件下非对称方框拉伸载荷测定的方案设计及实验(方框一边 外侧变截面),构件及加载方式见图8;

内容包括:(1)、在给定加载方式的方框构件上,设法测出完成实验任务所 需的材料常数;(2)、假设所施加的载荷未知,测定方框构件(方框一边外侧变 截面)的拉伸载荷(需要考虑变截面区域和非变截面区域测量的结果比较)

。这

个实验可直接通过实际加载数值来验证实验方案及结果。 10、材料常数未知条件下非对称方框拉伸载荷测定的方案设计及实验

(方框一边

内侧变截面、一边外侧变截面),构件及加载方式见图9; 内容包括:(1)、在给定加载方式的方框构件上,设法测出完成实验任务所

图6方框构件面内对称拉伸 图7方框一边内侧变截面的构件

桩身应力测试分析报告

精心整理第一章工程概况

根据**院提供的岩土工程勘察报告,该场地工程地质条件如下:

三、检测桩位示意图 四、钢筋应力计在桩身埋设位置示意图 钢筋应力计在各试桩中位置示意图

二、测试设备及钢筋测力计的埋设 1、每桩钢筋应力计设置在各土层交界面处,每一个截面设2只钢筋测力计(基本呈180°对称布置),各钢筋应力计埋设截面的平、剖面图如前图; 2、JTM-V1000振弦式钢筋应力计采用焊接法固定在钢筋笼主筋上,并与桩身纵轴线平行;

3、连接在应力计的电缆线用柔性材料保护,绑扎在钢筋笼内侧并 引至地面; 4、所有应力计均用明显标记编号; 5、仪器设备:检测仪器设备采用JTM-V1000振弦式钢筋应力计、JTM-V10B 型频率读数仪、集线箱等组成。 三、测试原理 1位2ε c1j = εεs1j 3E cj 、E sj —砼弹性模量、钢筋弹性模量[E s 取2.0×108(kPa)] A cj 、A sj —同一截面处砼面积、钢筋总面积。 εcj 、εsj —同一截面处砼与钢筋的应变 4、钢筋应力计受力的计算公式: ) 2()(' 2 02 ----------------??=-?=Si Sij S i ij Sij A E F F k P ε

式中: P Sij —第i 量测截面处在j 级荷载下应力计所受轴向力(kN ) F ij —第i 量测截面处在j 级荷载下应力计的实测频率值(Hz) F i0—i 截面处钢筋应力计的初始频率值(Hz ) K A si ’—56f ij P ij —i A i 12、弦式钢筋应力计宜放在两种不同性质土层的界面处,以测量桩在不同土层中的分层摩阻力。在地面处(或以上)应设置一个测量断面作为钢筋应力计传感器标定断面。钢筋应力计埋设断面距桩顶和桩底的距离不宜小于1倍桩径。在同一断面处对称设置2个钢筋应力计。钢筋计应按主筋直径大小选择。仪器的可测频率范围应大于桩在最大加载时的频率的1.2倍; 3、使用前应对钢筋计逐个标定,得出压力(拉力)与频率之间的关系。带有接长 ) 3()(' -------------------------?= Si S Sij Sij A E P ε

混凝土结构与砌体结构设计中册 十一章思考题答案

混凝土结构与砌体结构设计中册(第四版) 十一章思考题答案 现浇单向板肋梁楼盖中的主梁按连续梁进行内力分析的前提条件是什么? 答:( 1)次梁是板的支座,主梁是次梁的支座,柱或墙是主梁的支座。 ( 2)支座为铰支座--但应注意:支承在混凝土柱上的主梁,若梁柱线刚度比<3,将按框架梁计算。板、次梁均按铰接处理。由此引起的误差在计算荷载和内力时调整。 ( 3)不考虑薄膜效应对板内力的影响。 ( 4)在传力时,可分别忽略板、次梁的连续性,按简支构件计算反力。 ( 5)大于五跨的连续梁、板,当各跨荷载相同,且跨度相差大10%时,可按五跨的等跨连续梁、板计算。 计算板传给次梁的荷载时,可按次梁的负荷范围确定,隐含着什么假定? 答: 为什么连续梁内力按弹性计算方法与按塑性计算方法时,梁计算跨度的取值是不同的? 答:两者计算跨度的取值是不同的,以中间跨为例,按考虑塑性内力重分布计算连续梁内力时其计算跨度是取塑性铰截面之间的距离,即取净跨度;而按弹性理论方法计算连续梁内力时,则取支座中心线间的距离作为计算跨度,即取。 试比较钢筋混凝土塑性铰与结构力学中的理想铰和理想塑性铰的区别。 答:1)理想铰是不能承受弯矩,而塑性铰则能承受弯矩(基本为不变的弯矩); 2)理想铰集中于一点,而塑性铰有一定长度; 3)理想铰在两个方向都能无限转动,而塑性铰只能在弯矩作用方向作一定限度的转动,是有限转动的单向铰。 按考虑塑性内力重分布设计连续梁是否在任何情况下总是比按弹性方法设计节省钢筋? 答:不是的 试比较内力重分布和应力重分布 答:适筋梁的正截面应力状态经历了三个阶段: 弹性阶段--砼应力为弹性,钢筋应力为弹性; 带裂缝工作阶段--砼压应力为弹塑性,钢筋应力为弹性; 破坏阶段--砼压应力为弹塑性,钢筋应力为塑性。 上述钢筋砼由弹性应力转为弹塑性应力分布,称为应力重分布现象。由结构力学知,静定结构的内力仅由平衡条件得,故同截面本身刚度无关,故应力重分布不会引起内力重分布,而对超静定结构,则应力重分布现象可能会导: ①截面开裂使刚度发生变化,引起内力重分布; ②截面发生转动使结构计算简图发生变化,引起内力重分布。 下列各图形中,哪些属于单向板,哪些属于双向板?图中虚线为简支边,斜线为固定边,没有表示的为自由边。

