当前位置:文档之家› 未来15年5大生物技术前沿技术

未来15年5大生物技术前沿技术

未来15年5大生物技术前沿技术
未来15年5大生物技术前沿技术

未来15年5大生物技术前沿技术与新科技介绍

摘要:生物技术和生命科学将成为21世纪引发新科技GM的重要推动力量。

关键字:靶标发现技术新一代工业生物技术生物芯片生物柴油国务院日前发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》(以下简称《纲要》)中提出了五项生物技术作为未来15年我国前沿技术的重点研究领域。

这五项生物前沿技术分别是:

——靶标发现技术。靶标的发现对发展创新药物、生物诊断和生物治疗技术具有重要意义。重点研究生理和病理过程中关键基因功能及其调控网络的规模化识别,突破疾病相关基因的功能识别、表达调控及靶标筛查和确证技术,“从基因到药物”的新药创制技术。

——动植物品种与药物分子设计技术。动植物品种与药物分子设计是基于生物大分子三维结构的分子对接、分子模拟以及分子设计技术。重点研究蛋白质与细胞动态过程生物信息分析、整合、模拟技术,动植物品种与药物虚拟设计技术,动植物品种生长与药物代谢工程模拟技术,计算机辅助组合化合物库设计、合成和筛选等技术。

——基因操作和蛋白质工程技术。基因操作技术是基因资源利用的关键技术。蛋白质工程是高效利用基因产物的重要途径。重点研究基因的高效表达及其调控技术、染色体结构与定位整合技术、编码蛋白基因的人工设计与改造技术、蛋白质肽链的修饰及改构技术、蛋白质结构解析技术、蛋白质规模化分离纯化技术。——基于干细胞的人体组织工程技术。干细胞技术可在体外培养干细胞,定向诱导分化为各种组织细胞供临床所需,也可在体外构建出人体器官,用于替代与修复性治疗。重点研究治疗性克隆技术,干细胞体外建系和定向诱导技术,人体结构组织体外构建与规模化生产技术,人体多细胞复杂结构组织构建与缺损修复技术和生物制造技术。

——新一代工业生物技术。生物催化和生物转化是新一代工业生物技术的主体。重点研究功能菌株大规模筛选技术,生物催化剂定向改造技术,规模化工业生产的生物催化技术系统,清洁转化介质创制技术及工业化成套转化技术。

有关专家指出,基因组学和蛋白质组学研究正在引领生物技术向系统化研究方向发展,基因组序列测定与基因结构分析已转向功能基因组研究以及功能基因的发现和应用;药物及动植物品种的分子定向设计与构建已成为种质和药物研究的重要方向;生物芯片、干细胞和组织工程等前沿技术研究与应用,孕育着诊断、治疗及再生医学的重大突破。我国必须在功能基因组、蛋白质组、干细胞与治疗性克隆、组织工程、生物催化与转化技术等方面取得关键性突破。

一、生物芯片

[关键词] 生物芯片; 细胞芯片; 细胞免疫芯片; 细胞检测

细胞芯片技术是以活细胞作为研究对象的一种生物芯片技术。它是适应后基因组时代人类对生命科学探索的要求而产生的。作为细胞研究领域的一种新技术, 其既保持传统的细胞研究方法的优点如原位检测等, 又满足了高通量获取活细

胞信息等方面的要求。本文中扼要介绍细胞芯片的概念以及几种已报道的细胞芯片, 并对细胞免疫芯片进行了简述。

1 细胞芯片概念

生物芯片技术系指先将大量探针分子固定于支持物上, 然后与标记的样品

分子进行杂交, 通过检测每个探针分子的杂交信号强度进而获取样品分子的数

量和序列信息, 以实现对细胞、蛋白质、基因及其他生物组分的准确、快速、大信息量的检测。细胞作为生物有机体结构和功能的基本单位, 其生物学功能容量巨大。利用生物芯片技术研究细胞, 在细胞的代谢机制、细胞内生物电化学信号识别传导机制、细胞内各种复合组件控制以及细胞内环境的稳定等方面,

都具有其它传统方法无法比拟的优越性。目前, 细胞芯片在国内外已有报道, 一般指的是充分运用显微技术或纳米技术, 利用一系列几何学、力学、电磁学等原理, 在芯片上完成对细胞的捕获、固定、平衡、运输、刺激及培养等精确控制, 并通过微型化的化学分析方法, 实现对细胞样品的高通量、多参数、连续原位信号检测和细胞组分的理化分析等研究目的。新型的细胞芯片应满足以下3个方面的功能: ①在芯片上实现对细胞的精确控制与运输; ②在芯片上完成对细胞的特征化修饰; ③在芯片上实现细胞与内外环境的交流和联系[1]。

2 细胞芯片的特点

基于细胞芯片的研究分析是一种具有较高通量的技术, 以细胞作为实验平

台的细胞芯片至少具有以下3个方面的特点: ①在芯片上实现对活细胞的原位监测, 可以多参数高通量的直接获得与细胞相关的大量功能信息(即关于细胞对各种刺激的应答信息), 这是细胞芯片最重要的特点; ②通过活细胞分析, 获得细胞相关的分析信息(主要是关于各种刺激物的数量、质量等相关方面的信息);

③利用显微技术和纳米技术能精确的控制细胞内的生物化学环境, 以细胞作为

化学反应的纳米反应器, 便于详细的研究揭示细胞内一系列过程和原理的本质[1]。

3 细胞芯片的分类和应用

3.1 整合的微流体细胞芯片(an integrated microfluidic system) 整合的微流体细胞芯片是一种高度平行化、自动化的集成微型芯片装置, 对细胞样品具有预处理和分析的能力, 又称微全分析系统(integrated micro total analysis system, μTAS)[1]。通过在芯片上构建各种微流路通道体系, 并运用不同的方法在流体通道体系中准确控制细胞的传输、平衡与定位, 进而实现对细胞样品进行药物刺激等实验过程的原位监测和细胞组分的分析等研究。Larry等[2]在芯片上设计了一种具有三维流动控制概念的装置, 该装置包含一条流体通道和一个

中心伸展的V型屏障, 屏障以具有斜坡的一面对应于流体通道。屏障斜坡是细胞平衡、固定的关键结构, 细胞的平衡、固定是通过控制流体通道中试剂流体的流动速度、斜坡对细胞的支持力和细胞向下的重力相互作用完成的。他们在该装置上实现了单个酵母细胞的培养、去除胞壁、扫描、梯度药物浓度刺激和细胞荧光测量等研究。Yang等[3]在芯片上设计了一种并行于流体通道的带有“码头”的“坝”结构, 该流路和“坝”的作用类似于Larry等设计的V型屏障和流路, 通过网状流体通路和“坝”的长短分配药剂流, 产生药剂的浓度梯度。他们选择了Ca2+吸收呈ATP依赖型的HL60细胞作为模型, 检测了诱导显著的细胞内Ca2+信号行为的ATP浓度阈值, 利用细胞芯片原位监测细胞对系列药物浓度梯度刺激的胞内应答行为。瑞典兰德大学神经生理学院的Davidsson等[4]选用HeLa 细胞作为模式细胞, 在芯片上监测细胞内已报道的基因活性并检测了这些基因

表达的条件, 以减少基因的不确定表达。Munce等[5]在芯片上进行了单细胞毛细管电泳分离, 他们在芯片上构建多重并联的毛细管通道, 以满足高通量分析和

避免分离样品交叉污染的需求。此外, 还有在芯片上同时构建流路和分离、排列、定位细胞所需空间的微孔或沟槽等结构的芯片类型, 用于细胞的多参数检测筛选。整合的微流体细胞芯片制作方法多样, 类型不一, 发展较快, 应用的范围也比较广泛, 内容涉及细胞的固定培养、鉴定筛选、分化刺激、原位检测、药物开发筛选和组分分析等各个方面。

3.2 微量电穿孔细胞芯片(microelectroporation cell chip) 当给细胞一定的阈电压时, 细胞膜具有短暂的强渗透性。利用细胞膜的这种特性将外源DNA、RNA、蛋白质、多肽、氨基酸和药物试剂等精确的转导入靶细胞的技术称为电穿孔技术。该技术能直接应用于基因治疗。微量电穿孔细胞芯片正是将这种技术与生物芯片技术相结合的产物, 是细胞操作调控微型化的一种手段。该技术采用一种微型装置, 将细胞与芯片上的电子集成电路相结合, 利用细胞膜微孔的渗透性, 通过控制电子集成电路使细胞面临一定的电压, 电压使细胞膜微孔张开, 从而在不影响周围细胞的情况下可将外源DNA, RNA、蛋白质、多肽、氨基酸和药物试剂等生物大分子或制剂等顺利的导入或从靶细胞中提取出来, 并进

行后续研究。这种技术为研究细胞间遗传物质的转导、变异、表达以及控制细胞内化学反应提供了可能。最先进行这种单细胞电穿孔尝试的是Huang和Rubinsky[6]的科研小组, 他们最终找到了一种利用电穿孔细胞芯片控制人体细胞活动的方法。Shin等[7]运用聚二甲基硅氧烷等材料构建了电穿孔细胞芯片, 他们在芯片上构建一条长2 cm高20 μm的流体通道, 通过指数衰变式脉冲发生器对通道内的细胞进行电穿孔实验, 测量了细胞电穿孔时各种参数, 原位观察了碘化丙啶被SKOV3细胞株吸收的全过程, 并成功的将绿色荧光标志的蛋白基因转染了SKOV3细胞, 监测了活细胞内DNA逆传的规律。需要指出的是, Shin等制作的芯片也是通过流体通路来实现对细胞的控制的。此外, 也可以采用纳米针和纳米管等显微操作穿刺细胞膜, 并在芯片上构建纳米通道, 完成向单细胞注射或提取所需样品。

