当前位置:文档之家› 习题十九 第二型曲线积分

习题十九 第二型曲线积分

习题十九  第二型曲线积分
习题十九  第二型曲线积分

习题十九 第二型曲线积分

一、填空题

1、 设L 是有向曲线,以L -记与L 方向相反的同一曲线,则

?

-=+L

dy y x Q dx y x P ),(),(?+-L

dy y x Q dx y x P ),(),(。

2、 设Γ的参数方程为t z t y t x ===,2,3,取从点)1,2,3(A 到)0,0,0(B 一段,将对坐

标的曲线积分化为定积分计算,则

?

=

++AB

dz z y x R dy z y x Q dx z y x P ),,(),,(),,(

?+?+?0

1

)],2,3(2),2,3(3),2,3([dt t t t R t t t Q t t t P 。

3、 把对坐标的曲线积分化为对弧长的曲线积分。若L 为xoy 面内沿直线从点)0,0(到

)2,1(,则?=

+L dy y x Q dx y x P ),(),(?

?

+?

L

ds y x Q y x P ]5

2),(5

1),([;

若L 为沿抛物线22x y =从点)0,0(到)2,1(,则

?=+L

dy y x Q dx y x P ),(),(

?+?

++?

L

ds x

x y x Q x

y x P ]1614),(1611),([2

2

4、 把对坐标的曲线积分化为对弧长的曲线积分。若Γ为曲线3

2

,,t z t y t x ===上相

应于t 从0变到1的曲线弧,则

二、计算曲线积分

?

L

xydx ,其中L 为x 轴与上半圆周)0(,)(222>=+-a a y a x 在第一象

限内所围区域的边界(按逆时针方向绕行)。

解:21L L L +=,

其中)

20(0:)

0(,sin ,cos :21a x y L t t a y t a a L ≤≤=≤≤?

??=+π 所以

3

2

2

3

20

2

]

cos sin sin [0)cos (sin )cos 1(2

1

a tdt t tdt a dt

dt t a a t a t a xydx

xydx xydx a L L L

π

π

π

π

-

=+-=+'+??+=+=??????

?

三、计算曲线积分

?+--+L

y

x dy y x dx y x 22)()(,其中L 为圆周)0(,2

22>=+a a y x (按逆时针方向绕行)。

解:π20,sin ,cos :≤≤==t t a y t a x L

π

π

π21]c o s )s i n c o s ()s i n )(sin cos [(1)()(202220

22

2-=-=---+=+--+???dt a a dt t a t a t a t a t a t a a y x dy

y x dx y x L

四、计算曲线积分

?

-+-L

dy xy y dx xy x )2()2(22,其中L 是抛物线2x y =上从点)

1,1(-到点)1,1(的一段。

解:)11(,,

:2≤≤-?

??==x x x x y L

15

14)4(2]2)2()2[()2()2(1

4

2

1

134

3

2

2

2-

=-=-+-=-+-???-dx

x x dx

x x x x x dy xy y dx xy x L

五、计算曲线积分?+-L xdy ydx ,其中L 为曲线)0(13,133

2

3>+=+=

a t at y t at x 从0=t 到

1=t 的一段。

解:

2

1

02

332102

322

1

03

2

33322

3)1()

(3)1(9])13(13)13(13[a t t d a dt

t t a dt t at t at t at t at xdy

ydx L

=+=+='+++'+?+-=+-???? 六、计算曲线积分

+-ydz dy dx ,其中Γ为有向闭折线ABCA ,这里A,B,C

依次为点

)1,0,0(),0,1,0(),0,0,1(。

解:CA BC AB ++=Γ,

2

)]1(1[)

01:(,

0,1:0

1

-=--=+-???→=-=??

dx

ydz

dy dx x z x y AB AB

2

3)]1()1([)

10:(,

0,1:10

=-+--=+-???→=-=??dz z ydz

dy dx z x z y BC BC

1

)

10:(,

0,1:10

==+-???→=-=??

dx ydz

dy dx x y x z CA CA

2

11232=++

-=+-?

Γ

ydz dy dx 七、在椭圆t b y t a x sin ,cos ==上每一点P 有作用力F ,其大小等于从点P 到椭圆中心

距离而方向朝着椭圆中心。

(1) 试求质点P 沿椭圆位于第一象限中的弧从点)0,(a A 移动到),0(b B 时力所作的功。

(2) 求点P 按正向走遍全部椭圆时力F 所作的功。

解:设P 的坐标为 ( x , y ),则,||,22y x OP yj xi OP +=

+=

所以).(yj xi OP F +-=-= (1)

.