管道应力分析基础知识

管道应力分析基础知识 2009-04-09 13:55 1. 进行应力分析的目的是 1) 使管道应力在规范的许用范围内; 2) 使设备管口载荷符合制造商的要求或公认的标准; 3) 计算出作用在管道支吊架上的荷载; 4) 解决管道动力学问题; 5) 帮助配管优化设计。 2. 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 1) 静力分析包括: (l)压力荷载和持续荷载作用下的一次应力计算――防止塑性变形破坏; (2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算――防止疲劳破坏; (3)管道对设备作用力的计算――防止作用力太大,保证设备正常运行; (4)管道支吊架的受力计算――为支吊架设计提供依据; (5)管道上法兰的受力计算――防止法兰泄漏; (6)管系位移计算――防止管道碰撞和支吊点位移过大。 2) 动力分析包括: (l)管道自振频率分析――防止管道系统共振; (2)管道强迫振动响应分析――控制管道振动及应力; (3)往复压缩机气柱频率分析――防止气柱共振; (4)往复压缩机压力脉动分析――控制压力脉动值。 3. 管道应力分析的方法 管道应力分析的方法有:目测法、图表法、公式法、和计算机分析方法。选用什

么分析方法,应根据管道输送的介质、管道操作温度、操作压力、公称直径和所连接的设备类型等设计条件确定。 4. 对管系进行分析计算 1) 建立计算模型(编节点号),进行计算机应力分析时,管道轴测图上需要提供给计算机软件数据的部位和需要计算机软件输出数据的部位称作节点: (1)管道端点 (2)管道约束点、支撑点、给定位移点 (3)管道方向改变点、分支点 (4)管径、壁厚改变点 (5)存在条件变化点(温度、压力变化处) (6)定义边界条件(约束和附加位移) (7)管道材料改变处(包括刚度改变处,如刚性元件) (8)定义节点的荷载条件(保温材料重量、附加力、风载、雪载等) (9)需了解分析结果处(如跨距较长的跨中心点) (10) 动力分析需增设点 2) 初步计算(输入数据符合要求即可进行计算) (1) 利用计算机推荐工况(用CASWARII计算,集中荷载、均布荷载特别加入) (2) 弹簧可由程序自动选取 (3) 计算结果分析 (4) 查看一次应力、二次应力的核算结果 (5) 查看冷态、热态位移 (6) 查看机器设备受力 (7) 查看支吊架受力(垂直荷载、水平荷载) (8) 查看弹簧表

