当前位置:文档之家› 钛材的焊接

钛材的焊接

钛材的焊接
钛材的焊接

钛合金点焊工艺研究

2011-05-17来源:慧聪网访问量:69我要评论(0) 字号:T|T 今日风向标 | 五金面面观 | 热点专题今日导读“第二届新春短信祝福大赛

【机电在线讯】“新年前的等待,无祝福不过年”,喜迎2…原创不足?矿山机械行业新闻营销需创新从龙年春晚舞台灯光渲染看今年建筑照明设计机电在线助力企业新闻营销凸显电商价值中国航天科技集团公司空间技术研究院518研究所杨俊平

摘要:本文介绍了TB2钛合金电阻点焊工艺试验过程,确定了合理的点焊工艺参数。对其接头成形特点、组织特征进行了分析,并对接头进行力学性能试验。结果表明,只要焊接工艺合理,采用电阻点焊焊接TB2钛合金板材(2mm +0.8mm)效果良好,可以达到Ⅰ级焊缝要求。

关键词:TB2;电阻点焊;工艺;试验

1 前言

TB2,名义成分Ti-5Mo-5V-8Cr-3Al,是我国自行研制的一种新型材料, 属于亚稳定β型钛合金,该合金在固溶状态下具有优异的冷成形性能和良好的焊接性能,在固溶时效状态下具有高的强度和良好的塑性匹配,是航空、航天、国防工业中很有发展前途的一种钛合金。本试验通过对TB2合金电阻点焊的工艺研究,旨在探讨组织性能良好的点焊工艺,确定合理的TB2 电阻点焊工艺流程及其工艺规范。

2 点焊试验

2.1 试验材料

试验所选用的TB2钛合金,电阻率大,导热性差,高温强度稍低,点焊规范与不锈钢大致相当,且材料热敏感性高,即使缩短通电时间也有严重的晶粒长大,影响材料的力学性能。其化学成分见表1。

2.2 试验方案

根据点焊试验对接接头的要求以及拉剪试验对钛板的尺寸要求,设计接头型式如图1所示。其中,图1a的接头用于测试工艺参数以及进行撕裂试验,图1b则是根据拉剪试验对钛板的尺寸要求设计的。对两种不同厚度的试板进行搭接点焊, 其组合为0.8mm+2.0mm接头,焊点直径设计为5mm。其中试板宽度B=20mm, 试板长度L=100mm,搭接长度t=8mm。

为得到质量可靠的焊点,避免在焊接过程中产生各种缺陷,试板机械加工表面粗糙度达到Ra=0.8,并对试板表面进行了焊前清理。首先进行化学清洗,将焊件放入自动清洗机清洗5min,去除表面氧化皮、油脂、灰尘、手印等影响焊点质量的杂质,用细砂纸仔细清理试板点焊范围内的氧化膜,使之露出金属光泽,然后,将工件装夹在专用夹具上待焊。

为了确定合理的焊接规范,选择A(软规范)、B(中等偏硬规范)、C(硬规范)三种规范进行点焊工艺试验。在进行焊接时,焊接时间(较小值)、焊接电流、电极压力依次从小到大,详细点焊工艺参数见表2。

采用大量的对比试验,确定采用中等偏硬的点焊规范,参照相关标准的要求,进行焊缝检验,并比较分析了保护气体对焊接接头组织和性能的影响。

3 焊接结果及分析

3.1 焊点外观检查

用40倍放大镜观察显示,焊接区表面无裂纹、烧穿、喷溅和板边缘的胀裂;检测压痕深度,

小于0.08mm;没有氩气保护进行点焊的焊点表面发黄,并发现一个焊点有深蓝色出现;有氩气保护进行点焊的焊点表面呈金属色,没有发黄现象出现。

3.2 焊点尺寸

焊点的强度取决于熔核尺寸,即熔核直径dn(mm)和熔核高hn(mm), 并且要求熔核尺寸随板厚增加而增大, 一般可用下式表示:

dn=5 δ

Hn=(0.2~0.8)(δ-△)

△=(0.1~0.5)δ

式中:δ为焊件厚度(mm),△为焊件表面压痕深度。

试验中测出点焊直径大于5mm,而根据公式估算出的理论值为4.47mm, 表明试验研究中得到的焊点尺寸符合点焊强度要求,因此该工艺参数设计合理。

3.3 X射线探伤

对试样接头100%进行X射线探伤, 未发现气孔、飞溅及裂纹等缺陷,接头质量符合相关标准要求。说明焊接工艺参数合理、可行,适合进行批量生产。

3.4 撕破检验

为了检验焊点强度是否满足设计要求,进行了撕破检验。撕破检验是一种判定焊接接头质量的现场工艺检验方法。对上述试片进行撕破检验,图2和图3是试片撕破产生的“钮扣”。“钮扣”状撕破比率为95%以上,可知焊点质量满足要求。

3.5 抗剪检验

对以上钛合金点焊试片进行抗剪切试验,以测定焊接接头承受静拉伸载荷的能力。抗剪试样接头为图1所示搭接接头。单焊点试验三组,测得单点抗剪力为1300N、1350N、1335N;双排六焊点试验三组,抗剪力分别为33900N、34200N、33400N;且焊点大都沿母材断裂,少数沿结合面断裂,说明焊点内部缺陷。如图4所示。

4 结束语

4.1 通过对钛合金(TB2)薄板(0.8mm +2.0mm)的点焊试验确定了点焊的最佳工艺参数,具体如下:电流(I)4.5kA, 焊接通电时间(t)0.15s,电极压力120 ~200PSI。

4.2 TB2钛合金薄板电阻点焊接头具有很高的点焊接头强度,可以推广应用。

4.3 点焊试验过程中,焊点出现了表面发蓝(过烧)的现象,通过分析,认为是发生了分流导致过烧。后来,通过优化工艺,采取氩气保护焊接接头,改善薄板之间的装配松紧关系,合理安排点焊顺序,最终保证了焊点质量,达到了相关标准要求。

参考文献

[1] 中国机械工程学会焊接学会编. 焊接手册: 第一卷焊接方法及设备, 第二卷材料的焊接. 第二版. 北京: 机械工业出版社, 2001

[2] 中国机械工程学会焊接学会编. 焊工手册. 第二版. 北京: 机械工业出版社, 2003

[3] 俞尚知主编. 焊接工艺人员手册. 上海: 上海科学技术出版社, 1991

[4] 中国航空材料手册编委会. 中国航空材料手册(第一版)[M]. 北京: 中国标准出版社, 1989

[5] 顾曾迪等编着. 有色金属焊接(第二版)[M]. 北京: 机械工业出版社, 1995.

[6] 戚运莲等编着. 钛及钛合金的焊接技术[J]. 钛合金进展, 2004(6): 25~29

(本文来源:慧聪网) 钛材设备制造技术

岳玉凤方有侨

摘要本文结合兰炼三叶公司顺酐装置中钛材设备的制造实践,介绍了钛材焊接工序、工艺特点和焊接工艺参数,从加工条件、坡口切削、卷板以及焊接工艺特点和焊接保护措施等方面,总结了确保钛材设备制造质量的经验。

主题词金属材料设备制造工艺焊接性能

Manufacture Technology of Equipment Made of Titanium

Yue Yufeng(Lanzhou,Gansu)&Fang Youqiao

1 前言

钛材是一种新型金属材料,具有较高的强度、较小的密度(仅为碳钢的60%)、优良的耐腐蚀性能以及良好的工艺性能,今后将日益广泛地用于制造耐腐蚀的石油化工设备。我们为兰炼三叶公司顺酐装置共制造了十二台钛材设备,其中冷换设备五台、塔三台、罐四台。经过近几年的开工使用证明,冷换设备传热系数高、不易结垢;塔和罐基本上没有腐蚀情况,使用效果较好。

兰炼三叶公司新建的化工原料顺酐装置,因介质腐蚀性强,有些设备选用了钛材制造。由于我们是首次制造钛材设备,技术资料和经验都比较缺乏,而焊接是决定钛材设备质量的3.2 螺旋铝芯扭制成型