3.3 细胞免疫芯片(cell immunochip) 细胞免疫芯片是一种新型的细胞芯片技术, 是在蛋白质芯片的基础上发展起来的。它是以细胞为研究对象, 利用免疫学原理和微型化操作方法, 实现对细胞样品的快速检测和分析。它的免疫学基础是抗原或抗体的固相化、抗原抗体特异性反应及抗原或抗体的检测方法(如荧

光标记、酶标记及放射标记等)。在芯片上固定的抗体或抗原必须保持原有的免疫学活性, 在测定时, 受检标本(测定一般为细胞表面的抗体或抗原)与固相载体表面的抗原或抗体进行反应, 通过免疫学特异性反应捕获目标细胞,然后根

据标记与否以及标记物的不同选择不同的检测方法, 快速完成对细胞的检测, 并且可以对细胞进行免疫化学测定等后续研究[8, 9]。它是一种应用范围广、经济实用性强的生物芯片技术。

3.3.1 细胞免疫芯片的原理根据捕获细胞的检测要求将不同的抗原或抗

体以较高密度固定在经过修饰的玻片等载体上并保持其活性不变, 形成抗原或

抗体微阵列, 然后利用细胞表面抗原与抗体等免疫学特异性反应原理, 通过抗原或抗体微阵列和细胞悬液样品的反应捕获待测目的细胞, 将未结合在芯片上的

细胞和非特异性结合的细胞从芯片上洗脱, 则靶向细胞将结合在微阵列的不同

抗体或抗原点上。结合在不同抗体或抗原点上的细胞代表了不同的细胞免疫表型, 从而完成对细胞分离、分类及检测目的, 或者继续对细胞样品进行标记和其他方面的后续研究[8, 9]。

3.3.2 细胞免疫芯片的特点目前, 细胞免疫芯片主要应用于细胞的检测, 与其它的细胞检测方式相比, 它具有以下几个特点: ①利用抗体和细胞表面抗原的特异性反应原理, 检测表达特异性表面抗原的细胞, 具有较高的特异性; ②由于芯片的密度较高, 获得的信息量较大, 可以高通量、高平行性的综合检测、分析细胞样品, 一次可以检测同一或不同样品细胞的多种表达抗原; ③适用范围广, 凡是可以制成细胞悬液的样品均可进行检测; ④操作简便灵活, 染色、标记等步骤可根据实验要求增加或删减, 经济方便, 无须价格昂贵的检测设备, 普通显微镜即可检测, 经济实用。

3.3.3 细胞免疫芯片的制作细胞免疫芯片的制备主要以玻片为基底, 通过对玻片表面进行化学修饰, 以使生物分子固定后仍保持原有的生物活性。玻片表面的化学修饰有多种方式, 三维修饰如琼脂糖、聚丙烯酰胺凝胶等修饰; 二维修饰如醛基、氨基等修饰。琼脂糖修饰由于具有操作简便、对生物分子的固定能力较强而应用较多。将所需要的抗体或抗原样品按一定的排布方式点样到经过修饰的玻片上, 形成微阵列芯片。被检测细胞悬液(荧光标记或非标记)在微阵列芯片上进行孵育结合后洗去未结合的细胞, 则被检测细胞被捕获于芯片表面。可

以直接在芯片上检测, 也可以将目标细胞洗脱后培养进行间接检测。直接检测快捷简单, 对于荧光标记的细胞免疫芯片, 用激光扫描细胞仪进行扫描, 然后通过计算机分析出每个点的平均荧光强度。对于酶标记的细胞免疫芯片, 只须显色后将检测细胞放在光镜下观察, 用CCD照相机进行拍摄记录结果即可, 将信号通过计算机处理得到每个点的灰度。间接检测根据对样品的要求不同而采用不同的方法。

3.3.4 细胞免疫芯片的应用细胞免疫工程包含生物医药学方面研究基因

组序列功能和病理学相关的核心技术与内容。细胞免疫芯片为分子医药学发展靶向免疫诊断、治疗肿瘤和其他细胞表面抗原相关疾病提供了一种新型研究方法。由于细胞免疫芯片对生物样品的要求较低, 使得样品的预处理大为简化, 因此, 应用范围广泛, 凡是可以制成细胞悬液的样品都可以进行检测, 如淋巴细胞悬液、其它细胞或组织等生物样品等。Zhang等[8]利用红细胞为材料研究了细胞免疫芯片在细胞检测方面的初步应用, 他们将抗体固定在琼脂糖修饰的玻片上, 并通过固定的抗体与细胞表面的抗原反应捕获细胞。Belov等[9]根据不同的白血病在白细胞质膜上分化抗原(CD)组表达的差异, 进行了白血病免疫分型实验。他们运用较高密度的抗体微阵列, 在一次测定中可以快速的检测50种或更多的白细胞或白血病细胞的分化抗原(CD), 他们分别从正常的外周血白细胞、慢性白血病细胞、多毛白细胞、上皮淋巴细胞、急性淋巴白细胞、T细胞介导的急性淋巴白血病细胞等样品中获得了清楚且重复性好的结果, 并验证了48种分化抗原(CD)在芯片上和流式细胞仪上分析结果的吻合性, 在白血病的辅助诊断和预后判断等方面都提供了充足的理论依据, 显示了细胞免疫芯片应用在白血

病免疫诊断及预后判定方面的诱人前景。基于类似的原理, Revzin等[10]运用光刻胶技术在玻片上构建了聚乙二醇水凝胶壁组成的规格分别为20 μm×20 μm与15 μm×15μm的微孔, 并将微孔内的玻片根据不同的需求进行修饰, 选择性地结合淋巴细胞特异性抗体或其他细胞黏附因子, 从而形成高密度抗体或细胞因

子芯片, 该芯片的突出优点是不仅可以根据细胞表面抗原抗体分化信息对白细

胞进行免疫分型, 而且可以运用激光捕获微切割技术在芯片上有选择地对细胞

内的基因和蛋白质组进行分析检测。细胞免疫芯片在新药物的开发筛选等方面亦将提供强有力的技术支持。如筛选新药物时, 利用芯片上的靶细胞筛选和其作用

的新药物, 或者根据细胞表面特定抗原的是否表达, 通过芯片上的抗体微阵列来筛选经过不同新药物处理过的细胞, 不仅可以提高药物开发的效率, 而且实现了药物筛选的敏感性、高通量和自动化的集成。

4 展望

细胞芯片是近年来发展起来的一种检测细胞的新技术, 它是对基因芯片和蛋白质芯片技术的重要补充。随着生物芯片技术和生物信息学的不断进展, 细胞芯片的制作技术将越来越成熟。细胞芯片技术通过应用免疫细胞化学、原位分子杂交等原理对细胞基因、蛋白表达水平进行定位检测等研究, 已经在基因检测、基因表达、组分多态性分析、药物开发筛选和疾病诊断等诸多领域显示出重要的作用, 在白血病等肿瘤的辅助诊断和预后判断方面也有着重要的应用价值。可以预见, 细胞芯片技术作为一种新兴的生命科学领域中细胞水平的研究手段和传统的研究细胞的方法相结合, 将广泛的应用于生命科学研究及其实践

的各个领域。

柴油作为一种重要的石油连炼制产品,在各国燃料结构中占有较高的份额,以成为重要的动力燃料。随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大,而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是进入了20世纪90年代,生物柴油以其优越的环保性能受到了各国的重视。

二、生物柴油

1 环境保护推动柴油标准的不断提高

目前世界每年新车产量大约5 000万辆,全世界汽车保有量大约7.5亿辆(含摩托车)。随着汽车工业的快速发展,汽油和柴油的用量随汽车保有量的增加而增加,同时也带来了汽车尾气污染等问题。近20年来,虽然在改善油品燃烧过程、尾气净化等方面都取得了很大进展,但仍然不能满足要求。为了改善汽车的运行性能和降低汽车尾气中害物质的排放量,美国、欧洲和日本汽车工业协会1998年6月4日提出了汽车燃料质量国际统一标准即"世界燃油规范"Ⅲ类标准。柴油"世界燃油规范"Ⅱ类、Ⅲ类标准(见表1、表2)。由表1、表2可以看出,Ⅱ类标准在目前基础上,提出了芳烃含量的限制,对硫含量、十六烷值等提出了更高的标准,Ⅲ类标准则在各项指标上比Ⅱ类标准都有更严格的规定。

15℃时的密度/g. Ml-1 0.875~0.900 DIN EN ISO3675 40℃时的动力粘度/mm2.s-1 3.5~5.0 DIN EN ISO3104 按Pensky-Martens法≥110DIN EN ISO22719 在密闭杯中的闪点/℃

冷滤点(CFPP)/℃DIN EN 116

4月15日-9月30日≤0

10月1日-11月15日≤-10

11月16日-2月28日≤-20

3月1日-4月14日≤-10

硫含量(质量分数),% ≤0.01DIN EN ISO14596 残炭(质量分数),% ≤0.05DIN EN ISO10370 十六烷值≥49DIN51773

灰分(质量分数),% ≤0.03DIN51575

水分/mg.kg-1 ≤300DIN51777-1

总杂质/ mg.kg-1 ≤20DIN51419

对铜的腐蚀效能 1 DIN EN ISO2160 (在50℃时3 h腐蚀程度)