2

cos sin )(]cos sin )sin (cos [2

220

2

220

1b a tdt

t b a dt

t b t b t a t a ydy

xdx W -=-=?--?-=--=???π

π

(2)

.

0cos sin )(]cos sin )sin (cos [20

2220

2=-=?--?-=--=???π

π

tdt

t b a dt

t b t b t a t a ydy

xdx W L

课余练习

1、 证明不等式?≤+L

kM

dy y x Q dx y x P |),(),(|

其中k 为曲线L 的弧长,

),(),(max 22),(y x Q y x P M L

y x +=∈。

2、 利用上题结果估计积分?=+++-=

2

22222)(R y x R y xy x xdy

ydx I ,并证明0lim =+∞→R R I 。 3、 复习并写出上册中积分公式与积分运算规则。

第十九章 含参量正常积分.

第十九章 含参量正常积分 §19.1 含参量正常积分 教学要求: (1) 了解含参量正常积分的连续性,可微性和可积性定理的证明 (2) 熟练掌握含参量正常积分的导数的计算公式. (3) 掌握含参量正常积分的连续性,可微性和可积性定理的应用 教学重点:含参量正常积分定义及其性质;掌握含参量正常积分的连续性,可微性和可积性定理的应用 教学难点:含参量正常积分的连续性,可微性和可积性; 一、含参量正常积分的概念 定义定义 设二元函数),(y x f 在矩形区域],[],[d c b a R ?=上有定义,且对],[b a 内每一点 x ,函数),(y x f 关于y 在闭区间],[d c 上可积,则定义了x 的 函数 ?=d c dy y x f x I ),()(,],[b a x ∈ (1) 设二元函数),(y x f 在区域 }),()(|),{(b x a x d y x c y x G ≤≤≤≤=上有定义, 函数)(x c ,)(x d 为],[b a 上的连续函数,且对],[b a 内每一点x ,函数),(y x f 关于y 在闭区间)](),([x d x c 上可积,则定义了x 的函数 ? =) () (),()(x d x c dy y x f x F ,],[b a x ∈ (2) 称()(,)d c I x f x y dy =?和() () ()(,)d x c x F x f x y dy =?为含参量x 的正常积分,x 称为参变量。 类似可定义含参量y 的正常积分. 含参量积分在形式上是积分, 但积分值随参量的取值不同而变化, 因此实质上是一个函数。即含参量正常积分是以积分形式表达的函数,含参积分提供了表达函数的又一手段 . 二、含参量正常积分的连续性、可微性与可积性

第二型曲线积分

§2 第二型曲线积分 教学目的:掌握第二型曲线积分的定义,性质和计算公式. 教学要求:(1)掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别. (2)了解两类曲线积分的联系. 教学建议:(1) 要求学生必须掌握第二型曲线积分的定义和计算公式. (2)两类曲线积分的联系有一定的难度,可要求较好学生掌握,并布置这方面习题 教学程序: 一. 第二型曲线积分的定义: 1. 力场()),( , ),(),(y x Q y x P y x =沿平面曲线L 从点A 到点B 所作的功: 一质点受变力F(x,y)的作用沿平面曲线C 运动,当质点从C 之一端点A 移动到另一端B 时,求力F(x,y)所做功W. 大家知道,如果质点受常力 F 的作用沿直线运动, 位移为s.那末这个常力所做功为 W=||F||||s||cos θ 其中||F||.||s||分别表示向量(矢量)的长度,θ为F 与S 的夹角 现在问题的难度是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢?还是用折线逼近曲线和局部一常代变的方法来解决它(微分分析法). 为此,我们对有向曲线C 作分割 },,.....,,{110n n A A A A T -=,即在AB 内 插入n-1个分点,,.....,,121-n M M M 与 A=n M B M =,0一起把曲线分成n 个有向 小曲线段i i M M 1-(i=1,2,……,n)以Si ? 记为小曲线段i i M M 1-的弧长.}max{Si ?=λ 设力F(x,y)在x 轴和y 轴方向上的投影分别为 P(x,y)与Q(x,y) 即F(x,y)=(P(x,y),Q(x,y))=P(x,y)i+Q(x,y)j 由于),,().,(111i i i i i i y x M y x M --- 记11,---=?-=?i i i i i i y y y x x x 和i i m C 1-=(),(y x ??) 从而力F(x,y)在小曲线段i i M M 1-上所作的功 i W ),(i F ηξ≈i i m C 1-= P(j i ηξ,)i x ?+Q (j i ηξ,)i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力F 沿C(AB)所作的功可近似 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),()),((ηη 当0→λ时,右端积分和式的极限就是所求的功,这种类型和式极限计算上述形式的和式上极限,得