关键,为此我们进行了大量的钛材焊接工艺性能评定实验,确定了钛材的焊接工艺参数。钛材特有的物理性能、机械性能及较高的化学活性,决定了钛材设备的制造不同于碳钢或不锈钢设备的制造。

钛材设备的制造加工流程见图1。

图1 钛材设备加工流程框图2 组装及加工

2.1 前期准备

(1)专门划分一块钛材设备制造区域,严禁与碳钢设备混堆、接触,工作场地必须铺设橡胶板。

(2)材料要入库妥为保管,禁止露天堆放。同时设置几个钛材专用的边角余料箱,将边角料分类回收。

(3)自行设计、制造所需的专用机具、胎具等。其中多层螺旋盘管弯制机不但解决了钛材盘管的煨弯难题,还荣获国家专利,专利号为92 2 338574;其它设备如剪板机、刨边机、滚板机等要保持清洁,防止油污、铁屑、辊子上的缺陷等损伤钛材表面。

(4)参加钛材设备制造的人员,着装应符合要求,工作服、手套要整洁,不允许穿带铁钉的鞋,并且尽量避免在钛板上走动。

2.2 划线与落料

钛材对缺陷的敏感性很强,因此禁止用铁锤击打钛材表面或打样冲或钢印,禁止用墨汁或油漆书写有关标记。钛材还易受铁、油污等的污染,下料切割后须用砂轮机将污染部位打磨干净,因此划线时要适当多留一些加工余量,一般以10~20mm为宜。

采用剪板、砂轮机或等离子弧切割落料。采用等离子弧切割时,为防止飞溅损伤钛板,应在钛板表面涂刷白垩粉。

2.3 加工坡口

对板材要求在刨边机上刨出坡口,对管材要求在车床上车出坡口,坡口均为V型,较长的板在刨边过程中容易产生挠曲、被撕裂的现象。为了解决这些问题,我们用槽钢压紧刨削端,以增大刨边机对板材的压紧力,同时减小板材伸出刨边机的长度(由常规的50mm减为30mm),以增大其刚度,再调整好刀具的刃倾角,并采用低速和小的进刀量切削,结果坡口光亮如镜,比碳钢及不锈钢坡口的粗糙度要低得多。

注意在钛材刨边过程中不能中途停止进刀,否则容易引起切削表面硬化,同时钛材刨边时磨刀及更换刀具也比碳钢及不锈钢频繁。

2.4 卷板

钛板在卷制时,板材回弹量要比碳钢及不锈钢大,致使点焊比较困难。我们采用天车配合使筒节在滚板机上滚圆后立即点焊,之后再吊离滚板机。卷板时为了防止辊子上的缺陷损伤钛板表面,采用镀锌铁皮裹住钛板两面。

锥形封头、直径≥108mm的接管(没有无缝钛管,需用板卷制)、人孔筒节等在滚板机上无法成型,可使用自制胎具压制。

3 焊接及检测

3.1 焊接材料及设备

钛材焊接时采用手工钨极氩弧焊。由于钛材的熔点高、热容大、导热性差,与碳钢及不锈钢相比,钛材还具有较高的化学活性。当焊接时,它极易与氧、氢、氮、碳等元素发生剧烈反应,导致焊接接头脆化,容易产生裂纹。为了获得机械性能良好的焊缝,焊前表面清理及焊接过程中的保护措施是保证焊接质量的关键。焊接所用的材料及设备是:

(1)纯度不低于99.99%的氩气。

(2)选用铈钨极,包括直径1、1.5、2、3mm四种。

(3)焊丝应按GB3623-83“钛及钛合金焊丝”标准选用,也可把板材剪成丝使用。

(4)使用钨极(自动或手工)交、直流两用氩弧焊机。

3.2 焊接操作

3.2.1 焊前清理

焊缝只要受到少量铁、油污等杂质的污染,就会严重影响焊接质量,因此,对焊缝表面必须进行严格的清理。清理的顺序如下:

(1)用砂纸或砂轮机除去焊缝及其两侧不少于50mm范围内的氧化层,直到露出银白色的金属为止。

(2)用崭新的绸布蘸无水酒精将表面擦拭干净,直到绸布上没有污染为止。

(3)将焊丝用无水酒精擦拭干净。

(4)焊缝及焊丝清理后要立即施焊,否则应重新清理。

3.2.2 焊接操作要领

(1)手工钨极氩弧焊的焊接工艺参数如表1所示(焊丝均为TA2)。

(2)钨极伸出10~12mm为宜,焊缝每次填充的高度为2~3mm,最高不超过5mm。单面焊双面成型焊缝的对接间隙为1.5mm。

表1 焊接工艺参数

类别板厚

(mm)焊接位置焊丝直径

(mm)电流

(A)电压

(V)焊速

(cm/min)氩气流量

(L/min)

组合角接3垂直俯位2.0

3.080~100

90~10014~16

15~164~8

10~1210~11

11~12

对接3平焊2.0

3.080~100

90~11014~15

14~168~10

8~168~10

9~15

(3)焊接完毕后焊炬不能立即离开,要连同保护盒继续保护,直到焊接接头冷却到400℃以下方可离开。

(4)厚度大于4mm的对接和角焊缝应采用多层焊。每层焊道施焊前,都应保证上一层无氧化,如有氧化必须彻底清除后再施焊。

(5)当焊缝表面存在咬边、弧坑或焊肉低于母材表面时,如无氧化污染则可直接修补;但对于未焊透、表面未熔合及表面裂纹等均应将缺陷打磨干净,进行清理后补焊。返修次数不能超过两次。

3.2.3 焊接过程的保护措施

由于钛材对氧、氢、氮有很高的亲合力,容易导致焊接接头塑性下降,所以对焊缝熔池及其背部凡400℃以上的焊接热影响区都必须进行严格的保护。熔池的保护由焊炬来完成,热影响区及400℃以上的受热部位由保护盒保护。保护盒最好用铜材制作,我们自制的保护盒如图2所示。氩气流量以7~15L/min为宜,太小气流刚性低,保护效果差;太大会引起气流紊乱,把空气带入焊接区。因此,氩气应保持层流状态。

图2 气体保护盒示意

3.3 焊缝检测

焊缝采用外观检查、着色及射线检测三种方式来检验焊缝质量。外观检查主要观察焊缝的表面缺陷及焊接接头的颜色,并根据表面颜色来判定气体的保护效果,参照表2可通过钛材焊缝表面颜色判定焊接质量。

表2 钛材焊缝颜色与焊接质量的判定

表面颜色保护情况焊缝情况接头质量处理措施

银白色良好良好使用可靠不需处理

金黄色尚好没有影响能使用用砂纸打磨掉表面金黄色

蓝色一般表面氧化,使表面塑性稍有下降承受负载较大时不能使用用砂纸打磨掉表面蓝色紫色

(花色)较差氧化严重,塑性显著降低使用条件(介质、负载)苛刻时不能使用用砂纸打磨掉表面紫色

灰色或

表面有

粉状物极差完全氧化,焊接区完全脆化,易产生裂纹、气孔等缺陷不能使用不合格,重新施焊

对于局部表面颜色不合格的焊缝的热影响区,必须用砂轮全部磨去后重新施焊,补焊次数不能超过两次。按JB4730-94“压力容器无损检测”进行着色及射线检测,着色检测应符合Ⅱ级要求,射线检测应符合Ⅲ级要求。

作者单位:岳玉凤方有侨兰州炼油化工安装公司,730060 甘肃省兰州市西固区

参考文献

[1]王瑶琴等.钛制化工设备设计.上海:上海科学技术出版社,1989

[2]中国寰球化学工程公司.CD130A9-87 钛制设备技术条件

钛及钛合金焊接工艺分析正式样本

文件编号:TP-AR-L8424 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 钛及钛合金焊接工艺分 析正式样本