氧化稳定性,诱导期/h 未给出IP306

中和值(KOH)/mg.kg-1 ≤0.5DIN51558-1

甲醇含量(质量分数),% ≤0.3

碘值/g.(100g)-1 ≤115DIN53241-1

磷含量/mg.kg-1 ≤10DIN51440-1

碱含量(Na+K)/mg.kg-1 ≤5依据DIN51797-3,增加钾

表5 生物柴油和常规柴油的性能比较特性生物柴油常规柴油

冷滤点(CFPP)/℃

夏季产品-10 0

冬季产品-20 -20

20℃的密度/g.mL-1 0.88 0.83

40℃动力粘度/mm2.s-1 4~6 2~4

闭口闪点/℃>100 60

十六烷点≥56≥49

热值/MJ.L-1 32 35

燃烧功效(柴油=100%),% 104 100

硫含量(质量分数),% <0.001 <0.2

氧含量(体积分数),% 10 0

燃烧1 kg燃料按化学计算

12.5 14.5

法的最小空气耗量/kg

水危害等级 1 2

在美国,生物柴油的产量由1999年的1 892.5m3猛增到2000年的18 925m3。目前已有纯态形式的生物柴油燃料和混合生物柴油燃料,在汽车上实际使用超过1.6*107km的实验基础。纯态形式的生物柴油又称为净生物柴油,已经被美国能源政策法正式列为一种汽车替代燃料。依据原料和生产商的不同,目前美国净生物柴油的价格不及0.515~0.793美元/L;含80%生物柴油成分的混合生物柴油的市场价格,每升比传统柴油要贵7.93~10.57美分。

日本1995年开始研究生物柴油,在1999年建立了259L/d用煎炸油为原料生产生物柴油的工业化实验装置,该装置可降低原料成本。目前日本生物柴油年产量可达400 kt。

4 生物柴油的生产方法

目前生物柴油主要是用化学法生产,即用动物和植物油脂和甲醇或乙醇等低碳醇在酸或者碱性催化剂和高温(230~250℃)下进行转酯化反应,生成相应的脂肪酸甲酯或乙酯,在经洗涤干燥即得生物柴油。甲醇或乙醇在生产过程中可循

环使用,生产设备与一般制油设备相同,生产过程中可产生10%左右的副产品甘油。

目前生物柴油的主要问题是成本高,据统计,生物柴油制备成本的75%是原料成本。因此采用廉价原料及提高转化从而降低成本是生物柴油能否实用化的关键。美国已开始通过基因工程方法研究高油含量的植物。日本采用工业废油和废煎炸油。欧洲是在不适合种植粮食的土地上种植富油脂的农作物。

但化学法合成生物柴油有以下缺点:工艺复杂、醇必须过量,后续工艺必须有相应的醇回收装置,能耗高;色泽深,由于脂肪中不饱和脂肪酸在高温下容易变质;酯化产物难于回收,成本高;生产过程有废碱液排放。

为解决上述问题,人们开始研究用生物酶法合成生物柴油,即用动物油脂和低碳醇通过脂肪酶进行转酯化反应,制备相应的脂肪酸甲酯及乙酯。酶法合成生物柴油具有条件温和,醇用量小、无污染排放的优点。但目前主要问题有:对甲醇及乙醇的转化率低,一般仅为40%~60%,由于目前脂肪酶对长链脂肪醇的酯化或转酯化有效,而对短链脂肪醇如甲醇或乙醇等转化率低。而且短链醇对酶有一定毒性,酶的使用寿命短。副产物甘油和水难于回收,不但对产物形成抑制,而且甘油读固定化酶有毒性,使固定化酶使用寿命短。

5 生物柴油的应用前景分析

生产和推广应用生物柴油的优越性是显而易见的:(1)原料易得且价廉。用油菜籽和甲醇为生产原料,可以从根本上摆脱对石油制取燃油的依赖。(2)有利于土壤优化。种植油菜可与其他作物轮种,改善土壤状况,调整平衡土壤养分,挖掘土壤增产潜力。(3)副产品具有经济价值。生产过程中产生的甘油、油酸、卵磷脂等一些副产品市场前景较好。(4)环保效益显著。生物查燃烧时不排放二氧化硫,排出的有害气体比石油柴油减少70%左右,且可获得充分降解,有利于生态环境保护。此外生物柴油由于竞争力不断提高、政府的扶持和世界范围内汽车车型柴油化的趋势加快而前景更加广阔。

5.1 生物柴油的竞争力不断提高

从世界范围来看,目前世界上含硫原油(含硫量0.5%~2.0%)和高硫原油(含硫量在2.0%以上)的产量已占世界原油总产量的75%以上,其中含硫量在1%以上的原油占世界原油总产量的55%以上,含硫量在2%以上的原油也占30%以

上。目前全球炼油厂加工的原油平均相对密度是0.851 4,平均含硫量是0.9%;在2000年以后,平均相对密度将上升到0.863 3,含硫量将上升到1.6%。炼油厂要在现有基础上,使柴油含硫量低、有良好的安定性及润滑性、较高的十六烷值和清净性,必须在装置调整上投入大量资金,并由此带来油品生产成本的提高,在这方面,各发达国家的炼厂均投入了重金。从美国的情况看,美国从20世纪90年代初启动油品清洁化,已累计投入了300多亿美元。由此造成的油品成本提高使目前美国炼厂吨毛利仅在每桶1美元左右,维持微利状态,有的企业甚至亏损;从欧洲的情况来说,欧洲炼油厂要达到2000年欧盟燃油规格,估计需要投资200亿~300亿美元。欧洲石油工业协会估计的投资更高,该组织认为要达到2000年和2005年的柴油规格,需要投资440亿~500亿美元。

随着生物柴油生产工艺的改进,使用生物柴油的发动机即可使用普通柴油的发动机(对有些机型仅需换密封圈和滤芯),无需作任何改动,生物柴油可与普通柴油在油箱中以任何比例相混,并对驾驶动无任何影响,驾驶者根本无法区分两者的驾驶动力差别。加之柴油替代燃料所用原料随着规模种植价格日趋低廉,使柴油替代燃料的生产成本逐步下降,与常规柴油的价格正在缩小,如美国生物柴油的价格已从每升1.06美元降到0.33~0.59美元,这个价格与普通柴油的价格差不多。

5.2 政府对生物柴油的扶持政策

目前许多国家如美国、德国、法国、丹麦、意大利、爱尔兰和西班牙等对生物柴油采取了相应的扶持政策。为了进一步鼓励使用生物柴油,美国农业部决定今后两年每年拿出1.5亿美元补贴生物柴油等生物燃料的使用,目前美国至少有5个州正在考虑制订税收鼓励政策。目前在欧洲生产生物柴油可享受到政府的税收政策优惠,其零售价低于普通柴油(如在德国加油站生物柴油的零售价格目前为约1.45马克/L,而柴油为1.60马克/L)。据Frost & Sullivan企业咨询公司最新发表的"欧盟生物柴油市场"报告,为实现"京都协议"规定的目标(在2008-2012年,欧盟将减少二氧化碳排放量8%),欧盟即将出台鼓励开发和使用生物柴油的新规定,如对生物柴油免征增值税,规定机动车使用生物动力燃料占动力燃料营业总额的最低份额。新规定的出台不仅有助于欧盟生物柴油市场的稳

定,而且生物柴油营业额将从2000年的5.035亿美元猛增至24亿美元,平均年增25%。

5.3 现代柴油机促使汽车车型柴油化的趋势加快

在欧洲,1999年新购柴油轿车比例约为30%,法国甚至达到48%。2000年,欧洲市场上柴油轿车的销售量达到440万辆,比1995年翻了一倍。现在经济型轿车主要生产厂商如大众、雷诺、欧宝和福特的顾客中,几乎有一半需要柴油车。目前,在欧洲轿车市场上,新型柴油轿车购买率达30%,专家预言:到2006年,欧洲每2辆新车中就有1辆是柴油车。在美国市场上,商用车(即我国所称的卡车、客车)的90%为柴油车;在日本,将近10%的轿车是柴油轿车,38%的商用车为柴油车。美国、日本及欧洲的重型汽车全部使用柴油机为动力。许多国家在税收、燃料供应等方面予以政策上的倾斜,敦促柴油发动机的普及和发展。我国柴油汽车生产比例已由1990年的15%上升到1998年的26%。1997年我国生产的重型载货汽车和大型客车全部采用柴油发动机;65.9%中型载货汽车采用柴油发动机,53.5%中型客车采用柴油发动机;55.4%和29.4%的轻型载货汽车、轻型客车也开始采用柴油发动机。我国1994年颁布的《汽车工业产业政策》明确提出,总重量超过5 t的载客汽车载货汽车在2000年后主要采用柴油为燃料。在未来的几年,是中国汽车工业腾飞的时代。因此,我国柴油车产量的增长趋势还将继续下去,汽车柴油化是中国汽车工业的一个发展方向。

汽车车型柴油化趋势的加快主要是由于现代柴油机采用了电控发动机控制

系统、高压燃油直喷式燃烧系统以及废气排放控制装置,已完全克服了传统柴油机的缺点,能够满足现行的国际排放标准,而这些装置和技术要求柴油含硫量低,有良好的安定性及润滑性,较高的十六烷值和清净性等。随着现代柴油机使用生物柴油燃料技术的成熟,目前在世界范围内出现的这种汽车车型柴油化趋势会进一步加快。据专家预测,在2010年以前,是柴油需求年均增长3.3%,到2010年,世界柴油的需求量将从目前的38%增加到45%。而世界范围内柴油的供应量严重不足,给生物柴油留下广阔的发展空间。

6 我国发展生物柴油的原料分析及发展建议

柴油的供需平衡问题也将是我国未来较长时间石油市场发展的焦点问题。业内人士指出,到2005年,随着我国原由加工量的上升,汽油和煤油拥有一定数

量的出口余地,而柴油的供应缺口仍然较大。我国柴油产量到2005年预计可达到80.5 Mt,仍缺口600~2 400 kt。预计到2010年柴哟的需求量将突破100 Mt,与2005年相比,将增长24%;至2015年市场需求量将会达到130 Mt左右。近几年来,尽管炼化企业通过持续的技术改造,生产柴汽比不断提高,但仍不能满足消费柴汽比的要求。目前,生产柴汽比约为1.8,而市场的消费柴汽比均在2.0以上,云南、广西、贵州等省区的消费柴汽比甚至在2.5以上。随着西部开发进程的加快,随着国民经济重大基础项目的相继启动,柴汽比的矛盾比以往更为突出。因此,开发生物柴油不仅与目前石化行业调整油品结构提高柴汽比的方向相契合,而且意义深远。