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

砌体结构震害特点及分析

墙体破坏原因和特点: 抗弯、抗拉、抗剪强度不能满足时墙体出现裂缝 横墙水平裂缝——横墙平面外受弯,楼盖传力给横墙; 横墙斜裂缝、交叉裂缝——剪切,底层比上层严重; 纵墙水平裂缝——平面外受弯,横墙间距过大,楼盖刚度不足,中部较端部严重;纵墙斜裂缝、交叉裂缝——剪切,窗间墙、窗肚墙,两端较中部严重 山墙(横墙)水平裂缝——屋盖和墙体的拉结不可靠 山墙倒八字裂缝——不均匀沉降 墙角的破坏原因和特点: 建筑物四角及突出部分的阳角,纵横两个方向出现裂缝,形成V字形,甚至局部倒塌; 扭转效应造成、墙角空间刚度较大、使地震作用效应明显增大,应力复杂造成应力集中,而两个方向的约束较少使得抗震能力降低。 纵横墙连接处破坏原因和特点: 竖向裂缝、严重时纵墙外闪倒塌; 施工时不同时咬槎砌筑,留有马牙槎,缺乏拉结; 纵墙平面外刚度和横墙平面内刚度差别很大,振动不同步,产生较大拉力。 地基不均匀沉降。 楼盖与屋盖的破坏原因和特点: 楼盖是水平传力构件,要求有较好的刚度,一般现浇楼盖刚度大于预制楼盖;预制板缝偏小时,混凝土不易灌实,易于散开; 墙体错位,楼、屋盖预制板搭接长度不够,拉结措施不可靠,易造成楼屋盖的某一端坠落。 房屋附属物的破坏原因和特点: 女儿墙、出屋面烟囱、附墙烟囱、垃圾道、屋顶小间都是竖向悬臂构件,震时易于坠落造成人员伤亡; 雨蓬、挑檐、阳台等属于水平悬挑构件,震时也易于坠落造成人员伤亡; 局部突出的构件存在鞭梢效应,地震反应强烈,破坏率高,更要引起重视。 楼梯间的破坏原因和特点 楼梯间的墙体(尤其是横墙)易于开裂; 横墙间距较小,水平抗剪刚度较大,分担过多的地震剪力; 楼梯间没有形成楼板和墙体的相互支撑,空间刚度相对较小; 上层楼梯间破坏比下层重; 若楼梯间布置在端部或转角处更为严重; 楼梯间的外纵墙也是易于破坏的部位。

基于元ANS的压力容器应力分析报告

压力容器分析报告

目录 1 设计分析依据 0 1.1 设计参数 0 1.2 计算及评定条件 0 1.3 材料性能参数 0 2 结构有限元分析 (1) 2.1 理论基础 (1) 2.2 有限元模型 (1) 2.3 划分网格 (1) 2.4 边界条件 (2) 3 应力分析及评定 (2) 3.1 应力分析 (2) 3.2 应力强度校核 (2) 4 分析结论 (3) 4.1 上封头接头外侧 (4) 4.2 上封头接头内侧 (5) 4.3 上封头壁厚 (7) 4.4 筒体上 (9) 4.5 筒体左 (10) 4.6 下封头接着外侧 (12) 4.7 下封头壁厚 (14)

1 设计分析依据 (1)压力容器安全技术监察规程 (2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版 1.1 设计参数 表1 设备基本设计参数 1.2 计算及评定条件 (1)静强度计算条件 表2 设备载荷参数 载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。 1.3 材料性能参数 材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。 表3 材料性能参数性能

2 结构有限元分析 2.1 理论基础 传统的压力容器标准与规范,一般属于“常规设计”,以弹性失效准则为理论基础,由材料力学方法或经验得到较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用值以内,即可确认容器的壁厚。对容器局部区域的应力、高应力区的应力不做精细计算,以具体的结构形式限制,在计算公式中引入适当的系数或降低许用应力等方法予以控制,这是一种以弹性失效准则为基础,按最大主应力理论,以长期实践经验为依据而建立的一类标准。 塑性理论指出,由于弹性应力分析求得的各类名义应力对结构破坏的危险性是不同的,随着工艺条件的苛刻和容器的大型化,常规设计标准已经不能满足要求,尤其是在应力集中区域。若不考虑应力集中而只按照简化公式进行设计,不是为安全而过分浪费材料就是安全系数不够。基于各方面的考虑,产生了“分析设计”这种理念。采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹性失效”相结合的“弹塑性失效”准则,要求对容器所需部位的应力做详细的分析,根据产生应力的原因及应力是否有自限性,分为三类共五种,即一次总体薄膜应力( Pm) 、一次局部薄膜应力( Pc) 、一次弯曲应力( Pb) 、二次应力( Q) 和峰值应力( F) 。 对于压力容器的应力分析,重要的是得到应力沿壁厚的分布规律及大小,可采用沿壁厚方向的“校核线”来代替校核截面。而基于弹性力学理论的有限元分析方法,是一种对结构进行离散化后再求解的方法,为了获得所选“校核线”上的应力分布规律及大小,就必须对节点上的应力值进行后处理,即应力分类,根据对所选“校核线”上的应力进行分类,得出各类应力的值,若满足强度要求,则所设计容器是安全的。 按照JB4732-1995进行分析,整个计算采用ANSYS13.0软件,建立有限元模型,对设备进行强度应力分析。 2.2 有限元模型 由于主要关心容器开孔处的应力分布规律及大小,为减少计算量,只取开孔处作为分析对象,且取其中较为关心的大孔进行分析校核。分析设计所用的几何模型如图1所示。在上下封头和筒体之间存在不连续的壁厚,由于差距和影响量较小,此处统一采用上下封头的设计厚度。 图1 压力容器模型 2.3 划分网格 在结构的应力分析中,采用ANSYS13.0中的solid187单元进行六面体划分,如图2所示。图3~图5