钛及钛合金焊接工艺分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 随着科学技术的飞速发展和人们生活水平的不断提高,当前人们逐渐对钛合金焊接技术的应用重视起来。众所周知,钛和钛合金焊接工艺是我们在进行焊接工作中的重点焊接环节,因为钛的比强度相对较高,且钛的耐海水性以及耐低温性也比较高,与此同时,钛也具有无磁透声等和防抗击震动等优点。本文针对当前钛及钛合金焊接形状,对钛及钛合金具体焊接工艺进行详细分析和阐述,希望为我国焊接行业的发展贡献出一份力量。 广义来讲,钛及钛合金是以建筑结构材料形式产生的,同时由于钛及钛合金密度小以及抗拉强度相对

较高等特点现已倍受青睐。而在300摄氏度到500摄氏度的高温状态下,钛合金金属材料仍具有足够高的强度,并且钛及钛合金具有优良抗腐蚀性,被多用于船只建造。 钛及钛合金焊接工艺特点分析 工业纯钛的抗拉强度普遍偏低,要想使得工业纯钛强度达到标准要求,就得对其进行合金元素施加,对工业纯钛进行不同种类元素和不同数量元素的施加会使工业纯钛产生三种不同类型的钛合金。其中,Ti-230材质的钛合金较为常用,一般加力燃烧室滚动轴承通常是由相应支撑环组件和加强环焊接组件共同构成。 钛及钛合金焊接组织和钛及钛合金相关焊接缺陷详述 2.1.钛及钛合金焊接组织

钛材焊接工艺指导书

钛材焊接工艺指导书 一、编制说明 本工艺指导书的编制依据为SHJ502-86、HGJ217-86《钛管道施工及验收规范》。 二、焊接准备 1 管材和焊材的检验 管材、管件和焊材均应有质量证明书,管材、管件的内外表面应光滑、清洁、无针孔、裂纹、折叠和腐蚀等缺陷;焊材表面应洁净,无氧化色,不应有裂纹、起皱、班疤和夹杂等缺陷。 2 焊接方法和焊接材料 1)焊接方法采用手工钨极氩弧焊。焊机应有高频引弧装置和电流衰减装置。 2)焊接材料采用与母材同材质和纯度更高一级。 3)氩弧纯度不应低于99.99%,含水量不大于300mg/m3 4)氩弧输送管采用塑料软管,不得采用橡胶管或其它吸湿性材料。 3 管子切割和坡口加工 1)管子切割采用机械切割或采用机械切割时其表面不得有氧化层等离子弧割。采用等离子弧切割时要用机械方法(砂轮)除去油污染层,管子加工应采用清洁的专用工具。

2)坡口形式为Ⅰ型。 3)管子切口及坡口表面应平整,不得有裂纹、重皮,并清除毛刺、凸凹、缩口、熔渣及氧化物等。切口平面最大倾斜度偏差不得超过2.5mm。 4 坡口及焊丝的清理 1)坡口及其两侧各25mm以内外表面清除油污后,用细锉或奥氏体不锈钢丝刷等方法清除其氧化膜、毛刺等缺陷。清洁采用清洁的专用工具。 2)经机械清理后的表面,焊前使用不含硫的丙酮或乙醇进行脱脂处理。脱脂严禁使用氧化物容剂,并避免将棉质纤维附于坡口表面。 3)焊丝的清理方法与母材焊口相同。 5 焊口组对 1)焊口组对间隙0~1mm。 2)管子组对应做到内壁平齐,对口挡边量不得超过0.2mm。 3)定位焊采用与正式焊接相同的焊接材料和焊接工艺,其焊缝长度一般为10mm左右,高度不超过1.3mm。 4)定位焊缝不得有裂纹、气孔、夹渣及氧化变色等缺陷,发现缺陷应及时清除。 三焊接工艺 1焊接位置采用转动平焊。

钛管焊接工艺

钛管焊接工艺 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

钛管焊接工艺 1.1钛管的设计技术条件与标准 1.1.1设计技术条件 管材及配件材质IN178503.7025,3.7035,3.7055.其化学成分如下表:序号材料号牌号化学成分DINl7850(级别)TiCFeNOH 13.7025余量≤0.08≤0.20≤0.050.03~0.12≤0.013 23.7035Ⅱ余量≤0.08≤0.25≤0.050.07~0.18≤0.013 33.7055Ⅲ余量≤0.10≤0.30≤0.050.15~0.25≤0.013 管材规格:φ508×4.5,φ408×14,φ26.9×l.5,φ21.3×2.6。 钛管工作条件;温度224℃,压力2.5MPa,介质醋酸,溴化物。 管道质量要求:焊接接头系数1,焊缝射线检验100%,水压试验力3.75MPa,气密性试验压力0.625MPa 1.1.2技术标准 管道工程钛材焊接规范LON1015E 钛管施工技术条件伍德公司标准 钛管施工及验收规范SHJ502-86 1.2焊接特点 钛管焊接是利用惰性气体对焊接区进行有效保护的TiG焊接工艺。由于钛材具有特殊的物理化学特性,因而其焊接工艺与其它金属存在较大差异。焊接时必须保证:(1)焊接区金属在250℃以上不受活性气体N,0、H

及有害杂质元素C,F e,Mn等的污染。(2)不能形成粗晶组织。(3)不能产生较大的焊接残余应力和残余变形。所以,焊接过程须按合 理的工艺,严格按工序质量管理标准,实行全过程的质量控制。使人、机、料、法各因素均处于良好的受控状态,从而在合理的工期内,保证钛管的焊接质量。 2材料、设备及工具要求 2.1钛管及配件;应具有制造厂的出厂合格证和质量证明书。经复验其规格、化学成分、力学性能及供货状态均应符合DIN17850标准的要求。 2.2焊接材料 2.2.1焊丝:焊丝牌号为ERTi-2。选择焊丝应符合:(1)焊丝的化学成分和力学性能应与母材相当;(2)若焊件要求有较高的塑性时,应采用纯度比母材高的焊丝。2.2.2焊丝在使用前要进行材质复验,检查出厂合格证和质量证明书;焊丝表面应清洁,无氧化色、无裂纹、起皮、斑疤和夹渣等缺陷。焊丝的化学成分应符合AWSA5.16一70的有关规定。 2.2.3氩气:工业一级纯氩,纯度不得低于99.98%,含水量小于50Mg/L氩气在使用前先检查瓶体上的出厂合格证,以验证氢气的纯度指标,然后检查瓶阀有无漏气或失灵现象。 2.2.4钨极:选用φ2.0~φ 3.0mm铈钨极,其化学成分应符合如下要求: 成份% 牌号WCeOFe2O3+Al2O3SiO2MoCuO Wce-20余量2.0≤0.02≤0.06≤0.01≤0.01 2.3焊接设备 2.3.1焊机:采用直流TiG焊机。焊机应保证优良的工作特性和调节特性,

钛焊接作业指导书

钛/钢(TA2/Q235B)复合板焊接作业指导书

目录1 主题内容及适用范围 主题内容 适用范围 2 书引用文件 3 材料 钛/钢(TA2/Q235B)复合板 钛(TA2)盖条 焊接材料 4 焊工 5 焊接方法与设备 6 焊接工艺评定 7 焊前准备 下料 坡口制备 焊前清理、准备 8 焊接 焊接工艺参数 技术要求 9 质量检验 检验人员 检验项目 10 焊接缺陷返修 11 焊接环境 12 安全防护