国内也已研制成功利用菜籽油、大豆油、米糠油脚料、工业猪油、牛油及野生植物小桐籽油等作原料,经预酯化、再酯化射干难产生物柴油的工艺。高品质的原料是生产高品质生物柴油和取得高收率的基本保证。由于双低菜籽油生产的生物柴油含硫量低,从而使该菜籽油生物柴油具有好的排放标准,因此目前在欧洲普遍栽种双低菜籽。就目前而言,每公顷土地可生产约30 t菜籽(含油量约40%)。我国有很多地区油菜籽种植面积很大,在加工传统的食用油的同时不失时机地开发生产生物柴油燃料是油菜籽利用的一个重要方向。另外,研究发现棉籽油与双低菜籽油的脂肪酸组成相似,因此在我国采用棉籽油作为生物柴油的原料还是可行的。当然,此时的棉籽油生物柴油标准需要按照中国的实际作相应的调整。

1t油菜籽可制取约160 kg生物柴油,同时可副产16 kg甘油。而纯度高达99.7%的特级甘油价格为2 000美元/t。因此,制取生物柴油与精致甘油工艺联产,将能取得较为理想的经济效益。若能建年产100 kt具有一定工业化生产规模的生物柴油装置,其经济效益更为可观。近几年来,生物柴油燃料已被越来越多的重视,在美国和欧洲已开始建立商品化生产,市场很有吸引力,原料也不会存在问题,因此,有很多大公司纷纷开拓这一业务,期望在开始时就能占领市场。南斯拉夫在五、六年前已研制成功这项技术且已生产,后因经济困难而停产,测试数据表明,南斯拉夫的技术水平同德国、意大利等国的相同,可探讨与南斯拉夫合作帮助我国发展这一技术。

参考文献:

[1] Andersson H, van den Berg A. Microtechnologies and nanotechnologies for singlecell analysis[J]. Curr Opin Biotechnol, 2004, 15(1): 44-49.

[2] Peng XY(Larry), Li PCH. A threedimensional flow control concept for singlecell experiments on a microchip:cell selection, cell retention, cell culture, cell balancing, and cell scanning[J]. Anal Chem, 2004, 76(18): 5273-5281.

[3] Yang MS, Li CW, Yang J. Cell docking and onchip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device[J]. Anal Chem, 2002, 74(16): 3991-4001.

[4] Davidsson R, Boketoft A, Bristulf J, et al. Developments toward a microfluidic system for longterm monitoring of dynamic cellular events in immobilized human cells[J]. Anal Chem, 2004, 76(17): 4715-4720.

[5] Munce NR, Li JZ, Herman PR, et al. Microfabricated system for parallel singlecell capillary electrophoresis[J]. Anal Chem, 2004, 76(17): 4983-4989.

[6] Huang Y, Rubinsky B. Microfabricated electroporation chip for single cell membrane permeabilization[J]. Sensor Actuat, 2001, 89(3): 242-249.

[7] Shin YS, Cho KC, Kim JK, et al. Electrotransfection of mammalian cells using microchanneltype electroporation chip[J]. Anal Chem, 2004, 76(23): 7045-7052.

[8] Zhang CX, Liu HP, Tang ZM, et al. Cell detection based on protein array using modified glass slides[J]. Electrophoresis, 2003, 24(18): 3279-3283.

[9] Belov L, de la Vega O, dos Remedios CG, et al. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray[J]. Cancer Res, 2001, 61(11): 4483-4489.

[10] Revzin A, Sekine K, Sin A, et al. Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes[J]. Lab Chip, 2005, 5(1): 30-37.

[11] 忻耀年.生物柴油的生产和应用.中国油脂,2001,26(5):73~74

机械工程方向国内外现状与发展趋势

机械制造技术国内外现状与发展趋势 新中国建立后持别是近三十年来,机械制造技术发展速度很快,向机械产品大型化、精密化、自动化和成套化的趋势发展,在有些方面已经达到或超过了世界先进水平。而且这一时期还没有结束.只要我们能够用好科技发展规律并勇于创新,我国的机械制造技术还将向更高的水平发展.重新引领世界机械工业发展潮流。 现代意义上的机械制造技术主要有以下几个方面的特点,第一,机械制造技术具有工程性的特点:在现代意义上,机械制造技术充分强调计算机技术、传感技术、信息技术、管理技术、以及自动化技术的融合,要求在机械制造技术的应用全过程当中,实现与传统机械制造技术的融合,从而确保整个系统性的工程能够实现能量流、信息流、以及物质流的相互契合;第二,机械制造技术具有综合性的特点:现阶段,对于现代机械制造技术的应用目标在于——确保企业的综合竞争实力能够得到提升,并为国家经济水平的增长“添砖加瓦”。从这一角度来说,现代机械制造技术的应用并不会被局限在制造过程的框架中,还应当覆盖到制造过程的前后阶段,形成一个完整的整体;第三,机械制造技术具有统一性特点:即在市场经济发展不断发展的过程当中,相关企业为了能够赢取在参与市场竞争过程中的绝对优势,最需要解决的一点问题是:将发展的重点从对劳动生产率的提升,转变成为以时间、成本、和质量为中心的提升。而在现代机械制造技术当中,就充分实现了上述要素的有机结合,实现了技术应用的统一性;第四,机械制造技术具有全球性特点:随着现代经济社会的不断发展,全球经济一体化建设进程日益加剧,西方发达国家大多是通过金融、科技、以及信息的方式实现对市场占有份额的扩大,这直接导致了整个市场竞争行为的激烈性。为了更好的与此种发展趋势相适应,就需要通过对机械制造技术的应用,将其与现代高新技术充分融合,以达到支持制造业全面发展的目的。 在现阶段的技术条件支持下,我国现代机械制造技术所取得的发展成效主要体现在柔性制造、虚拟制造、以及敏捷制造这几个方面。首先,对于现代机械制造技术中的柔性制造技术而言,其所指的是:建立在成组技术的基础之上,以常规意义上的数控机床(可以为不同的类型、以及多台台数)以及数控柔性机床指导

生物技术和人类生活的关系01

一、当代生命科学与生物技术发展的现状和前景 无论是科技界还是产业界,都基本认同这样一个重要判断:在新的世纪里,生命科学的新发现,生物技术的新突破,生物技术产业的新发展将极大地改变人类及其社会发展的进程。日益成熟的转基因技术、克隆技术以及正在加速发展的基因组学技术和蛋白质组技术、生物信息技术、生物芯片技术、干细胞组织工程等关键技术,正在推动生物技术产业成为新世纪最重要的产业之一,深刻地改变人类的医疗卫生、农业、人口和食品状况。尽管世界各国对高科技领域范围的界定不完全相同,但几乎无一例外地将生命科学和生物技术放在重要位置。特别是近二十年来,生命科学与生物技术获得了飞速发展,为世界各国医疗业、制药业、农业、环保业等行业开辟了广阔发展前景。 作为“对全社会最为重要并可能改变未来工业和经济格局的技术”,生命科学与生物技术日益受到世界各国的普遍关注和重视。进入新千年后,生物技术产业显示出强劲发展势头,成为当今高技术产业发展最快的领域之一。2001年美国生物科技投资占到风险投资总额的11%,2002年美国在生物技术领域投入研究开发资金已高达157亿美元。日本政府2002年已明确提出生物技术立国战略,强调把“科研重点转向生命科学和生物技术”,并计划五年内将政府在生命科学和生物技术的研究预算增加一倍,达到8800亿日元,力争使日本生物技术达到世界领先水平。欧盟已成立生物技术委员会,继在第四个研究开发框架计划对生物技术研究大量投资后,又在第五个研究开发框架计划中专门制定了“生命科学计划”,进一步加强在这一领域的努力。在软件领域成就斐然的印度,早在1995就提出“人类基因组——印度起点”研究计划,明确提出通过发展生物产业实现经济结构的多元化。这些都表明,世界上许多国家已把发展生命科学、生物技术及其产业作为赢得未来竞争的战略选择。 目前,生命科学的研究热点仍然集中在基因组学、蛋白质学等领域。继2000年人类基因组计划完成之后,水稻、疟原虫、蚊子和老鼠的全部DNA序列测定也在2002年完成,这些研究成果都直接与粮食生产和人类健康有关。老鼠和河豚鱼基因序列的测定,将可能为人类提供关于脊椎动物进化的重要线索。特别是科学家们已经把目光投入到功能基因组学(Functional Genomics)和蛋白质组学(Proteomics)这两个极富挑战性的领域,这将带来更多与人类自身发展密切关联的重大研究成果。 生物技术方面的进展则更为迅速,基因工程、细胞工程、酶与发酵工程、组织工程、蛋白质工程、抗体工程、干细胞研究、克隆技术、转基因技术、纳米生物技术、高通量筛选技术等等,将大大加快基因工程药物和疫苗的研制,以及推进对重大疾病新疗法的研究进程。总体来看,生物技术目前仍主要应用于医药和农业,但在食品、环保、化工、能源等行业也有广阔的应用前景。据统计,全球生物药品市场规模1997年为150亿美元,2000年为300亿美元,预计2003年将达到600亿美元。在转基因技术方面,尽管人们对基因改造生物的讨论和疑虑仍然存在,但2002年全球转基因作物的种植面积仍然比上年增加了600万公顷,达5867万公顷。据有关资料分析,转基因食品市场的销售额2010年将达到250亿美元。随着人类基因组图谱的破译,将有力地促进生物药物的研究与开发。到2020年,利用生物技术研制的新药可能将达到3000种左右。这将对提高人类的医疗水平和健康水平产生极为重要的影响。 摘要:现代生物学和分子生物学的发展,对基因工程、细胞工程、酶工程、发酵工程等现代生物技术工程产生重要影响, 其在食品发酵生产中的应用越来越广。本文阐述了基因工程、细胞工程、酶工程等现代生物技术在食品发酵业的应用。