砌体结构常见问题分析和设计

砌体结构常见问题分析与设计 新疆建筑标准设计办公室 多层砌体房屋建筑以剪切变形为主,纵横墙布置应基本均匀、对称以体现规则性原则;结构的基本周期一般在0.3S以内,结构的初裂水平侧移约为1/4000,大震时的破坏主要依靠抗震构造措施来抗御。 1 一般规定及结构布置 1.1一般规定 1.1.1 砌体结构的材料指烧结普通砖、多孔砖、蒸压类的实心砖、标准的混凝土小型砌块,其他如:非蒸压粉煤灰混凝土标砖、多孔砖、蒸压类的空心或多孔砖在地震区不能采用。 1.1.2 横墙很少指大于4.2m开间的房间占该层面积的80%以上者,如:全为教室的教学楼或食堂、俱乐部和会议楼等。 1.1.3 关于嵌固条件好的半地下室:指埋深较多或形成扩大半地下室底盘,对半地下室作为上部结构的嵌固端有利,抗震验算可不计作一层。 不论全地下室或半地下室,抗震强度验算时均应当作一层并应满足墙体承载要求。凡有质量就有地震作用,楼层集中了各层的主要质量,不论房屋高度如何变化,有多少楼盖也就有多少个计算质点,一个质点只考虑一个自由度,这是底部剪力法计算的基本前提。 1.1.4 坡屋面的最低处高度≤1.5m时,可与顶板合并成一层计算;当阁楼层面积≤1/2顶层楼面积、最低处高度≤1.8m时,阁楼层可不作一层计算,高度不计入总高度之内。将其作为局部突出构件(荷载并放大)进行抗震强度验算(抗规5. 2.4条),除轻钢、木屋盖外,放大

亦可将阁楼层当作普通楼层输入验算做比较(面积比≤0.714时PMCAD程序判定为屋顶间,自动放大地震作用)。 1.1.5 横墙错位:现浇楼盖≤500mm,预制板≤300mm以内可以认为是连续的横墙。 1.1.6 计算房屋宽度:单面悬挑走廊、局部突出楼梯间不计入。 1.1.7 转角窗:转角窗的设置使砌体墙的连续性和封闭性中断,地震作用不能传递;鉴于低层房屋其震害与平面规则性的差异不明显,8度区≤3层,6、7度区≤4层时,在采取加强措施后可设置转角窗。1.1.8 现浇板沿外墙(含内墙楼梯间)楼板支座宽度内设置2ф12的加强筋。 1.1.9 房屋错层:现浇楼板高度大于750mm预制楼板大于600时,宜设缝。复式结构房屋原则上应按楼板标高作为集中质点计算层数。1.1.10 局部地下室不宜采用,地基土质较好时(稍密砂砾地基土、中密砂土),若不便分开,两者基底差不宜过大且按1:2放坡。 1.2多层砌体 1.2.1 砌体结构房屋原则上不能设局部内框架(结构动力特性不同,不同材料的结构处于同一结构单元内的变形、刚度不一致,地震时易造成连接部位的破坏)。仅限于在门厅部位设置一、二层的梁柱结构,可不认为是“内框架”,但在构造上应予以重视,尽量不使其承载过大,加强门厅侧边墙体的布置及两者连接处的节点构造。 1.2.2 纵横墙在结构平面布置中不能分别对齐时应采取措施。 1.横墙不对齐:一般一个五开间的住宅结构单元内,有3~4道对

压力容器应力分析报告模板

目录 前言 (3) 1 设计参数 (4) 1.1 基本设计参数 (4) 1.2 设备简图 (5) 1.3 管口载荷参数 (6) 1.4 主要材料参数 (7) 2 分析步骤 (7) 2.1 主体受压元件 (8) 2.2 上封头组件 (9) 2.3 下锥壳组件 (16) 2.4 容器法兰 (21) 3 分析结果及应力评定 (23) 3.1 上封头组件 (23) 3.2 下锥壳组件 (28) 4 疲劳评定 (32) 4.1 交变载荷状态下应力分布云图 (32) 4.2 疲劳评定 (34) 5 结论 (36)