1主题内容及适用范围 主题内容 本焊接施工指导书规定了电厂用TA2/Q235B复合板焊接时,对材料、焊工、焊前准备、焊接工艺、焊接质量检验以及焊接过程中焊接缺陷返修等的技术条件,作为钛/钢(TA2/Q235B)复合板现场施工作业指导书。 适用范围 适用于电厂烟囱用钛/钢(TA2/Q235B)复合板,即以钛(TA2)为复层,以低碳结构钢(Q235B)为基层的钛/钢(TA2/Q235B)复合板的焊接。 凡本指导书涉及的内容,如与设计图纸、技术协议不相符合处,均应首先满足设计要求;凡本书未涉及的内容,则以相应的国家标准、设计图纸和技术说明为准。 2 书引用文件 《钢结构工程施工质量验收规范》 GB50205-2001 《钢焊缝手工超声波探伤方法和探伤结果分级》 GB11345-1989 《涂装前钢材表面锈蚀等级和除锈等级》GB8923-88 《钢结构焊接技术规程》JGJ81-2002 《电力建设施工质量验收及评定规程》(土建工程)DL/ 《钛及钛合金复合钢板焊接技术要求》GB/T13149-91 《钛制焊接容器》JB/T4745-2002 《钛-钢复合板》GB8547-2006 3 材料 本指导书中所有材料应符合设计施工图、技术要求的规定,且都必须有合法有效的材料质量证明书。 钛-钢(TA2/Q235B)复合板 钛-钢(TA2/Q235B)复合板应符合GB/T8547-2006《钛-钢复合板》的规定及订货合同中技术协议的要求,其尺寸规格、坡口形式及刨边尺寸以设计图纸、技术要求和订货合同为准。

工业纯钛的焊接工艺编制.doc123剖析

绪论 钛及钛合金是一种优良的结构材料,它可以和不锈钢、镍基合金争夺应用范围。近年来已在石油化工设备上广泛应用。由于我国钛矿贮量丰富,因此钛及其合金作为石油化工设备新型的抗腐蚀材料有着广阔的前途。在航空、航天、火箭、人造卫星、造船、化工、冶金、造纸、食品、化纤、电镀等工业部门中由于采用钛及钛合金后,提高了设备的使用寿命、生产率,并减轻了结构的重量,从而获得显著的经济效益。 钛合金在航空、火箭、宇航技术部门应用较多,如1979年美国有60%以上的钛合金用于喷气发动机、导弹、飞行器等的制造。早在1957年美国火箭技术部门就开始采用钛合金制造高压容器、燃料箱和发动机壳体。1964年采用钛合金制造宇宙飞行器上的框架、高压容器。这些零、部件都是焊接结构。在航空工业中钛及钛合金用于制造某些飞机的喷气发动机排气系统、机身的尾段、蒙皮、消防隔板等。在亚音速飞机上采用钛合金制造大梁、滑轨、机壳等部件时可以减轻重量40%。 随着钛的加工和焊接技术问题的解决,钛及钛合金在民用工业部门中的用量及其使用范围也在逐步扩大。作为一种耐腐蚀介质的结构材料——纯钛,在化学工业中得到了广泛的应用。当它用于与强腐蚀介质接触的化工设备中时,可显著地延长设备的使用寿命、检修周期,并提高了产品的质量。纯钛还常用于生产氯气、纯碱、有机染料、人造纤维的设备上,以及用来制造热交换器、蒸发器、气体洗涤器、干燥器、稀硫酸贮槽、大型通片管道、盒形烟道、泵等产品。 工业纯钛是一种银白色金属,密度小,熔点高,线膨胀系数小,导热行差。工业纯钛不含合金元素,不能热处理强化。工业纯钛的熔点高(1668℃)比强度大,并具有很高的化学活性。当钛暴露于空气中时,既会在表面上形成一层致密的、非常稳定的氧化膜,用于该层薄膜的保护作用,使钛在硝酸、稀硫酸、稀盐酸、磷酸、氯盐溶液、各种浓度的碱液中具有优良的耐蚀性。 第一章工业纯钛的焊接性分析 1.1工业纯钛的物理化学性能 随着纯钛加热温度的增高,其化学活性迅速增大,并在固态下能强烈地吸收各种气体。例如:将纯钛板加热至300℃时,在钛板表面就会吸收氢气;而加热至400℃时即

钛材料焊接技术图文稿

钛材料焊接技术 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

钛材料焊接技术 一.影响钛材焊接质量的因素 1.气体杂质对焊缝金属性能的影响 钛具有很高的化学活泼性,与空气中的氧、氮有极高的亲和力。在较低的温度下,钛与氧相互作用生成一层致密的氧化膜,随着温度的提高,氧化膜的厚度随之增厚,超过600℃钛开始吸氧并使氧溶解到钛中。温度再高,钛的活性就会急剧增加并与氧发生激烈反应而生成钛的氧化物。钛在300℃以上开始吸氢,在700℃以上开始吸氮。氧和氮对钛污染的结果是使钛强度和硬度增高而塑性降低。氮比氧的影响程度更大,氢在钛中含量从0.01%~0.05%会使焊缝金属的冲击韧性急剧下降,而塑性却下降较少。这是氢化物引起的脆性,即所常说的“氢脆”。氢也是引发焊缝产生气孔的根源。 熔化焊接过程中,熔池像一个小冶金炉,熔融金属暴露在大气中。如果不采取相应的防护措施使熔融的金属钛与空气隔绝,则氧、氮、氢等气体元素就会熔入钛中,形成脆性氧化物或氮化物,致使焊缝金属的塑性急剧降低,拉伸强度提高,严重的情况下将发生脆断,塑性等于零。 2.其他杂质对焊缝金属性能的影响 其他杂质是指除气体杂质外,可能熔入熔池的杂质。其来源可能是焊接操作环境不清洁、戴脏手套触摸钛焊件遗留下油污、焊接前用棉纱擦洗接头、坡口可能留下的棉絮、焊接生产环境与钢铁焊接生产混合可能产生的铁锈、水分和其他一些有机物等。这些污染物在电弧高温作用下分

解出氧、氢、氮、碳等元素,然后溶于熔融的钛中。当这些元素的量超 过在钛中的溶解度时,便形成相应的化合物(TiO 2TiH 2 TiN TiC)。这些化 合物随着熔池结晶而进入钛的晶格中,致使钛的晶格畸变、歪曲,从而改变了钛的力学性能。 有些微量元素少量溶入钛中,如果其量不超过允许的范围是可以的,有时也是我们所希望的。但超量的杂质元素含量是不允许的,特别是有机物杂质,有百害而无一利,这是因为这些杂质元素除使钛焊接的力学性能变差,降低而腐蚀性外,还是焊缝中产生气孔的根源。 3.焊接金属和接头热影响区的组织变化 钛是有同素异形体转变的金属。在882.5℃开始发生组织的固态转变。882.5℃以下晶体结构为密排六方结构,称为α钛;在高于882.5℃时,α结构的钛转变为体心立方结构的β钛。这个转变过程是熔池由液态变为固态的“瞬间”完成的。而这个“瞬间”长短差异仍对熔池的结晶形式有影响,“瞬间”越长越有利于柱状晶生长。由于钛具有熔点高(1668℃),热容量大和导热差等特性,所以焊接时焊缝受到焊接线能量大小和焊缝强制冷却的好坏影响,焊缝处于高温下滞留的“瞬间”就有差异。“瞬间”稍长给熔池结晶的柱状晶长大和接头热影响加宽提供了条件。这也是焊接接头塑性下降的重要原因之一。接头的拉伸强度断口往往发生在焊缝热影响区。为了降低这一不良影响,钛焊接时尽量采用较软的焊接规范,即用较小的焊接线能量和较快的冷却速度。 4.气孔是钛焊缝中常见和较难避免的缺陷

铁铝铜钛合金的焊接方法

铁铝铜钛合金的焊接方法 低碳钢含碳量少,塑性好,可以制备成各种形式的接头和构件。在焊接过程中,不容易产生淬硬组织,产生裂纹的倾向也很小,同时又不容易产生气孔,它是最好焊的材料。采用气焊、手工电弧焊、埋弧自动焊、气体保护焊等方法焊接低碳钢,都能获得良好的焊接接头。采用气焊时不要长时间加热,否则热影响区的晶粒容易变大。在接头刚度很大,周围气温较低时,应把工件预热到100~150℃,以免产生裂纹。 如何焊接中碳钢? 由于中碳钢含碳量较高,焊缝及其热影响区容易产生淬硬组织而造成裂纹,所以焊前应预热到300℃左右,并且焊后需要缓冷。它可以采用气焊、手弧焊及气体保护焊等方法施焊。焊接材料应选用结506、结507等抗裂纹性能比较好的焊条。 如何焊接铝及铝合金? 铝及铝合金在焊接中特别容易产生比重大、熔点高的氧化膜,这种氧化膜还能吸附大量的水分,因此在焊接中容易产生夹渣,熔合不好和气孔等缺陷,此外铝合金还容易产生热裂纹。焊接铝及铝合金可以采用气焊或手弧焊。但气焊热量不集中,铝传热很快,所以生产效率低,工件变形大,除薄板外很少采用。 目前大量采用交流氩弧焊的方法来焊接铝及铝合金,因为它热量集中,焊缝美观,变形小,有氩气保护,能防止夹渣和气孔。如采用手工电弧焊焊铝,适合4mm以上的厚板。所用焊条牌号为铝109、铝