生物工程的发展历史

1.2 生物工程的发展历史 与一般所理解的生物工程是一门新学科不同的是,而是认为在现实中可以探寻其发展历史。事实上,在现代生物技术体系中,生物工程的发展经历了四个主要的发展阶段。 食品与饮料的生物技术生产众所周知,像烤面包、啤酒与葡萄酒酿造已经有几千年的历史;当人们从创世纪中认识葡萄酒的时候,公元前6000,苏美尔人与巴比伦人就喝上了啤酒;公元前4000,古埃及人就开始烤发酵面包。直到17世纪,经过列文虎克的系统阐述,人们才认识到,这些生物过程都是由有生命的生物体,酵母所影响的。对这些小生物发酵能力的最确凿的证明来自1857-1876年巴斯得所进行的开创性研究,他被认为是生物工程的始祖。其他基于微生物的过程,像奶制品的发酵生产如干酪和酸乳酪及各种新食品的生产如酱油和豆豉等都同样有着悠久的发展历史。就连蘑菇培养在日本也有几百年的历史了,有300年历史的Agarius蘑菇现在在温带已经有广泛养殖。 所不能确定的是,这些微生物活动是偶然的发现还是通过直观实验所观察到的,但是,它们的后继发展成为了人类利用生物体重要的生命活动来满足自身需求的早期例证。最近,这样的生物过程更加依赖于先进的技术,它们对于世界经济的贡献已远远超出了它们不足为道的起源。 有菌条件下的生物技术 19世纪末,经过生物发酵而生产的很多的重要工业化合物如乙醇、乙酸、有机酸、丁醇和丙酮被释放到环境中;对污染微生物的控制通过谨慎的生态环境操作来进行,而不是通过复杂的工程技术操作。尽管如此,随着石油时代的来临,这些化合物可从石油生产的副产品中以低成本进行生产,因此,进行这类化合物生产的工业就处于岌岌可危的境地。近年来,石油价格的上涨导致了对这些早期发酵工艺的重新审视,与前面所讲的食品发酵技术相比,这类发酵工艺相对简单而且可进行大规模操作生产。其它关于有菌生物技术的典型例子有废水处理和都市固体垃圾堆肥。长期以来,人们利用微生物来分解和去除生活污水中的有毒物质,及像化工业产生的小部分工业毒害垃圾。目前世界上进行的发酵工程中,利用生物工程进行污水处理的规模是最大的。 将无菌消毒技术引入生物工程 20世纪40年代,由于大规模微生物培养这个复杂的生物技术的引入,生物工程的发展开始了新的方向,从而确保那些需要将污染微生物排除的特殊生物过程得以进行。因此,通过对培养基和生物反应器的提前灭菌消毒以及用来消除新进入的污染物的工程供应,生物反应中就只留有所选的生物催化剂。诸如此类,在生物工程中占有极大份额的产品有抗生素、氨基酸、有机酸、酶、多糖和疫苗。大部分这样的过程是复杂的,成本昂贵,仅适于高附加值产品的生产,尽管这类产品的产量较大,但采用食品与酿造生产中较老的生物技术,它们的规模与商业回报都是很小的。生物工程的新领域在最近的十年里,分子生物学和过程控制取得了长足的发展,不见开创了生物工程应用的新领域,同时还大大提高了已有生物工程工业的效率和经济性。正是由于这些发现和发展,才会有对于未来生物工程在世界经济中所扮演角色的良好评价。 (a)基因工程对于重要的工业用生物基因组的有性重组或突变操作一直是工业遗传学家革新目录中的组成部分。重组DNA新技术包括温和的进行活细胞破碎、DNA提取、纯化和利用高度专一性的酶进行随后的有选择性切割;对目的基因片断分类、鉴定、筛选和纯化;用化学方法将目的基因连接到载体分子的DNA上及将重组DNA分子导入选择的受体细胞进行增值和细胞合成。重组DNA技术可较简便的进行基因组操作,而且可避免物种间与属间的不相容性。无限可能性是存在的,人类胰岛素与干扰素基因已导入了微生物细胞并进行了表达。原生质融合、多克隆抗体制备和组织培养技术(包括从细胞培养上清液中进行植物的再生)的广泛应用对生物工程的发展有着深远的影响。(b)酶工程酶分离工程一直是许多生物技术过程的组成部分,而且随着允许对生物代谢产物进行重新利用的更适合的固定化技术的发展,它们的代谢产物可被进一步利用。利用固定化细菌的葡萄糖异构酶生产高果

现代生物技术的应用与展望

现代生物技术的应用与展望 姓名:班级:学号: 摘要:参阅大量文献资料对近年来生物技术在农业、医药业、社会科学等中的应用进展进行了综述。从改革传统农业结构,解决食品短缺问题的应用、深入基因研究,解决健康长寿问题、运用现代生物技术,解决环境污染问题等内容出发,指明了生物技术现代科学发展中的应用前景。 关键词:生物技术基因医学健康农业 Abstract: a large number of literature on recent biotechnology in agriculture, medicine and industry, social science and application were reviewed in this paper. From the reform of traditional agriculture structure, to solve food shortage problem, in-depth application of genetic research, solve the longevity and health problems, use of modern biological technology, solve the problem of environmental pollution and other content, pointed out the biological technology of modern science and application prospects. 现代生物技术也可称之为生物工程,是以重组DNA技术和细胞融合技术为基础,利用生物体(或者生物组织、细胞及其组分)的特性和功能,设计构建具有预期性状的新物种或新品系,以及与工程原理相结合进行加工生产,为社会提供商品和服务的—个综合性技术体系。其内容包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程。现代生物技术的诞生以2O世纪7O年代初DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志,迄今已走过了30多年的发展历程。实践证明现代生物技术对解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景,受到了各国政府和企业界的广泛关注,与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,是2l世纪高新技术产业的先导。可以预测,生物技术的应用与发展将导致生产体系与经济结构的飞跃变化,甚至可能引发一次新的工业革命,对人类社会的生产、生活各方面必将产生全面而深刻的影响。 1 改革传统农业结构,解决食品短缺问题 现代生物技术在农业中最突出的应用是利用转基因技术,将目的基因导入动、植物体内,对家畜、家禽及农作物进行品种改良,从而获得高产、优质、抗病虫害的转基因动植物新品种,达到充分提高资源利用效率,降低生产成本的目的。经过长期不断的努力,现代农业生物技术已取得重大突破,不仅从根本上改变了传统农作物的培育和种植,也为农业生产带来了新一轮的革命,并将在解决目前人类所面临的粮食危机、环境恶化、资源匮乏、效益衰减等方面发挥巨大作用。 1.1 提高农产品的产量与质量农作物病虫害是造成农业产量下降的主要原因之一,因而利用转基因技术把抗病、抗虫基因导入农作物中,使之可避免或减少病虫害。近年来,抗黄杆菌的水稻、抗除草剂的大豆、抗病毒病的甜椒、抗腐能力强与耐贮性高的番茄等转基因植物开始进入市场,提高了产量,增加了效益;根据人类的需要,还可把特定基因导入植物体,可达到改良农产品品质的目的,如高含量必需氨基酸的马铃薯,高蛋白质含量的大豆等;此外还可利用生物技术破坏水果细胞壁纤维酶,保证猕猴桃、桃、西红柿等水果成熟但不变软而提高水果的保鲜度,便于水果的运输。从1996年到2o02年,转基因农作物在全球的种植面积从170万ha扩大到5810万ha,即增加35倍,显示了现代农业生物技术强大的生命