前言 本分析报告仅适用于xxxx,分析采用ANSYS软件,材料、应力分类及 评定按JB4732-1995《钢制压力容器—分析设计标准》(2005年确认)执行。 本分析报告中所有分析模型均取自“XXX”施工图(图号:XXXX)。 模型结构为连续结构,要求模型中所对应的焊接接头结构为全熔透结 构形式。 说明: 1、风载荷及地震载荷引起的应力强度变化很小,可不考虑; 2、S IV应由操作载荷计算得到,本分析报告按设计载荷计算求得,结果偏于保守(安全); 3、S IV控制值3S m t中的S m t应取工作载荷中最高、最低温度下的平均值,本分析报告中S m t按设计温度下取值,结果偏于保守(安全); 4、筒体和椭圆封头厚度在2.1节按JB4732第7章的公式计算,所以在 应力分析部分S I值不必再评定; 5、水压试验时容器任何点的液柱静压力未超过试验压力的6%,该容 器可不进行水压试验时的强度校核;水压试验次数(20次)远小于正常操 作时的设计循环次数(4.4×106),因此可省略水压试验的疲劳分析评定。

8章应力分析·强度理论

材 料 力 学 ·170 · 第8章 应力分析·强度理论 8.1 概 述 前面几章中,分别讨论了轴向拉伸与压缩、扭转和弯曲等几种基本变形构件横截面上的应力,并根据相应的实验结果,建立了危险点处只有正应力或只有切应力时的强度条件 []max σσ≤或[]max ττ≤ 式中:max σ或max τ为构件工作时最大的应力,由相关的应力公式计算;[]σ或[]τ为材料的许 用应力,它是通过直接实验(如轴向拉伸或纯扭),测得材料相应的极限应力,再除以安全因数获得的,没有考虑材料失效的原因。这些强度条件的共同特点是:其一,危险截面的危险点只有正应力或只有切应力作用;其二,都是通过实验直接确定失效时的极限应力。 上述强度条件对于分析复杂情形下的强度问题是远远不够的。例如,仅仅根据横截面上的应力,不能分析为什么低碳钢试样拉伸至屈服时,表面会出现与轴线成45°角的滑移线;也不能分析铸铁圆试样扭转时,为什么沿45°螺旋面断开;根据横截面上的应力分析和相应的实验结果,不能直接建立既有正应力又有切应力存在时的强度条件。 实际工程中,构件受力可能非常复杂,从而使得受力构件内截面上一点处往往既有正应力,又有切应力。对于这些复杂的受力情况,一方面要研究通过构件内某点各个不同方位截面上的应力变化规律,从而确定该点处的最大正应力和最大切应力及其所在的截面方位;另一方面需要研究材料破坏的规律,找出材料破坏的共同因素,通过实验确定这一共同因素的极限值,从而建立相应的强度条件。 本章主要研究受力构件内一点的应力状态,应力与应变之间的关系(广义胡克定律)以及关于材料破坏规律的强度理论,从而为在各种应力状态下的强度计算提供必要的理论基础。 8.2 一点的应力状态·应力状态分类 受力构件内一点处不同截面上应力的集合,称为一点的应力状态。为了描述一点的应力状态,在一般情况下,总是围绕这点截取一个3对面互相垂直且边长充分小的正六面体,这一六面体称为单元体。当受力构件处于平衡状态时,从构件内截取的单元体也是平衡的,单元体的任何一个局部也必是平衡的。所以,当单元体3对面上的应力已知,就可以根据截面法求出通过该点的任一斜截面上的应力情况。因此,通过单元体及其3对互相垂直面上的应力,可以描述一点的应力状态。 为了确定一点的应力状态,需要先确定代表这一点的单元体的6个面上的应力。为此,在单元体的截取时,应尽量使其各面上应力容易求得。

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

球罐应力分析报告模板

XXX球罐应力分析报告 设备名称:XXX球罐 设备位号:XXX 应力分析报告

目录 1基本设计参数 (4) 2计算数据 (6) 2.1 计算条件 (6) 2.2材料性能数据 (7) 3主要受压元件计算 (8) 4整体结构分析计算 (9) 4.1 力学模型和有限元模型 (9) 4.2 载荷工况分析 (11) 4.3 载荷边界条件 (12) 4.4 位移边界条件 (15) 4.5 应力强度分布云图及路径选取 (15) 4.6 应力线性化及强度评定 (20) 4.7 整体结构强度评定汇总 (33) 5局部结构分析计算 (34) 5.1 人孔与接管N1/N4局部结构分析 (34) 5.1.1 力学模型和有限元模型 (34) 5.1.2载荷边界条件 (36) 5.1.3位移边界条件 (38) 5.1.4应力分布云图及路径选取 (39) 5.1.5 应力线性化及强度评定 (40) 5.1.6 人孔与接管N1/N4应力线性化及强度评定 (48) 5.2 人孔与接管V1/K3/K4局部结构分析 (48) 5.2.1 力学模型和有限元模型 (48) 5.2.2载荷边界条件 (51) 5.2.3位移边界条件 (53) 5.2.4应力分布云图及路径选取 (54) 5.2.5 应力线性化及强度评定 (55)