第二型曲线积分与曲面积分的计算方法

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线y=22ax x -到点o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()11sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

含参量积分汇总

第十九章含参量积分 一.填空题 1.若在矩形区域上_________,则 2.含参量反常积分 在____________上一致收敛. 3.设在上连续,若含参量反常积分 在上___________,则在上连续. 4. 5.在中如令, 则 6. 对于任何正实数函数与B函数之间的关系为 7. 在上不一致收敛是指______________. 8. 9. 设, 则 10. 利用函数定义, 二.证明题 1. 证明在上一致收敛. 2. 证明在上一致收敛. 3.证明若函数在连续, 则, 有

4.证明在上非一致收敛. 5.证明 6.证明在上一致收敛. 7. 证明在上不一致收敛. 8. 证明 9. 证明 10. 证明在R上连续. 计算题1. 求 2. 求 3.设. 求 4. 求 5.用函数与B函数求积分 6.用函数与B函数求积分 7.求积分 8.从等式出发, 计算积分 9.设. 求

10.求 填空题答案 1. 连续. 2. R 3. 一致收敛. 4. 5.. 6. . 7. , 有 8. 1 9. . 10. . 证明题答案: 1. 证明: , 有 , 而收敛, 则 在上一致收敛. 2. 证: , 有, 而, 则 在上一致收敛. 3证: 已知在连续, 使. 设, 有 于是,

4.证: , 有 . 即在上非一致收敛. 5.证: 设有 . 6.证: 由于反常积分收敛,函数对每个单调, 且对任何, 都有. 故由阿贝耳判别法可知 在上一致收敛. 7. 证: 因在处不连续, 而在 内连续, 由连续性定理知, 在上不一致收敛. 8. 证: 令, 则. 9. 证: 令则, . 10. 证:

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

数学分析第二型曲线积分

数学分析第二型曲线积分

————————————————————————————————作者:————————————————————————————————日期:

§2 第二型曲线积分 教学目的与要求: 掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别. 教学重点,难点: 重点:第二型曲线积分的定义和计算公式 难点:第二型曲线积分的计算公式 教学内容: 第二型曲线积分 一 第二型曲线积分的意义 在物理学中还碰到另一种类型的曲线积分问题。例如一质点受力),(y x F 的作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作的功(图220-)。 为此在曲线B A ) 内插入1-n 个分点121,,,-n M M M Λ,与n M B M A ==,0一起把有向曲线B A ) 分成n 个有向小曲线段),,2,1(1n i M M i i Λ=-,若记小曲线段i i M M 1-的弧长为 i s ?,则分割T 的细度为 i n i s T ?=≤≤1max 。 设力),(y x F 在x 轴和y 轴方向的投影分别为),(y x P 与),(y x Q ,那么 )),(),,((),(y x Q y x P y x F =。 又设小曲线段i i M M 1-在x 轴与y 轴上的投影分别为1--=?i i i x x x 与1--=?i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 的坐标,记 ),(1i i M M y x L i i ??=-, 于是力),(y x F 在小曲线段i i M M 1-上所作的功 i i i i i i M M i i i y Q x p L F W i i ?+?=?≈-),(),(),(1ηξηξηξ, 其中),(i i ηξ为小曲线段i i M M 1-上任一点。因而力),(y x F 沿曲线B A ) 所作的功近似的等于 ∑∑∑===?+?≈=n i i i i n i i i i n i i y Q x p W W 1 1 1 ),(),(ηξηξ 当细度0→T 时,上式右边和式的极限就应该是所求的功。这种类型的和式的极限就是下面所要讨论的第二型曲线积分。

第二型曲线积分论文

目录 1 引言 (1) 2 文献综述 (1) 2.1国内外研究现状 (1) 2.2国内外研究现状评价 (1) 2.3提出问题 (2) 3预备知识 (2) 3.1第二型曲线积分的定义 (2) 3.2第二型曲线积分的性质 (3) 4第二型曲线积分的计算 (4) 4.1直接计算 (4) 4.2利用格林公式计算 (12) 4.3利用曲线与路径无关计算 (14) 4.4利用奇偶对称性计算 (16) 4.5利用数学软件Mathmatic进行计算 (16) 5结论 (19) 5.1主要观点 (19) 5.2启示 (19) 5.3局限性 (19) 5.4努力方向 (19) 参考文献 (20)