未来机械工程的发展趋势

未来机械工程的发展趋势 21世纪以前,科学与技术着重于认识自然世界,不断提高人类生存能力;21世纪科技将更多地着眼于认识人类自身,不断提高人的生命质量。 在21世纪里,就制造业来讲,发明和发展了汽车、机床、机器人、飞机、火箭、芯片、计算机、电视机等成千上万的机电产品,极大地改变了人类的生产方式和生活方式 展望未来,21世纪将更加伟大、更加辉煌。制造业将出现更多意想不到的奇迹。生产的汽车不仅会跑,可能还会飞;制造的飞机将更快、更安全;高速列车和磁悬浮列车将飞驰在祖国的原野;智能仪器装备和智能机器人将按照人们的要求高效率、高质量地制造产品;微型机器人将能进入血管清理“垃圾”、修补心脏;人们可用分子组装技术组装出理想性能的微器件;掌上工具可能是计算机、可视电话、电视、音响和网络的集成,等等。 未来机械工程科学发展的总趋势将是交叉、综合化;柔性、集成化;智能、数字化;精密、微型化;高效、清洁化。智能机器人及仪器设备、微型机电系统、高效柔性、智能自动化制造技术将日趋成熟,并被市场所接受;可重构制造系统的理论与技术和适合我国的制造模式将得到完善和发展;在机构学、摩擦学、仿生机械和仿生制造等领域我国将进入世界先进行列;我国科学家问鼎诺贝尔奖将不是天方夜谭。制造业在制造科学技术的武装下将全面现代化,国家由于制造业创造的财富而更加昌盛繁荣。人民的生活将更加富裕潇洒。 信息科学、材料科学、生命科学、纳米科学、管理科学和制造科学将是改变21世纪的主流科学,由此产生的高新技术及其产业将改变世界。与以上领域交叉发展的制造系统和制造信息学、纳米机械和纳米制造科学、仿生机械和仿生制造学、制造管理科学和可重构制造系统等是21世纪机械工程科学的重要前沿。 半个世纪以来,我国的机械工程科学得到了很大的发展,我们已经建立了较完善的学科体系,在学科前沿、技术创新和工程应用诸方面取得了突出成就。 新技术在制造业中的应用,使得被人们称作“夕阳产业”的机械制造业不断涌现新的希望,唤发新的活力。从起初“规模型”、“成本型”到“质量型”,再到现在的“快速响应型”无不展示其适应市场竞争,求生存、求发展的勃勃生机。 围绕着以满足个性需求为宗旨的新产品开发与竟争,一场以大制造、全过程、多学科为特征的新的制造业革命正波澜壮阔地展开。这是二十一世纪知识经济新时代下制造业的趋势,同时也预示着其未来的可持续发展方向——全球化、信息化、智能化。 高技术改变制造业 当今日新月异的科学技术发展,展现出了更多的科学发现和技术发明前景。信息科技、生命科学和生物技术、纳米科技的突飞猛进与相互交织影响,成为新一轮科技革命的重要标志。高技术的迅猛发展,同样对制造业的发展起到了推动、提升和改造的作用。高技术对制造业的改变是全面的和连续不断的,包括影响制造业未来的发展方向、重心领域、科技前沿、核心要素等,这里就几个重大方向问题做些说明。 一、高技术改变制造业——尺度向下延伸

分子生物学的研究及发展

分子生物学的应用及发展 摘要:本文在文献检索的基础上,对分子生物学的发展简史,基本原理,研究领域等作了简单介绍,阐述了分子生物学在人们日常生活中的应用并结合药学专业着重讨论了其在药学及中药开发发面的应用,并进一步对分子生物学未来的研究技术、方向和前景做了展望。 一前言 生物以能够复制自己而区别于非生物。生命现象最基本的特征是进行“自我更新”。进行“自我更新”体现了一种最高级和最复杂的运动状态。这种运动就是生物机体从环境中摄取物质和能量,以更新本身的物质组成,而山现生长、繁殖,在这样的过程中保证了将自身的特征传给历代;同时也不断地向环境输送一些物质和释放能量。在生物机体的组成物质中,防水分外,有各种无机盐类和各种有机化合物。其中生物大分子——核酸和蛋白质在进行自我更新运动中,以其功能的重要性占第一位。为探索生命现象的本质问题,产生了分子生物学这一学科[1]。 分子生物学(molecular biology)是从分子水平研究生命本质为目的的一门新兴边缘学科,它是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域[2]。 分子生物学的最终目标是远大的,从产生基本细胞行为类型的各种分子的角度,来理解这五类行为类型:生长、分裂、分化、运动和相互作用。即分子生物学力图完整地描述细胞大分子的结构、功能和相互联系,从而理解细胞为什么要采取这种方式[3]。 分子生物学作为一门新兴的边缘学科。它的迅速发展及其在整个生命科学领域的广泛渗透和应用,促使人们对生物学等生命科学的认识从细胞水平进入分子水平。在农业、畜牧、林业、微生物学等领域发展十分迅速,如转基因动植物等。在医学领域,为医学诊断、治疗及新的疫苗、新药物研制等开辟了新的途径,使医学科学中原有的学科发生分化组合,医学分子生物学等新的学科分支不断产生,使医学科学发生了深刻的变革,不认识到这一点就很难跟上科学发展的步伐。 分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。 二分子生物学发展简史 分子生物学的发展大致可分为三个阶段[4-7]:

现代生物技术的发展与前景

在当今世界各国纷纷建立以基因为核心的知识产权保护,抢占21世纪国际生物技术制高点的新形势下,参加北京“国际周”现代农业高层论坛的专家呼吁,要密切关注现代农业生物技术领域日益显现的研究成果商品化、研究方式规模化和基因资源争夺白热化的趋势,在即将到来的生物世纪里,真正占据自己的位置。 农业生物技术的主要研究内容包括:增强农作物以及畜禽鱼的抗性、品质改良、提高产量和生产具有特殊用途的物质等。其中以转基因作物的研究和运用最为重要,发展最快。根据统计资料,到2000年,全世界转基因作物推广面积达4420万公顷,比1996年增长了25倍;种植转基因作物的国家从1996年的6个增加到2000年的13个。这其中美国的转基因作物种植面积最广,达到了3030万公顷,占68%;其次为阿根廷,1000万公顷,占23%;加拿大300万公顷,占7%;我国为50万公顷,占1%。根据有关专家的看法,现代农业生物技术的最新发展趋势表现为:——研究成果商品化产业化进程加速。目前,农业生物技术作为一项高新技术产业在发达国家业已形成,并处于一个高速发展时期。有关专家预测,本世纪生物技术产品在国际贸易中的份额将达到10%以上,而现代农业生物技术又将占相当的比重。世界银行下属机构预测世界范围内转基因作物产业的交易额为2000年20亿美元,2005年60亿美元,2010年200亿美元;国际农业生物技术应

用机构(ISAAA)的预测则分别为30亿美元、80亿美元和280亿美元。 ——研究方式集约化、规模化明显。在政府以及公共机构对现代农业生物技术进行投资研究的同时,众多私有企业也开始注意到这一领域将是继计算机和网络技术之后的又一个潜力巨大的经济增长点,私人公司已逐步成为农业生物技术的研究主体。以美国为例,民营机构1992年对这一领域的投资为5.95亿美元,而1999年则达到15亿美元。与此同时,世界范围内出现了生物技术企业领域的兼并和收购狂潮,并购金额从1997年的12.37亿美元陡然升至1999年的138亿美元。一些资产过百亿美元的巨型跨国公司由此形成,过去分散的研究基地也随之向集中化规模化发展。 据业内人士分析,促成公司并购的原因,一方面是为合理利用资源、降低生产成本、优化人员组合,而更重要的原因,则是因为现代农业生物技术产业是一个高技术、高投入、高风险、长周期的产业,小公司在资金、技术、以及抗风险能力上均难以独立对农业生物技术产品进行研发和推广。只有强强联手的大型现代农业生物技术企业才能有效占领市场,与其它企业抗衡。 ——基因资源争夺呈白热化。在商业利益驱使下,发达国家各主要生物技术公司对生物资源及其知识产权展开了激烈争夺,其核心就是对基因的争夺。谁掌握了基因,谁就掌握了生物技术的制高点,就掌握了未来竞争的主动权。有专家称,转基因植物技术知识产权很可能就是未来国际贸易中市场准入、贸易壁垒问题产生的主要原因。

机械工程技术发展前沿报告

学校代码: 学号: 机械工程技术 发展前沿报告 报告作者: 学科:机械工程 报告提交日期: 2015年1月20日

目录 1并联机构机器人 (1) 2 汽车缓速器 (3) 3 机械工程中的工程力学 (5) 4 工程中的动力学及控制问题 (7) 结束语 (9)

1并联机构机器人 并联机构(Parallel Mechanism,简称PM),可以定义为动平台和定平台通过至少两个独立的运动链相连接,机构具有两个或两个以上自由度,且以并联方式驱动的一种闭环机构。并联机器人和传统工业用串联机器人在哲学上呈对立统一的关系,和串联机器人相比较,并联机器人具有以下特点: (1)无累积误差,精度较高; (2)驱动装置可置于定平台上或接近定平台的位置,这样运动部分重量轻,速度高,动态响应好; (3)结构紧凑,刚度高,承载能力大; (4)完全对称的并联机构具有较好的各向同性; (5)工作空间较小; 根据这些特点,并联机器人在需要高刚度、高精度或者大载荷而无须很大工作空间的领域内得到了广泛应用。军事领域中的潜艇、坦克驾驶运动模拟器,下一代战斗机的矢量喷管、潜艇及空间飞行器的对接装置、姿态控制器等;生物医学工程中的细胞操作机器人、可实现细胞的注射和分割;微外科手术机器人;大型射电天文望远镜的姿态调整装置;混联装备等,如SMT公司的Tricept混联机械手模块是基于并联机构单元的模块化设计的成功典范。 1931年,Gwinnett在其专利中提出了一种基于球面并联机构的娱乐装置(图1);1940年,Pollard在其专利中提出了一种空间工业并联机构,用于汽车的喷漆(图2);之后,Gough在1962年发明了一种基于并联机构的六自由度轮胎检测装置(图3);三年后,Stewart首次对Gough发明的这种机构进行了机构学意义上的研究,并将其推广应用为飞行模拟器的运动产生装置,这种机构也是目前应用最广的并联机构,被称为Gough-Stewart机构或Stewart机构(图4)。

分子生物学前沿技术

分子生物学前沿技术 The Standardization Office was revised on the afternoon of December 13, 2020

激光捕获显微切割Laser capture microdissection (LCM) technology是在不破坏组织结构,保存要捕获的细胞和其周围组织形态完整的前提下,直接从冰冻或石蜡包埋组织切片中获取目标细胞,通常用于从中精确地分离一个单一的细胞。 背景:机体组织包含有上百种不同的细胞,这些细胞各自与周围的细胞、基质、血管、腺体、炎症细胞或相互粘附。在正常或发育中的组织器官内,细胞内信号、相邻细胞的信号以及体液刺激作用于特定的细胞,使这些细胞表达不同的基因并且发生复杂的分子变化。在状态下,如果同一类型的细胞发生了相同的分子改变,则这种分子改变对于疾病的发生可能起着关键性的作用。然而,发生相同分子改变的细胞可能只占组织总体积的很小一部分;同时,研究的目标细胞往往被其它组织成分所环绕。为了对疾病发生过程中的组织损害进行分子水平分析,分离出纯净的目标细胞就显得非常必要。1996年,美国国立卫生院(NIH)国家肿瘤研究所的[2]开发出激光捕获显微切割技术(Laser capture microdissection , LCM ),次年,美国Arcturus Engineering公司成功研制激光捕获显微切割系统,并实现商品化销售。应用该技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。这项技术现已成为美国“肿瘤基因组解剖计划”的一项支撑技术[1]。 原理:LCM的基本原理是通过一低能脉冲激活热塑膜———乙烯乙酸乙烯酯(ethylene vinylacetate,EVA)膜(其最大吸收峰接近