209、铝309。它们都属盐基型焊条,稳弧性能不好,要求用直流反接电源。 如何焊接钛及钛合金? 钛是非常活泼的元素,在液态和高于600℃的固态下,极易和氧、氮、氢等气体作用,生成有害的杂质,使钛发生脆化。因此,钛及钛合金不能采用氧-乙炔气焊、手工电弧焊或其它气体保护焊,而只能采用氩弧焊,真空电子束焊和接触焊等方法。采用氩弧焊焊3mm以下的薄板,电源用直流正接、氩气纯度不低于99.98%,喷嘴要尽量靠近工件,焊接电流要小,焊接速度要快,焊后一般要进行低温退火处理,以改善结晶组织和消除焊接应力。 如何焊接铜及铜合金? 铜及铜合金的焊接有许多困难,因为它们的导热性特别好,所以容易造成焊不透和熔合不好等缺陷。焊后工件要产生较大的变形,焊缝及熔合区也容易产生裂纹和大量的气孔。接头的机械性能,尤其是塑性和韧性都低于母材。 焊接紫铜可以采用气焊,但效率太低、变形大,而且还要预热到400℃以上,劳动条件也不好。手工电弧焊可用铜107或铜227的焊条,电源用直流反接,电弧尽量压低,采用直线往返形运条法,以改善焊缝成形。 焊后锤击焊缝,以改善焊缝质量。若采用钨极氩弧焊,可获得高质量的焊接接头,并能减少焊件变形。焊丝用丝201,如用紫铜线T2,还要配用焊剂301.电源采用直流正接。焊接对工件和焊丝要认真清

钛管道焊接施工方案

4、脚手板采用楠竹制作的竹串片板扬子石化扩建45万吨/年精对苯二甲酸 (PTA)生产线钛管道焊接 施工技术方案 中国石化集团第四建设公司 南京扬子PTA项目部

编码:FCC —PTA/方案-031 重大 扬子石化扩建45万吨/年精对苯二甲酸 (PTA )生产线钛管道焊接 施 工 技 术 方 案 编制:吴 卫 审核:关武堂 复审:李雪梅 肖 然 批准:郁东键 中国石化集团第四建设公司 南京扬子PTA 项目部 二○○六年四月二十四日 综合 一般

目次 1 适用范围 (1) 2 编制依据 (1) 3 工程概况 (1) 4 焊接性分析 (1) 5 焊接施工准备 (1) 6 一般环境要求 (3) 7 施工工艺 (3) 8 质量要求 (6) 9 焊缝返修 (7) 10 质量记录 (7) 11 质量保证措施 (7) 12 施工机具及措施用料 (8) 13 HSE管理 (8) 14 附WPS (15)

1 适用范围 本方案适用于扬子石化公司扩建45万吨/年精对苯二甲酸(PTA)生产线氧化 工段钛管线的焊接施工。 2 编制依据 a)《现场设备、工业管道焊接工程施工及验收规范》 GB50236-98 b)《石油化工剧毒、可燃介质管道工程施工及验收规范》 SH3501-2002 c)《钛管道施工及验收规范》 SH3502-2000 d)《石油化工施工安全技术规程》 SH3505-1999 e)设计文件《3209-9100-A5-4》、《3209-9100-A5-6》 f)扬子石油化工股份有限公司45万吨/年PTA项目的《质量监督工作计划》 3 工程概况 钛管道工程量见表1:表1 4 焊接性分析 4.1钛的焊接性 a)气体等杂质污染而引起焊接接头脆化 钛是一种活性金属。它在常温下能与氧生成致密的氧化膜而保持高的稳定性和 耐腐蚀性;在高温下与氧、氮、氢、碳都有很强的亲和力,反应速度较快,在 300℃以上快速吸氢,600℃以上快速吸氧,700℃以上快速吸氮,而且空气中 含有大量的氧和氮,氮、氧、氢的增加使钛和钛合金焊缝变脆而使其塑性严重

钛材的焊接技术

钛材料焊接技术 一.影响钛材焊接质量的因素 1.气体杂质对焊缝金属性能的影响 钛具有很高的化学活泼性,与空气中的氧、氮有极高的亲和力。在较低的温度下,钛与氧相互作用生成一层致密的氧化膜,随着温度的提高,氧化膜的厚度随之增厚,超过600℃钛开始吸氧并使氧溶解到钛中。温度再高,钛的活性就会急剧增加并与氧发生激烈反应而生成钛的氧化物。钛在300℃以上开始吸氢,在700℃以上开始吸氮。氧和氮对钛污染的结果是使钛强度和硬度增高而塑性降低。氮比氧的影响程度更大,氢在钛中含量从0.01%~0.05%会使焊缝金属的冲击韧性急剧下降,而塑性却下降较少。这是氢化物引起的脆性,即所常说的“氢脆”。氢也是引发焊缝产生气孔的根源。 熔化焊接过程中,熔池像一个小冶金炉,熔融金属暴露在大气中。如果不采取相应的防护措施使熔融的金属钛与空气隔绝,则氧、氮、氢等气体元素就会熔入钛中,形成脆性氧化物或氮化物,致使焊缝金属的塑性急剧降低,拉伸强度提高,严重的情况下将发生脆断,塑性等于零。 2.其他杂质对焊缝金属性能的影响 其他杂质是指除气体杂质外,可能熔入熔池的杂质。其来源可能是焊接操作环境不清洁、戴脏手套触摸钛焊件遗留下油污、焊接前用棉纱擦洗接头、坡口可能留下的棉絮、焊接生产环境与钢铁焊接生产混合可能产生的铁锈、水分和其他一些有机物等。这些污染物在电弧高温作用下分解出氧、氢、氮、碳等元素,然后溶于熔融的钛中。当这些元素的量超过在钛中的溶解度时,便形成相应的化合物(TiO2 TiH2 TiN TiC)。这些化合物随着熔池结晶而进入钛的晶格中,致使钛的晶格畸变、歪曲,从而改变了钛的力学性能。 有些微量元素少量溶入钛中,如果其量不超过允许的范围是可以的,有时也是我们所希望的。但超量的杂质元素含量是不允许的,特别是有机物杂质,有百害而无一利,这是因为这些杂质元素除使钛焊接的力学性能变差,降低而腐蚀性外,还是焊缝中产生气孔的根源。

钛合金焊接工艺

钛合金焊接工艺 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

关键词:焊接;钛合金;焊丝;氩气;氩弧焊 摘要:本文阐述了钛及钛合金的材料特点及焊接性、并针对钛及钛合金焊接中易产生氧化、裂纹、气孔筹焊接缺陷,进行了焊接性试验。能过对钛及钛合金焊接工艺规范的不断摸索,以及对试验过程出现的问题的合理分析,总结出钛及钛合金焊接工艺特点及操作要领。 一、钛及钛的分类及特点 国产工业纯钛有TA1、TA2、TA3三种,其区别在于含氢氧氮杂质的含量不同,这些杂质使工业纯钛强化,但是塑性显着降低。工业纯钛尽管强度不高,但塑性及韧性优良,尤其是具有良好的低温冲击韧性;同时具有良好的抗腐蚀性能。所以,这种材料多用于化学工业、石油工业等,实际上多用于350℃以下的工作条件。根据钛合金退火状态的室温组织,可将钛合金分为三种类型:α型钛合金、(α+β)型钛合金及β型钛合金。α型钛合金中,应用较多的是TA4、TA5、TA6型的Ti-AI系合金和TA7、TA8型的Ti+AI+Sn合金。这种合金室温下,其强度可达到931N/mm2,而且在高温下(500℃以下)性能稳定,可焊性良好。β型钛合金在我国的应用量较少,其使用范围有待进一步扩大。 二、钛及钛合金的焊接性 钛及钛合金的焊接性能,具有许多显着特点,这些焊接特点是由于钛及钛合金的物理化学性能决定的。 1.气体及杂质污染对焊接性能的影响