1 引言 第二型曲线积分与第一型曲线积分相比有明显不同的几何意义和物理意义,第一型曲线积分可以看成是定积分的计算,其意义较容易理解,计算也相对简单.而第二型曲线积分又称为对坐标的积分,具有第一型曲线积分不具有的方向性,计算较为复杂,物理意义十分明显,变力分别在x轴,y轴沿曲线做功,这在物理学上有着重要的应用. 对于不同类型的被积函数,对应的计算方法也不同.为了使计算更为简单,本文阐述了第二类曲线积分的计算方法,不仅可以通过参数方程转化为定积分来计算,而且对于平面曲线还可以通过格林公式转化为对二重积分的计算,第二类曲线积分还可以通过对称性分奇偶两种情况简化计算或利用了数学软件Mathmatic进行计算. 2 文献综述 2.1 国内外研究现状 查阅相关文献,众多数学教育者从不同角度和侧面探讨了第二型曲线积分的计算.刘玉琏在文献[1]中论述了第二形曲线积分的概念及其性质;富景龙在文献[2]中概括了第二型曲线积分被积函数的类型;薛嘉庆在文献[3]中讲了被积函数的类型不同有不同的计算方法,并给出了相应的例子;刘国均等在文献[4-5]中探究了第二型曲线积分可以化为定积分来计算,并给出公式及相应的证明;刘莲芬等在文献[6-7]介绍了在第二型曲线积分的计算中将路径的参数方程表示出来;王景克在文献[8-9]简述了做题常用的技巧;陈先开在文献[11-12]研究了曲线积分与路径无关问题与如何判断曲线积分与路径无关;陈文灯,黄先开在文献[13]中介绍了格林公式,并提供了一定的实例,并通过实例总结了计算第二型曲线积分的一般步骤;武艳等在文献[14]给出利用对称性计算第二型曲线积分,使得计算简单;阳明盛及林建华在文献[15]中提出了用数学软件Mathemactica解题的调用格式,使得复杂的计算简单化. 2.2国内外现状评价 从上面相关的研究中可以看出,许多对第二型曲线积分计算的研究者从不同的方面进行了相应的研究,但都只是从某一个方面进行讨论,大部分文献都没有结合数学软件Mathmatic进行空间画图及计算.

数学分析之含参量积分

第十九章含参量积分 教学目的:1.掌握含参量正常积分的概念、性质及其计算方法;2.掌握两种含参量反常积分的概念、性质及其计算方法;3.掌握欧拉积分的形式及有关计算。教学重点难点:本章的重点是含参量积分的性质及含参量反常积分的一致收敛性的判定;难点是一致收敛性的判定。 教学时数:12学时 §1含参量正常积分 一. 含参积分:以实例和引入. 定义含参积分和. 含参积分提供了表达函数的又一手段 .我们称由含参积分表达的函数为含参积分. 1. 含参积分的连续性: Th19.5 若函数在矩形域上连续, 则函数 在上连续 . ( 证) P172 Th19.8 若函数在矩形域上连续, 函数和 在上连续, 则函数在上连续. ( 证) P173

2. 含参积分的可微性及其应用: Th 19.10 若函数及其偏导数都在矩形域上连续, 则函数在上可导, 且 . ( 即积分和求导次序可换) . ( 证) P174 Th 19.11 设函数及其偏导数都在矩形域上连续,函数和定义在, 值域在上, 且可微, 则含参积分 在上可微, 且 . ( 证)P174 例1 计算积分. P176. 例2设函数在点的某邻域内连续 . 验证当充分小时, 函数 的阶导数存在, 且. P177. §2 含参反常积分 一. 含参无穷积分:

1.含参无穷积分:函数定义在上( 可以是 无穷区间) . 以为例介绍含参无穷积分表示的函 数. 2. 含参无穷积分的一致收敛性: 逐点收敛( 或称点态收敛) 的定义: , , 使 . 引出一致收敛问题 . 定义(一致收敛性) 设函数定义在上 . 若对 , 使对成立, 则称含参无穷积分在( 关于)一致收敛. Th 19.5 ( Cauchy收敛准则) 积分在上一致收敛, 对成立 . 例1 证明含参量非正常积分在上一致收敛, 其中. 但在区间内非一致收敛 . P180 3. 含参无穷积分与函数项级数的关系:

数学分析20.1第一型曲线积分(含习题及参考答案)