影响人类未来的十大生物科学技术

生物谷张发宝博士:影响人类未来的十大生物科学技术 ——用生物科技促进人类与自然和谐发展 生物谷(https://www.doczj.com/doc/4515086569.html, 张发宝博士):生物科学自从进入21世纪以来,飞速发展。尤其是随着人类基因组计划的完成,人类有自主改造基因的能力,于是各种梦想就应蕴而成。然而哪些技术会与人们的生活和未来的生活息息相关呢? 以下我们列举了十大生物技术,有理由相信,在未来相当长时间内,以下一些领域将成为人类攻关的热点,它们不仅带来给我们的是一项项的技术,更为人与自然的和谐。 1 新型药物研发。靶向,RNAi,疫苗,纳米运输成为关键词。 虽然现代医药日新月异,但是仍然有大量疾病缺少真正有效的手段,如艾滋病等许多病毒性疾病,中风,心血管等退行性病变,以及许多遗传性疾病。另外,现代的经典的药物,也在与微生物的斗争中,疲于应付。不断的变异的细菌,使得药物的研发越来越吃力。 其实,真正的新药,不仅是药物的本身,还包括药物的载体(运输)和高度特异性。许多药物效果很好,但是作用太过广泛,或无法靶向应用,或无法到达靶器官等,使得许多原因不在于没有这个药,而在于没有办法将药物靶向性作用于这些病变组织。如RNAi技术成为人类治疗病毒性疾病,肿瘤等有力的武器,但是现在却没有办法让它能够安全地运达病灶并发挥作用。 在未来,靶向性药物,纳米药物将成为药物研究过程中重要的载体,而与传统的药物结合,共同构成真正强有力的治疗工具。 2 组织工程与器官移植 随着干细胞的技术快速发展,人类目前已经能对某些细胞的分化方向进行人工控制,使得人类对组织工程和器官移植期待得到空前的提高。当然,目前的技术离应用还有很长的距离,但是新的技术,如三维组织培养,定向分化技术使得人类能够在体外复制出一些简单的组织。对于复杂的组织和器官,相应随着技术的不断发展,仍然有可能成为现实。 3 个性化医疗时代 传统的医疗技术,是治病的技术,不是治人的技术。而随着人类基因组、SNP、代谢组学等的全面了解和蛋白质组学的逐步了解,为个性化医疗开辟了新的曙光。 根据不同病人的基因表型,进行有针对性地用药和治疗,达到最低的副作用,最高的敏感性和效果。这是人们期待的事实。

精选-机械工程前沿论文

机械工程前沿研究与优化设计 摘要: 本论文指出了现代机械工程科学前沿的显著特征:一方面,它与信息技术、材料科学、生命科学和管理科学相交叉;另一方面,它在创造性地解决机械工程关键科学问题的过程中得到发展。机械优化设计为机械设计提供了一种重要的科学设计方法,使得在解决复杂设计问题时,能从众多的设计方案中寻到尽可能完美的或最适宜的设计方案,这是现代科学技术发展的必然结果。简述了遗传算法和蚁群算法的基本概要,并列举了其目前的应用现状。关键词: 机械工程学科前沿优化设计遗传算法蚁群算法 机械工程是一门与机械和动力生产有关的工程学科,它以有关的自然科学和技术科学为理论基础,结合生产实践中的技术经验,研究和解决在开发、设计、制造、安装、运用和修理各种机械中的全部理论和实际问题。 机械工程学科包含以下几个方面机械制造及其自动化机械电子工程机械设计及理论 车辆工程和仿生技术。机械工程的服务领域广阔而多面,凡是使用机械、工具,以至能源和材料生产的部门,无不需要机械工程的服务。概括说来,现代机械工程有五大服务领域:研制和提供能量转换机械;研制和提供用以生产各种产品的机械;研制和提供从事各种服务的机械;研制和提供家庭和个人生活中应用的机械;研制和提供各种机械武器。 1 机械工程的发展趋势 机械的发展经历了从制造简单工具到制造由多个零件、部件组成的现代机械的漫长过程。机械工程以增加生产、提高劳动生产率、提高生产的经济性为目标来研制和发展新的机械产品。随着世界的进步、国家的需求和学科的发展,机械工程科学的发展出现了以下显著特点和趋势:一方面,高技术领域如光电子、微纳系统、航空航天、生物医学、重大工程等的发展,要求机械与制造科学向这些领域提供更多更好的新理论、新方法和新技术,因而出现和发展着微纳制造、仿生及生物制造、微电子制造等制造科学新领域;另一方面,随着机械与制造科学与信息科学、生命科学、材料科学、管理科学、纳米科学技术的交叉,除了推动着机构学、摩擦学、动力学、结构强度学、传动学和设计学的发展外,还产生和发展着仿生机械学、纳米摩擦学、制造信息学、制造管理学等新的交叉科学。在未来的时代,新产品的研制将以降低资源消耗,发展洁净的再生能源,治理、减轻以至消除环境污染作为超经济的目标任务。

生物技术与人类健康论文

浅谈基因工程与人类健康 王招弟 经济管理学院 14会计4班 70 摘要:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程在世界围发展迅速,渗透科学各个领域。其中包括基因制药、转基因技术的发展及应用等,回顾生物技术的每一步发展都为人类的健康做出了巨大的贡献。 关键词:基因工程、基因制药、转基因技术、人类健康 20世纪80年代以来,运用基因工程技术已成功生产出白细胞介素-2、尿激酶、乙型肝炎苗等,临床上发挥了重要作用。目前人类已知至少五千多种疾病的发生都直接或间接与基因有关,如肿瘤、高血压、糖尿病、肥胖、艾滋病,如何根治这些疾病还需人类基因组的进一步研究。2003年4月中国、美国、英国、日本、法国、德国六国政府首脑联合发表了《六国政府首脑关于完成人类基因组序列图的联合声明》宣布:国际人类基因组测序协作组已经解读了人类生命密码书中所有章节的秘密,完成了人类基因组的“完成图”,并且全世界都可以不受限制地免费获取这些信息。日前美国奎格?文特研究所和多伦多儿童医院以及加州大学的研究者第一次向世界公布了个人的二倍体基因组序列。 有关基因工程与人类健康的密切联系,我将从以下几个方面展开叙述。一、基因制药 科学家预言,下个世纪的药物主要是基因药物。在庞大的“人类基因组”这台大戏中,基因药物扮演了一个重要角色。尤其是针对一些遗传疾病与疑难顽症,基因药物把传统疗法上升到了基因疗法。 随着基因工程的发展,将相应的人体遗传物质(基因)转移到不同的微生物中,制造出如胰岛素、干扰素、生长激素等药物,已成现实。科学家在牛羊中植入人类基因,使这些动物的乳汁含有人类血液的主要成分,如特有的蛋白质、使血液凝结的成分和抗体等等。科学家还把基因切开、粘上,从一种植物转移到另一种植物,从一种动物转移到另一种动物,把切下的基因植入任何生命细胞中,从而获

生物工程的最新进展和研究热点

当今世界,我们所处的这个时代,是科学技术飞速发展、知识信息爆炸的知识经济时代,世界各国都在相互竞争,竞争的焦点集中在科学技术上,谁的科技发达,谁的综合国力就强大。 现在世界七大高新技术分别是:现代生物技术、航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术。 其中生物技术列在首位,生物技术之所以令世界各国如此重视,是因为它是解决人类所面临的诸如食物短缺、人类健康、环境污染和资源匮乏等重大问题上有着不可比拟的优越性,还因为它与理、工、农、医等科技的发展、与伦理道德、法律等社会问题都有着密切的关系。 高新技术的重要特征之一是学科横向渗透,纵向加深,综合交错,发展迅速。所以世界各国争相投巨资发展,确定生物技术为21世纪经济和科技发展的优先领域。 基因工程 基因工程( 又称DNA 重组技术、基因重组技术) , 是20 世纪70 年代初兴起的技术科学, 是用人工的方法将目的基因与载体进行DNA重组, 将DNA 重组体送入受体细胞, 使它在受体细胞内复制、转录、翻译, 获得目的基因的表达产物。这种跨越天然物种屏障, 把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力, 是基因工程技术区别于其他技术的根本特征。 基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状。基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。首先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多种细胞器的基因组全序列测定工作。其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学,又被称为后基因组研究,成为系统生物学的重要方法。 我国在结构生物学研究方面具有较好的基础。60年代,我国科学家在世界上首次人工合成了胰岛素;70年代初又测定出1.8 埃; 分辨率的猪胰岛素三维结构,成为世界上为数不多的能够测定生物大分子三维结构的国家,这些研究工作处于当时的世界先进水平。 基因克隆是70年代发展起来的一项具有革命性的研究技术,可概括为∶分、切、连、转、选。 "分"是指分离制备合格的待操作的DNA,包括作为运载体的DNA和欲克隆的目的DNA;"切"是指用序列特异的限制性内切酶切开载体DNA,或者切出目的基因;"连"是指用DNA连接酶将目的DNA同载体DNA连接起来,形成重组的DNA分子;"转"是指通过特殊的方法将重组的DNA 分子送入宿主细胞中进行复制和扩增;"选"则是从宿主群体中挑选出携带有重组DNA分子的个体。基因工程技术的两个最基本的特点是分子水平上的操作和细胞水平上的表达,而分子水平上的操作即是体外重组的过程,实际上是利用工具酶对DNA分子进行"外科手术"。DNA克隆涉及一系列的分子生物学技术,如目的DNA片段的获得、载体的选择、各种工具酶的选用、体外重组、导入宿主细胞技术和重组子筛选技术等等。从不同的重组DNA分子获得的转化子中鉴定出含有目的基因的转化子即阳性克隆的过程就是筛选。目前发展起来的成熟筛选方法如下:(一)插入失活法 外源DNA片段插入到位于筛选标记基因(抗生素基因或β-半乳糖苷酶基因)的多克隆位点后,