在常温下,钛及钛合金是比较稳定的。但试验表时,在焊接过程中,液态熔滴和熔池金属具有强烈吸收氢、氧、氮的作用,而且在固态下,这些气体已与其发生作用。随着温度的升高,钛及钛合金吸收氢、氧、氮的能力也随之明显上升,大约在250℃左右开始吸收氢,从400℃开始吸收氧,从600℃开始吸收氮,这些气体被吸收后,将会直接引起焊接接头脆化,是影响焊接质量的极为重要的因素。 (1)氢是影响氢是气体杂质中对钛的机械性能影响最严重的因素。焊缝含氢量变化对焊缝冲击性能影响最为显着,其主要原因是随缝含氢弹量增加,焊缝中析出的片状或针状TiH2增多。TiH2强度很低,故片状或针状卫HiH2的作用例以缺口,合冲击性能显着降低;焊缝含氢量变化对强度的提高及塑性的降低的作用不很时显。 (2)氧的影响氧在钛的α相和β想中都有有较高的熔解度,并能形成间隙固深相,使用权钛的晶伤口严重扭曲,从而提高钛及钛合金的硬度和强度,使塑性却显着降低。为了保证焊接接应的性能,除了在焊接过程中严防焊缝及焊按热影响区发主氧化外,同时还应限制基本金属及焊丝中的含氧量。 (3)氮的影响在700℃以上的高温下,氮和钛发生剧作用,形成脆硬的氮化钛(riN)而且氮与钛形成间隙固溶体时所引起的晶格歪挪程度,比是量的氧引起的后果更为严重,因此,氮对提高工业纯钛焊缝的抗拉强度、硬度,降低焊缝的塑性性能比氧更为显着。 (4)碳的影响碳也是钛及钛合金中常见的杂质,实验表明,当碳含量为%时,碳因深在α钛中,焊缝强度极限有些提高,塑性有些下降,但不及氧氮的作用强烈。但是当进一步提高焊缝含碳量时,焊缝却出现网状TiC,其数量随碳含量

有关工业纯钛的焊接分析思考

有关工业纯钛的焊接分 析思考 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

有关工业纯钛T A2的焊接分析思考焊接工业纯钛TA2时,其表面颜色会随着温度的升高呈现出不同的变化,根据这些变化,可以确定在TA2焊接时的保护范围,本文利用钨氩弧焊来对TA2进行对接焊接实验,通过金相分析与力学性能检验来对其工艺参数进行确定,经过实验,在400℃时TA2表面颜色呈现出金黄色,需要在此温度时进行保护,样件的力学性能符合设计要求,说明参数可靠,可以用于指导生产。 工业纯钛基于其良好的化学性能与物理性能,在多个恶劣的环境中应用。目前钛制设备已经在石油化工、海洋工程等领域中得到了广泛地应用。工业纯钛焊接要求较高,稍有外界因素污染干扰,就可能会导致焊接质量受到严重影响。在钛设备制造中,焊接工艺是一项重要的工艺控制过程,采取合理的工艺参数将会对焊缝的质量起到重要的保证作用。本文通过对工业纯钛TA2的焊接实验来对焊接工艺进行分析。 TA2的物理特性与化学特性 纯钛的力学性能与其纯度有着直接的关系,间隙杂质含量增加,强度虽升高,但塑性将会大幅度降低。工业纯钛的切削加工难度较大,是因为它的摩擦系数较大,导热性低,热量集中于刀尖上,刀尖很快熔化。在常温下,钛的塑性要比其他的六方结构金属高很多。纯钛的强度随着温

度的升高而不断降低,当加热到250℃时抗拉强度将会减少到原来的一半。它的疲劳性能与钢类似,具有较为明显的物理疲劳极限,纯钛的反复弯曲疲劳极限为0.6-0.8Rm,其耐热性比铁要低一些,钛可以进行一些锻造、轧制、挤压等各压力状态下的加工,加热钢材用的设备可以用钛材,要求炉内有弱氧化性,不可使用氢气加热。钛的化学性能高,温度升高时,容易粘附刀具,造成粘结磨损。 TA2的焊接特点 在较高的温度下,钛与氢、碳等都有着较强的亲和力,氢在250℃的钛中溶解度可以达到33%以上。一旦氢在钛中溶解,将会造成气孔的现象,同时将会形成氢化钛,沿滑移面析出,增加了金属中的含氧量,使韧性急剧下降,有可能会造成裂纹的产生。间隙杂质在特殊的条件下也会引起焊缝的断裂。高温下的钛与碳将会生成碳化钛,导致焊缝塑性下降,造成一定的裂缝问题,如果保护不当,也将会吸收进杂质。为了确保钛的焊接质量可靠,在材料准备时要控制好杂质成分,及时清除污染物,在焊接过程中做好保护。 目前,钨极氩弧焊是钛与钛合金焊接最常用的焊接方法,也是连接薄板与打底焊最好的焊接方法之一,通过对焊接工艺参数的选择,可以实现良好的焊缝质量,但这种焊接方法效率较低,在焊缝中容易产生气孔问题或其他的焊接缺陷。钨极保护焊的脉冲频率对于钛合金的晶粒尺寸与

钛管道施工方案

目录 1. 工程概况 (2) 2. 编制依据 (2) 3. 施工方法及技术要求 (2) 4. 焊接 (4) 5. 焊接前准备 (5) 6. 焊接工艺 (7) 7. 焊接施工注意事项 (9) 8. 焊接施工管理 (9) 9. 质量标准 (10) 10. 施工工机具计划 (12) 11. 劳动力计划 (13) 12.施工用手段用料 (13) 13. 安全技术措施 (14)

1.工程概况 20万吨/年离子膜烧碱装置电解工序现有钛管约850米,最大管径DN700,最小管径DN25,主要分布在电解厂房、脱氯框架、淡盐水受槽、阳极液排放槽周围,现场管道安装密集、施工难度大;另钛材的焊接工艺要求尽量减少现场固定口的焊接工作量,加上钛材焊接的特殊性,为保证焊接质量,特编制本方案。 2、编制依据 2-1成达公司设计的施工蓝图 2-2 离子膜烧碱装置《施工组织设计》 2-3 《工业金属管道工程施工及验收规范》GB50235-97 2-4 《钛管道施工及验收规范》HGJ217-86 2-5 《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 2-6 中国化学工程第六建设公司《钛管道焊接工艺指导书》 2-7 中国化学工程第六建设公司《施工方案及工法》 3、施工方法及技术要求 3-1 管道焊接施工工序流程如下: 施工准备—管材检验—下料—坡口加工—焊丝、坡口表面清理及坡口尺寸修整—焊件组对—焊接—焊缝外观、颜色检查—焊缝射线检查—管道试压--系统吹扫。 3-2 焊接工艺评定及焊工考试 施工前按SHJ502-86、HGJ217-86《钛管道施工及验收规范》中的有关规定进行焊接工艺评定,并根据评定结果所编制的焊接工艺说明书、指导焊工严格进行培训,培训的焊工还需按SHJ502-86、HGJ217-86中的附录二进行焊工考试,考试合格方可上岗施焊