5.2.6 人孔与接管V1/K3/K4应力线性化及强度评定 (63) 5.3 人孔与接管K1/K2局部结构分析 (63) 5.3.1 力学模型和有限元模型 (63) 5.3.2载荷边界条件 (66) 5.3.3位移边界条件 (68) 5.3.4应力分布云图及路径选取 (69) 5.3.5 应力线性化及强度评定 (70) 5.3.6 人孔与接管K1/K2应力线性化及强度评定 (78) 5.4 人孔与接管N2局部结构分析 (78) 5.4.1 力学模型和有限元模型 (78) 5.4.2载荷边界条件 (81) 5.4.3位移边界条件 (83) 5.4.4应力分布云图及路径选取 (84) 5.4.5 应力线性化及强度评定 (85) 5.4.6 人孔与接管N2应力线性化及强度评定 (93) 5.5 人孔与接管N5局部结构分析 (93) 5.5.1 力学模型和有限元模型 (93) 5.5.2载荷边界条件 (96) 5.5.3位移边界条件 (99) 5.5.4应力分布云图及路径选取 (100) 5.5.5 应力线性化及强度评定 (101) 5.5.6 人孔与接管N5应力线性化及强度评定 (109) 6结论 (109) 附录 (109) 球罐SW6计算文件

ANSYS基础教程——应力分析报告

ANSYS基础教程——应力分析 关键字:ANSYS 应力分析 ANSYS教程 信息化调查找茬投稿收藏评论好文推荐打印社区分享 应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要容有:分析步骤、几何建模、网格划分。 应力分析概述 ·应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析。 ANSYS 的应力分析包括如下几个类型: ●静态分析 ●瞬态动力分析 ●模态分析 ●谱分析 ●谐响应分析 ●显示动力学 本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。 A. 分析步骤 每个分析包含三个主要步骤:

·前处理 –创建或输入几何模型 –对几何模型划分网格 ·求解 –施加载荷 –求解 ·后处理 –结果评价 –检查结果的正确性 ·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;

·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入; ·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。也可以使用前处理器PREP7 施加载荷。 ·通常先定义分析对象的几何模型。 ·典型方法是用实体模型模拟几何模型。 –以CAD-类型的数学描述定义结构的几何模型。 –可能是实体或表面,这取决于分析对象的模型。 B. 几何模型 ·典型的实体模型是由体、面、线和关键点组成的。 –体由面围成,用来描述实体物体。 –面由线围成,用来描述物体的表面或者块、壳等。 –线由关键点组成,用来描述物体的边。 –关键点是三维空间的位置,用来描述物体的顶点。