生物技术的现在与未来

生物技术的现在与未来 1.人类生命的质量和数量 随着生活质量的提高,人类的寿命到2015年可以明显延长。疾病控制、定制药物、基因疗法、延缓衰老和返老还童术、记忆药物、修复医学、仿生学移植、动物移植等诸多领域的进展可以继续改善人类的生命质量并延长人类的寿命。有些领域的进展(例如人造传感器)可以使人类的生理机能超过目前的水平。在这些领域中,发达国家要比发展中国家受益更大。2.优生学与克隆技术 人类到2015年大概有能力利用遗传工程技术改良人类和克隆人类。这无疑是人类历史上争议最大的一个焦点。到2015年是否会广泛开展这项研究目前还难以预料,而且克隆人类的技术也许到2015年仍然还不够成熟。不过我们至少可以预见到会有一些利用基因疗法治疗遗传疾病的研究和带有恶作剧性质的克隆试验。目前关于克隆人类的争议最迟到2015年会达到高峰。 生物技术的革命不可避免地要带来一些问题,也可能出现目前还无法预见的改弦更张。目前在转基因食品、克隆技术和基因组图谱方面已经出现了有关伦理、道德、宗教、隐私和环境的强烈争议。这些问题的出现不应该影响生物技术的革命,不过随着受到生物技术威力影响的人群的不断扩大,生物技术在今后15年内会不断修改自己的发展历程。 生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。 1.遗传图谱和DNA(脱氧核糖核酸)分析 2.克隆技术 3.转基因有机体 4.疗法和药物的开发 除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法毒品贸易问题具有重大影响。 疗法和药物的开发 除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。 生物医学工程 1.有机组织和器官 2.人造材料、人造器官和生物工程学

生物进化论-人类未来发展趋势

人类未来发展趋势 对于生活在现在的人来说,对于未来的畅想总是很多的。我们会憧憬未来的美好,也会恐惧未来的未知,未来对于我们来说,是神秘的。因此,好奇的人总是希望能预知未来,掌握未来。那么,首先就要了解未来的发展趋势。 对于未来,很直接的会想到比现在发达,比现在进步,这都是理所应当的。发展,是人类社会不断进步的动力源泉。所以,我们的未来是,科技上的巨大进步,带动着我们生活水平和生活质量的巨大提高,整个社会也会跟现在有巨大的差别。我们可能再也用不着燃油的汽车了,不用再用人力去做各种事,一切都是智能化什么的,就像我们小时候幻想的一样。但是不管未来怎么发展,人类的未来只要还是掌握在人类手里。每个人都应该是自由的,有自己的独立的义务权利;人与人之间,都应该是平等的,互相尊重,友爱;在人类社会这个大环境里,和谐稳定,这才是人类未来发展的必然趋势。 未来的发展,总是跟经济息息相关,那么就不能说到职业的发展。当然,从现在的生活也能看出来。像现在热门的计算机行业,金融行业,未来的发展前景依旧很不错。新兴的产业,有生物技术(基因)方面的,新能源,新材料的开发,还有什么空间技术,海洋技术之类的,在未来的人类社会中都会占有很大比重。还有就是与我们人关系最为紧密的

饮食与医疗,在未来发展中更是不可或缺的。 提到生物技术,作为生命科学的学习者,我更加深切的感受到生物技术在未来人类生活会有多大作用。生物技术或者说生命科学,是有极好的发展前景的。不久的未来,我们可能通过基因治疗彻底解决那些危害人类健康的不治之症;转基因作物的大量推广,极大促进生产的发展;生物能源的应用,改善现在不合理的能源结构;微生物的发酵工程,还有蛋白质工程等等。总之,生物技术的发展,是人类未来发展趋势中重要的组成部分,生物技术的进步对于人类的未来也起着至关重要的作用。 人类的未来到底是什么的样的,我们都不敢妄断。但如今人类的活动,让我们对人类的未来,并没有完全的信心。我们大量的占用着自然资源,污染着环境,改变着自然的发展规律。我们都不敢想,未来的某一天,我们会不会生活在PM2.5达到500甚至1000的环境里,是不是还能和到天然的淡水资源,还有很多很多值得我们担忧的事。既然知道我们的未来可能变成那样,我们就不能坐以待毙,我们不仅要正确的预测未来的发展趋势,更要在这之后改变对我们人类不利的趋势,趋利避害,才能让我们人类有更长足的发展。所以说,未来如何发展,是什么趋势都不是最重要的,重要的是我们现在所做的会影响未来。

生物工程的最新研究进展和研究热点

生物工程的最新研究进展和研究热点

生物工程的最新研究进展和研究热点 邓佳艺术与设计学院 15125478 【摘要】农业生物工程研究和产业的现状及其我国发展的策略北京大学副校长陈章良教授从80年代初美国科学家获得第一株转基因植物到现在,短短几十年时间内,农业生物工程迅猛发展,日新月异,成为高新技术领域中进展最快的领域之一。 【关键词】农业生物工程;植物基因工程;转基因农作物;转基因工程;病毒基因组;应用; 【前言】根据“生物多样性公约”规定,生物技术是指“利用生物系统、活生体或者其衍生物为特定用途而生产或改变产品或过程的任何 技术应用”。从广义上讲,生物技术涵盖了当前在农业和粮食生产中普遍采用的多种技术手段;而从狭义上讲,生物技术主要包括涉及繁殖生物学,或以特殊用途为目的处理或利用活生物体遗传物质的技术应用。则该定义涵盖了很大范围的不同技术,如我们学习的分子DNA标记技

术、基因操作、基因转移、无性繁殖、胚胎移植、冻藏(家畜)及三倍体化等。生物技术在农业生产力方面的应用比较难,比医学方面要慢,但农业生物技术现在已经从农业试验室发展到现 场试验了,那么进而达到商业化的阶段;其中包括动物疫苗、微生物农药、抗杀草剂植物等,现在一些专家预测此类产品将引导全中国,甚至全世界,走向另一次农业革命。农业生物技术包括防治动物疾病的疫苗,以及增进农畜产品的品质。另外,包含具有新特性的各类农业生物技术的发展。农业生物技术对传统农业有巨大的影响,农业生物技术的产品已逐渐由农业生物技术试验室进人了农业基地试验。 【正文】生物工程又称生物技术或生物工艺学。它是在生命科学的最新成就与现代工程技术相结合的基础上,利用诸如基因重组、细胞融合、固定化酶、固定化细胞和生物反应器等技术,对生物系统加以调控、加工,从而进行物质生产的综合性科学技术。由于它的相对投资少而效益巨大、适用面广,在、食品、医药、能源、环境保护等方面的应用日趋广泛。科学家们预测,生物

未来15年5大生物技术前沿技术

未来15年5大生物技术前沿技术与新科技介绍 摘要:生物技术和生命科学将成为21世纪引发新科技GM的重要推动力量。 关键字:靶标发现技术新一代工业生物技术生物芯片生物柴油国务院日前发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》(以下简称《纲要》)中提出了五项生物技术作为未来15年我国前沿技术的重点研究领域。 这五项生物前沿技术分别是: ——靶标发现技术。靶标的发现对发展创新药物、生物诊断和生物治疗技术具有重要意义。重点研究生理和病理过程中关键基因功能及其调控网络的规模化识别,突破疾病相关基因的功能识别、表达调控及靶标筛查和确证技术,“从基因到药物”的新药创制技术。 ——动植物品种与药物分子设计技术。动植物品种与药物分子设计是基于生物大分子三维结构的分子对接、分子模拟以及分子设计技术。重点研究蛋白质与细胞动态过程生物信息分析、整合、模拟技术,动植物品种与药物虚拟设计技术,动植物品种生长与药物代谢工程模拟技术,计算机辅助组合化合物库设计、合成和筛选等技术。 ——基因操作和蛋白质工程技术。基因操作技术是基因资源利用的关键技术。蛋白质工程是高效利用基因产物的重要途径。重点研究基因的高效表达及其调控技术、染色体结构与定位整合技术、编码蛋白基因的人工设计与改造技术、蛋白质肽链的修饰及改构技术、蛋白质结构解析技术、蛋白质规模化分离纯化技术。——基于干细胞的人体组织工程技术。干细胞技术可在体外培养干细胞,定向诱导分化为各种组织细胞供临床所需,也可在体外构建出人体器官,用于替代与修复性治疗。重点研究治疗性克隆技术,干细胞体外建系和定向诱导技术,人体结构组织体外构建与规模化生产技术,人体多细胞复杂结构组织构建与缺损修复技术和生物制造技术。 ——新一代工业生物技术。生物催化和生物转化是新一代工业生物技术的主体。重点研究功能菌株大规模筛选技术,生物催化剂定向改造技术,规模化工业生产的生物催化技术系统,清洁转化介质创制技术及工业化成套转化技术。

相关主题
文本预览
相关文档 最新文档