工业纯钛焊接施工工艺标准

钛及钛合金焊接工艺标准 1 适用范围 本工艺标准适用于钛及钛合金的手工钨极氩弧焊、熔化极氩弧焊和惰性气体保护等离子焊接。 2 施工准备 2.1 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。 凡是不注日期的引用文件,其最新版本适用于本标准。 《钛制焊接容器》JB/T4745 《钛及钛合金棒材》GB/T2965 《钛管道施工及验收规范》SH3502 钛及钛合金牌号和化学成分GB/T3620.1 钛及钛合金板材GB/T3621 钛及钛合金焊丝GB/T3623 钛及钛合金管GB/T3624 换热器及冷凝器用钛及钛合金GB/T3625 纯氩GB/T4842 《锅炉压力容器压力管道焊工考试与管理规则》 2.2 材料 2.2.1 母材 2.2.1.1 容器及管道用钛及钛合金材料应当具有良好的耐蚀性能、力学性能、成形性能及其他工艺性能和物理性能,能满足容器和管道的使用、制造与检验要求,并考虑经济合理性。 2.2.1.2 容器及管道用钛及钛合金材料必须有制造厂的出厂合格证和质量证明书(包括原牌号、炉号、规格、化学成分、力学性能及供货状态等),施工单位应按质量证明书对钛材进行验收,必要时还应进行复验,当从非材料生产单位获得钛材时,应同时取得材料质量证明书或加盖供材单位检验公章和经办人章的有效证件。 2.2.1.3 钛及钛合金板材应符合GB/T3621的要求(TA1—A除外),TA1—A板应符合GB/T14845的要求。 2.2.1.4 供货状态应为退火状态(M) 2.2.1.5 当钛板厚度超过20mm,且用于壳体等承压件时,应要求逐张超声检测,试验方法按GB/T5193,A级合格。 2.2.1.6 钛及钛合金管材应符合GB/T3624的要求。 2.2.1.7 技术要求应注明所购钛管类别(无缝管、焊接管或焊接—轧制管) 2.2.1.8 室温规定残余伸长应力σ0.2下限值应为必保值。 2.2.1.9 应进行水压试验,水压试验的压力如不按GB/53624中的规定确定时应注明,当用户要求试验压力超过17.2Mpa(对外径不大于76mm)或19.3Mpa(对于外径大于76mm)时,试验压力应由双方协商。 2.2.1.10 根据制造和安装工艺的需要,如要求进行压扁试验等应注明。 2.2.1.11 外径超过60mm且设计压力超过10Mpa的钛管应进行超声或涡流检测,并符合GB/T12969的规定,任何外径的管材的无损检测方法,如需在超声和涡流检测两者之中选定一种应注明。

钛板焊接技术

钛板焊接技术 1.气体污染问题 (1)做好焊前准备。严格清洗焊缝表面,杜绝氢、氧、氮的侵入。(2)选用精确的氩气流量计以控制气流量。气体流量的选择以达到良好的保护效果为准,氩气流量大小对保护有着相当的影响,过大的流量不容易形成稳定的气流层,反而在保护区内形成紊流,使有害气体浸入熔池,使焊缝表面容易出现微裂纹。过小的气流使保护不到位,达不到保护效果,拖罩中的氩气流量不足时,焊缝呈现出不同的氧化色泽。 (3)加强焊缝保护。焊接时,不得将焊丝端部移出氩气保护区;断弧及焊缝收尾时,要继续通氩气保护,直到焊缝及热影响区金属冷却到100℃以下时方可移开焊枪。 2.焊接接头裂纹问题 钛焊接时,焊接接头产生热裂纹的可能性很小,这是因为钛及钛合金中S、P、C等杂质含量很少,由S、P形成的低熔点共晶不易在晶界出现,加之有效结晶温度区间窄小,钛及钛合金凝固时收缩量小,焊缝金属不会产生热裂纹。 钛焊接时,热影响区可出现冷裂纹,其特征是裂纹产生在焊后数小时甚至更长时间。经研究表明这种裂纹主要是碳、氢的影响及过快的冷却速度所致。防止这种延迟裂纹产生的办法,主要是减少焊接接头氢、碳的来源,焊前对焊缝区域进行保护清理,防止有害杂质玷污。

其次,应严格控制层间温度。在保证熔合良好的前提下,尽可能采用低热输入量施焊,即降低熔合比。采用小直径焊丝、低焊接电流、窄焊道技术、快速焊。冷却速度控制在100℃∕s左右最好。 3.焊缝中的气孔问题 气孔是钛材焊接是比较容易产生的缺陷,主要原因是由于氢影响的结果。板材、焊材表面不干净,操作者手套上的水分、油脂,角磨机磨下的沙粒、飞尘等都是氢的来源。焊缝金属形成气孔主要影响到接头的疲劳强度。 防止产生气孔的工艺措施主要有: (1)保护氖气要纯,纯度应不低于99.99%,导气管应用增强塑料管,不能用橡胶管。 (2)彻底清除焊件表面、焊丝表面上的氧化皮油污等有机物。(3)对熔池施以良好的气体保护,控制好氩气的流量及流速,防止产生紊流现象,影响保护效果。 (4)正确选择焊接工艺参数,增加熔池焊缝金属停留时间,使气泡逸出,可有效地减少气孔。 (5)焊接时采用小的热输入,最好采用脉冲氩弧焊,既可改善接头塑性,减小过热和粗晶、减小变形,又可增加了熔深,减小了气孔的产生。 4.焊前准备 在钛材的焊接现场最好单独划分出一块区域,非专业人员不得入内,以保护该区域的洁净,所有施焊人员应穿干净工作服,戴针

钛合金焊接通用知识教学教材

钛合金焊接通用知识

钛及钛合金 1 物理化学性能 良好的耐腐蚀性能(常温表面形成致密氧化膜),优于不锈钢10倍,在还原性介质中稍差,经氮化处理后增强;比强度大。 工业用量最大的是TC4,其次是工业纯钛和TA7。 纯钛抗拉强度350-700Mpa,伸长率20-30%,冷弯角80-130,具有良好的低温性能,线膨胀系数和热导率小,利于焊接。 钛合金中合金元素分类

工业纯钛在化学工业得到广泛应用,w(Pd)0.2%的钛-0.2Pd合金抗间隙腐蚀能力比工业纯钛好。 TA7(美国称ELI级)具有良好的超低温性能,ONH等间隙元素含量很低,可用于液氢、液氦贮箱和其他超低温构件。 钛合金分为α、β、α+β相,牌号分别为TA、TB、TC。 α型钛合金不能热处理强化,可进行退火消除残余应力; α+β型钛合金可热处理强化,代表合金TC4,淬火-时效处理比退火状态抗拉强度提高180Mpa,综合性能良好,广泛应用于航空航天工业,缺点是淬透性较差,不超过25mm,为此发展了高淬透性和强度略高的TC10。 TB2钛合金是近年研制的高强钛合金,属于亚稳β合金,强度高、冷成形性好、焊接性尚可。Ti-33Mo属于稳定β合金,耐腐蚀非常好。 常用钛及钛合金室温力学性能见表13-3 2 钛及钛合金的焊接性 2.1 间隙元素玷污引起脆化 钛是一种活性金属,常温下与氧生成致密的氧化膜而保持高的稳定性和耐腐蚀性。 540℃以上生成的氧化膜不致密,300℃以上快速吸氢,600℃以上快速吸氧,700℃以上快速吸氮,在空气中容易进行。必须对其焊缝及热影响区进行保护,焊接过程中,要求对其400以上区域进行保护。 O和N间隙固溶于钛,变形抗力增加,强度和硬度增加,塑性和韧性下降。 H含量增加,焊缝金属冲击韧度急剧降低,而塑性下降较少,氢化物引起脆性。 C间隙固溶于α型钛合金中,强度提高,塑性下降,超过溶解度时生成硬而脆的TiC,呈网状分布,易于引起裂纹,焊前应注意清理工件及焊丝上的油污。