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

砌体结构现浇混凝土楼板温度应力分布研究

砌体结构现浇混凝土楼板温度应力分布研究 张珂峰1 曹青来2 (1.南通市广播电视大学;2.南通市建筑质量检测中心,江苏 南通226001) 摘 要:砌体结构是目前我国住宅建筑的主要结构形式之一,现浇混凝土楼板温度裂缝问题是其常见而又亟待解决的问题.国内外专家、学者对砌体结构的温度裂缝问题进行了大量的科学研究,有不同观点,但基本上局限于砌体结构温度裂缝的定性分析,对温度应力的分布还缺乏深入的研究.文章对砌体结构温度场进行了仿真分析得出了温度应力分布规律.关键词:砌体结构;现浇楼板;裂缝;温度效应中图分类号:TU398 文献标识码:A 文章编号:1008-293X(2009)07-0065-05 0 引言 目前,砖(砌体)墙和现浇钢筋混凝土楼板相结合的混合结构在我国是比较常见的一种结构形式,尤其在多层住宅中更为普遍.但使用中也存在着一些问题.其中最普遍的问题是混合结构房屋易出现裂缝,这些裂缝产生的部位除了顶层墙体和屋面板之外,楼面板也经常出现裂缝,特别是板角45度斜裂缝出现概率极高.现在,住宅现浇楼板的裂缝是一种常见的建筑质量垢病,也是住户投诉较多的热点问题.虽然许多裂缝并不影响结构的承载力,但是它直接影响用户对住房的美观和使用功能的要求,更由于开裂造成渗漏、钢筋锈蚀,降低了建筑的使用寿命.因此,防治现浇楼板开裂己成为住宅建设中一个十分重要和迫切的问题. 但是目前砌体结构还主要集中在墙体和屋面板,对楼板虽有提及,却研究甚少.裂缝产生原因研究也主要集中在施工和混凝土收缩.国内对现浇楼板温度裂缝的研究还不多,处于探讨阶段.所以本文研究砌体结构现浇混凝土楼板的温度应力的分布,为现浇楼板温度的防治提供设计依据. 1 砌体结构现浇混凝土板裂缝实验调查 目前砌体结构混凝土裂缝主要有以下几种形式:1.1 结构现浇楼板45 角裂缝 角裂缝发现大多数发生在房屋二端山墙的转角处,房屋四角及内外墙交接角部,且大多数裂缝穿透楼板,裂缝形态一般呈中段宽,两端窄裂缝呈45 走向,裂缝宽度肉眼可以明显观察到(一般肉眼可见裂缝宽度约0.03~0 05mm),且上下贯通.发生原因分析:(1)收缩特性和温差双重作用所引起的;(2)板角负弯距筋配置不当.1.2 横向裂缝和纵向裂缝 横向裂缝是指平行于楼板的短边,垂直于楼板长边的裂缝.纵向裂缝是平行于长边,垂直于短边的裂缝.由于现在房屋大部分是双向板在我们调查过程中发现在楼板中部会出现及墙边会出现横向和竖向裂缝.在调查中发现横向裂缝和纵向裂缝发生贯穿裂缝较多.发生原因分析:(1)水泥随意添加,用量过大,水灰比控制失当.混凝土养护不当,失水过多.(2)室内外温差过大.1.3 放射型裂缝 放射型缝是指多条裂缝汇交于一点的情况.从工程资料可以发现这些裂缝通常出现在天花板上的吊灯周围,是由于吊灯的安装不当造成的.发生原因分析:(1)PVC 管设置不合理,穿管过密,使用过多;(2)楼板厚度为够,保护层不符合要求.1.4 其他裂缝 除了上述三种裂缝之外,现浇板裂缝还有其他形态的裂缝.这些裂缝可看作斜裂缝、横向裂缝和纵向 第29卷第7期2009年3月 绍 兴 文 理 学 院 学 报JOURNAL OF S HAOXING UNIVERSITY Vol.29No.7Mar.2009 收稿日期:2008-10-15 作者简介:张珂峰(1979-),男,江苏南通人,讲师,研究方向:建筑物资鉴定与加固.

工程力学-应力状态与应力状态分析报告

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

圆筒内作用压力的应力分析实验报告

圆筒内作用压力的应力分析实验报告 圆筒内作用压力的应力分析实验报告 小组成员:焦翔宇1120190146 李雪枫1120190149 宋佳1120190152 一实验目的: 1.了解薄壁容器在内压作用下,筒体的应力分布情况;验证薄壁容器筒体应力计算的理论公式。 2.熟悉和掌握电阻应变片粘贴技术的方法和步骤。 3.掌握用应变数据采集测量仪器测量应变的原理和操作方法。 二实验原理:① 理论测量原理 如右图是圆筒内作用压力的压力传感器结构简图,在压力P1作用下,圆筒外表面的周向应力σy 和轴向应力σx 分别为: 周向应变和周向应变分别为: 由上式可见,圆筒外表面的周向应变比轴向应变打,亮着又均为正值。为了提高灵敏度,并达到温度补偿的目的,将两个应变敏感元件R1、R4安装在圆筒外壁的周向;两个应变敏感元件R2、R3安装在圆筒上,见右图。四个应变敏感元件的应变分别为: 采用恒压电桥电路。输出电压为: 由上式可知:在这种情况下,采用恒压电桥电路时,压力与输出电压之间存在非线性关系。采用双恒流源电路时,输出电压为: 由上式可见:在小变形情况下,采用双恒流源电路时,压力与输出电压之间为线性关系。在大变形情况下,赢考虑变形的影响,这是周向应变为: 圆筒内的径向压力使得圆筒的半径变大,周向力使圆筒的半径减小。可得到由于径向压力引起的圆筒半径变化为: 轴向力引起的直径变化为: 圆筒半径的变化量为: 变形后,两半径的比值为: 应变敏感元件R1、R4处的应变值为: 由上式可见:考虑圆筒变形的影响后,压力与圆筒外壁应变之间为非线性关系。由于 ,因此是递增非线性。