钛管焊接方案

1、编制说明 山东海化氯碱树脂项目10万吨/年离子膜烧碱装置,采用日本旭化成技术,二次盐水及电解工段部分盐水、氯气及脱盐水管道设计采用了工业纯钛(TA2)管约770m,工业纯钛管道焊接技术要求高,焊接难度大。为确保工业纯钛管道焊接质量,特编制本焊接作业指导书以指导焊接施工。 2、编制依据 2.1 10万吨/年离子膜烧碱装置设计施工图; 2.2 《工业金属管道工程施工及验收规范》GB50235-97; 2.3 《现场设备、工业管道焊接工程施工及验收规范》GB50236-98; 2.4 中国化学工程第十六建设公司《焊接工艺评定汇编》。 2.5 我公司承建的青岛化工厂6万吨/年离子膜烧碱工程《钛管道焊接方案》、安徽氯碱集团6万吨/年离子膜烧碱工程《钛管道焊接方案》和山东济宁中银电化有限公司4万吨/年离子膜烧碱Ⅰ、Ⅱ期安装工程《钛管道焊接方案》亚星化学股份公司6万吨/年离子膜烧碱工程《钛管道焊接方案》等。 3、钛管的焊接性分析 钛是一种非常活泼的金属,与氧的亲和力很大。常温下在钛金属表面与氧生成稳定而致密的氧化膜,该层氧化膜的存在,使得钛在常温下有很高的稳定性和耐腐蚀性。 随着温度的升高,钛吸收氧、氢、氮的能力也随之明显上升。钛从250℃开始吸收氢,从400℃开始吸收氧,从600℃开始吸收氮。钛金属中氧、氢、氮含量增加将使材料的塑性显著下降。因此,焊接时必须对焊缝及附近250℃以上高温区域进行保护,防止空气中的氧、氮和水汽等污染。焊接时焊缝必须使用拖罩进行滞后保护并对管子焊缝背面进行充氩保护。

钛焊接较易产生气孔缺陷,焊接前必须清除焊丝、焊接坡口及附近母材表面上的水分、油脂、氧化物等;焊接时必须使用纯度很高的氩气。 钛金属中含C量增加将降低材料的塑性和耐腐蚀性能,因此施工中必须避免母材和焊丝跟碳钢材料接触。 4、焊接施工程序 5、焊接工艺 5.1 施工准备 5.1.1钛管道和焊接材料验收 a.钛管及管件安装前必须进行检查,应具有制造厂合格证和质量证明书(包括牌号、炉号、规格、化学成分和机械性能等),内外表面应光滑、清洁、无针孔、裂缝、划痕、折叠和过腐蚀等缺陷,管材内外表面的局部缺陷应予以清除,清除后外径或壁厚不得超出规定的偏差值;其端部应平整无毛刺、壁厚应符合要求;钛管运输与存放应注意不与铁质材料接触、碰撞,防止氢、氧、氮、碳等污

工业纯钛焊接工艺试验及焊接接头质量控制

工业纯钛焊接工艺试验及焊接接头质量控制 齐鲁石化公司检修公司聂振海 1993.10 钛及钛合金具有比重小,强度髙及良好的髙、低温性能,它在湿氯气中,氧酸盐、尿素、硝酸、石酸、石炭酸等大多数酸、碱、盐介质中有优异的抗裂性能和耐腐蚀性能,使之成为一种前景广范的新型结构材料,越来越广泛地应用在石油化工、军工、宇航、制药等各个领域。 但是,由于钛在高温下,有很强的化学活泼性,熔点高,热熔量小,导热性差等特点,因此它的可焊性具有与碳钢、普通低合金钢、不锈钢、铝、铜等不同的显著特点°为了广开生产门路,适应我公司化工生产的需要,我们进行了工业纯钛焊接工艺试验及焊接接头质量控制的专题研修。现简述如下: 一、工业纯钛的种类及性能 工业纯钛的牌号用汉语拼音字母TAx表示。TAD是碘法钛,TA4-TA8. TB2. TC I-TC IO是钛合金。工业纯钛有TA】、TA2、TA3,其化学成分及常温机械性能见表1。 工业纯钛的化学成分及板材的室温机械性能表1 钛的机械性能与纯度有关,钛纯度越髙,强度越低,但塑性增加。杂质与钛形成脆性化合

物,使塑性、韧性急剧降低,因此,钛中杂质受到严格限制。钛与钢、铝、铜的部分物理性能比较见 表2。 钛与钢、铝、铜的部分物理性能比较表2 小,而且焊透性也较好。 二、工业纯钛的可焊性特点 1、高温下易氧化 工业纯钛的化工性质非常活泼,虽然常温下比较稳立,但在髙温下易吸收氢、氧、氮等气体而变脆,使塑性显著下降。 为了防止上述有害气体的污染,在焊接时需要采用特殊的工艺播施。 2、焊接线能量对焊接接头性能的影响 工业纯钛焊接接头的强度与母材相近,而塑性则明显比母材低,过热区最低。分析其原因有两个方而: 一方而由于钛材熔点高,导热性差,比热小,因此焊缝及过热区高温停留时间长,冷却速度慢,致使过热区出现粗大的晶粒,从而使塑性低。 另一方面,如果焊缝冷却速度很快时,会岀现B相—相无扩散型转变。这种转变类似钢中的马氏体转变。而u相又不同于钢中的马氏体,它的过饱和程度较低,冷却越快;过饱和程度越髙,a相越细密,塑性就越低。 因此,工业纯钛焊接时应选择适当的线能量,使热影响区的冷却速度既不过慢,又不过快,从而防止晶粒严重长大及过疑细小的a相存在。 3、焊接变形及冷裂纹倾向严重 由于钛材弹性模量比钢小,所以在同样的内应力情况下,钛的焊接变形大,而且回弹大,所以又难以矫正。

钛及钛合金焊接工艺分析

钛及钛合金焊接工艺分 析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

钛及钛合金焊接工艺分析随着科学技术的飞速发展和人们生活水平的不断提高,当前人们逐渐对钛合金焊接技术的应用重视起来。众所周知,钛和钛合金焊接工艺是我们在进行焊接工作中的重点焊接环节,因为钛的比强度相对较高,且钛的耐海水性以及耐低温性也比较高,与此同时,钛也具有无磁透声等和防抗击震动等优点。本文针对当前钛及钛合金焊接形状,对钛及钛合金具体焊接工艺进行详细分析和阐述,希望为我国焊接行业的发展贡献出一份力量。 广义来讲,钛及钛合金是以建筑结构材料形式产生的,同时由于钛及钛合金密度小以及抗拉强度相对较高等特点现已倍受青睐。而在300摄氏度到500摄氏度的高温状态下,钛合金金属材料仍具有足够高的强度,并且钛及钛合金具有优良抗腐蚀性,被多用于船只建造。 钛及钛合金焊接工艺特点分析 工业纯钛的抗拉强度普遍偏低,要想使得工业纯钛强度达到标准要求,就得对其进行合金元素施加,对工业纯钛进行不同种类元素和不同数量元素的施加会使工业纯钛产生三种不同类型的钛合金。其中,Ti-230材质的钛合金较为常用,一般加力燃烧室滚动轴承通常是由相应支撑环组件和加强环焊接组件共同构成。

钛及钛合金焊接组织和钛及钛合金相关焊接缺陷详述 2.1.钛及钛合金焊接组织 工业纯钛焊接组织和α钛合金组织二者在常温之下的显示状态为单相,但是二者的冷却速度却存在着很大不同,因为其会根据不同的冷却速度进行锯齿状组织生成和针状组织生成。机械性能相对于母材而言并不会发生较大变化,并且其具体焊接性能也非常良好。一般而言,α+β钛合金是从相关β相中加以冷却分解出来的,而在此过程中形成正规马氏体,但α'相数量和α'相形式都是按照钛及钛合金组成和钛及钛合金冷却速度加以进行细节变化的。我们应该知道,当α'相有所增加时,钛及钛合金延伸性以及钛及钛合金韧性就会受其影响而降低,此时Ti-6Al-4V 的焊接性能也会有所下降,虽然β稳定元素钒含量已经处在5%以上。需要强调的是,当马氏体温度低于室内温度时,此时焊接部位始处于亚稳定β相,所以可以确定焊接性能并不会劣化,但是由于元素过多所造成的影响,延伸性性能会在一定程度上得以降低。 2.2.钛及钛合金焊接缺陷分析 钛及钛合金通常会受到O元素和N元素以及C元素等影响致使污染状况发生且会出现脆化,在常温状态下钛及钛合金的状态比较稳定,但温度

相关主题
文本预览
相关文档 最新文档