采用恒压电桥电路时,输出电压为: 由上式可见:考虑圆筒变形的影响后,采用双恒流源电路也存在着压力与输出电压之 间的非线性。 下图是圆筒内作用压力的一种压力传感器的结构图: ② 用电阻应变仪测量应变原理: 电阻应变测量法是测定压力容器筒壁应变的常用方法之一。其测量装置由三部分组成:即电阻应变片,连接导线和电阻应变仪。常用的电阻应变片是很细的金属电阻丝粘 于绝缘的薄纸上而成。见图一所示,将此电阻片用特殊的胶合剂贴在容器壁欲测之部位。当容器受内压作用发生变形时,电阻丝随之而变形。电阻丝长度及截面的改变引起其电 阻 值的相应改变,则可以用电阻应变仪测出电阻的改变,再换算成应变,直接由应变 仪上读出。 电阻丝的应变与电阻的改变有如下的关系: 由于电阻丝的电阻R 和K 值对于一定的电阻片为一已知值,故只要测得Δ R (电阻丝电阻改变)就可以求出ε值。电阻应变仪是采用电桥测量原理测出Δ R 并换成με(即为)的 变形量。 三实验步骤: 1.了解试验装置(包括管路、阀门、容器、压力自控泵等在实验装 置中的功能和操作方法)及电阻片粘贴位置,测量电气线路,转换旋钮等。 2. 制作实验用圆筒,截下一段pvc 塑料管,在两端用哥俩好胶水粘合金属块使圆筒 形成内部气密舱。再两端金属块打孔,一段装入气压计,另一端安装打气孔,粘合使其不 漏气。 3. 应变片的安装: (1)根据选择的测点位置,用砂纸打光;再按筒体的经线和纬线方向用划针或铅笔 划出测点的位置及方向;以后再用棉球、丙酮等除去污垢。 (2)测量电阻应变片的电阻值,记录电阻片的灵敏系数,以便将应变仪灵敏系数点 放在相应的位置上(实验室已准备好)。 (3)将“502”胶液均匀分布在电阻片的背面(注意:胶液均均匀涂在电阻片反面, 不可太多,引出线须向上)。随即将电阻片粘贴在欲测部位,并用滤纸垫上,施加接触 压力,挤出贴合面多余胶水及气泡(注意:电阻丝方向应与测量方向一致,用手指按紧 一至两分钟)。(4)在电阻片引出线下垫接线端子(用胶液粘贴),用于电阻应变片的

中国古代经典砌体结构分析

中国古代经典砌体结构分析 ——以万里长城为实例城乡规划14级1班安飞白2014212726 中国古代在建筑中使用砌体结构历史悠久,“秦砖汉瓦”之说,代表在两千多年以前,我国砖瓦材料的运用就已经非常普遍了。古代采用砌体结构的建筑有很多,其中万里长城就是一个非常经典的例子。 长城全长两万多千米,分布于15 个省区,蜿蜿蜒蜒,连绵起伏,是世 界十大奇迹之一。在历史的长久岁月 中,许多封建王朝为了巩固自己的统 治,曾经对长城进行过多次修筑。长 城是由城墙,敌楼,关城,墩堡,营 城,卫所,镇城,烽火台等多种防御 工事所共同组成的一个完整的防御工 程体系。在建筑材料和建筑结构上, 以“就地取材,因材施用”为原则,采用了夯土,砖石,砖石混等结构,是巧夺天工的创造。 其中,精巧的城墙是长城能“千年不倒”的重要保障。墙的结构内容是根据当地的气候条件而定的,总观万里长城的构筑方法,有如下几种类型,都各有其优缺点: 1.版筑夯土墙:这是我国最早采用的构筑城墙的方法.它是以木板作模,内填粘土或灰石,层层用杵夯实修筑成的。在长城沿线,可以看到不少地方是夯土墙。它们有的是用粘土和砂,再夹以红柳或芦苇的枝条夯筑成的;也有的地方是用土,砂,石灰加以碎石夯筑的。版筑夯土墙高度一般是底厚的一倍左右,顶部宽度为墙高的四分之一至五分之一,所以城墙有明显的收分。这种墙有一定的承载能力,它能阻止敌人步,骑兵的行动,抵抗冷兵器的袭击,并可就地取材,施工也很简便。所以隋朝以前的长城,多是采用版筑夯土墙。汉代夯层在15公分左右,由于筑城术的进步,唐代和明代筑城夯层则在30公分左右,但这种墙容易被敌人破坏,而且不耐风雨剥蚀,天长日久会自行坍倒。例如在玉门关和汉长城烽台,明显打有木筋,相隔数米并有规则,至今犹存。芦苇筋在玉门关大小方盘城呈规则分布,上下左右各相隔20公分左右。汉长城厚度足够容2个全副铠甲士兵相向通过,现存厚度在 1.2米以上。城墙高度,都在8~18米左右,体现了筑城术整体的坚固和技巧。 2.土坯垒砌墙:用粘土做成土坯,晒干后再用粘土作胶结材,像砌砖一样垒砌而成,墙面外面再抹一层黄泥作保护层。像嘉峪关的城墙,不少地方均是这样建造的。这种墙的承载能力基本与夯土墙类似,就地取材,但施工更加方便,容易建高。不过它只适用于雨水稀少的地区,容易被敌人破坏,也不耐风雨长久侵蚀。

相关主题
文本预览
相关文档 最新文档