第二十章 曲线积分 1第一型曲线积分 一、第一型曲线积分的定义 引例:设某物体的密度函数f(P)是定义在Ω上的连续函数. 当Ω是直线段时,应用定积分就能计算得该物体的质量. 当Ω是平面或空间中某一可求长度的曲线段时,可以对Ω作分割,把Ω分成n 个可求长度的小曲线段Ωi (i=1,2,…,n),并在每一个Ωi 上任取一点P i . 由f(P)为Ω上的连续函数知,当Ωi 的弧长都很小时,每一小段Ωi 的质量可近似地等于f(P i )△Ωi , 其中△Ωi 为小曲线段Ωi 的长度. 于是在整个Ω上的质量就近似地等于和式i n i i P f ?Ω∑=1)(. 当对Ω有分割越来越细密(即d=i n i ?Ω≤≤1max →0)时,上述和式的极限就是 该物体的质量. 定义1:设L 为平面上可求长度的曲线段,f(x,y)为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段L i (i=1,2,…,n),L i 的弧长记为△s i ,分割T 的细度为T =i n i s ?≤≤1max ,在L i 上任取一点 (ξi ,ηi ),( i=1,2,…,n). 若有极限i n i i i T s f ?∑=→1 ),(lim ηξ=J ,且J 的值与分割T 与点(ξi ,ηi )的取法无关,则称此极限为f(x,y)在L 上的第一型曲线积分,记作:?L ds y x f ),(. 注:若L 为空间可求长曲线段,f(x,y,z)为定义在L 上的函数,则可类

似地定义f(x,y,z)在空间曲线L 上的第一型曲线积分?L ds z y x f ),,(. 性质:1、若?L i ds y x f ),((i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则 ?∑=L k i i i ds y x f c 1 ),(=∑?=k i L i i ds y x f c 1 ),(. 2、若曲线L 由曲线L 1,L 2,…,L k 首尾相接而成,且?i L ds y x f ),((i=1,2,…,k) 都存在,则?L ds y x f ),(也存在,且?L ds y x f ),(=∑?=k i L i i ds y x f 1 ),(. 3、若?L ds y x f ),(与?L ds y x g ),(都存在,且f(x,y)≤g(x,y),则 ? L ds y x f ),(≤?L ds y x g ),(. 4、若?L ds y x f ),(存在,则?L ds y x f ),(也存在,且?L ds y x f ),(≤?L ds y x f ),(. 5、若?L ds y x f ),(存在,L 的弧长为s ,则存在常数c ,使得?L ds y x f ),(=cs, 这里),(inf y x f L ≤c ≤),(sup y x f L . 6、第一型曲线积分的几何意义:(如图)若L 为平面Oxy 上分段光滑曲线,f(x,y)为定义在L 上非负连续函数. 由第一型曲面积分的定义,以L 为准线,母线平行于z 轴的柱面上截取0≤z ≤f(x,y)的部分面积就是 ? L ds y x f ),(. 二、第一型曲线积分的计算 定理20.1:设有光滑曲线L:?? ?==) () (t y t x ψ?, t ∈[α,β],函数f(x,y)为定义在L 上的连续函数,则?L ds y x f ),(=?'+'β αψ?ψ?dt t t t t f )()())(),((22. 证:由弧长公式知,L 上由t=t i-1到t=t i 的弧长为△s i =?='+'i i t t dt t t 1 )()(22ψ?. 由)()(22t t ψ?'+'的连续性与积分中值定理,有

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

19数学分析课件含参量积分.doc

第十九章含参量积分 目的与要求:1.掌握含参量正常积分的连续性,可微性和可积性定理,掌握含参量正常积分的求导法则;2.掌握含参量反常积分的一致收敛性概念,含参量反常积分的性质,含参量反常积分的魏尔斯特拉斯判别法,了解狄里克雷判别法和阿贝尔判别法.3. 了解r函数与B函数的定义与有关性质 重点与难点:本章重点是含参量正常积分的连续性,可微性和可积性,含参量反常积分的一致收敛性概念,性质;难点则是狄里克雷判别法和阿贝尔判别法以及含参量反常积分的连续性,可微性与可积性定理的证明 第一节含参量正常积分 ?含参量正常积分的概念 1定义 设二元函数/(x,y)在矩形区域R = [m]x[c,d]上有定义,且对[。,用内每一点们函数f (x, y)关于),在闭区间]上可积,则定义了尤的函数 /⑴=y)d y, xe[a,h] (i) c 设二元函数/(、,),)在区域 G = {(%, y)\ c(x) < y < d(x\ a

间[c(x),J(x)]±可积,则定义了尤的函数 d(;) F(x)= \f(x.y)dy , A* e [a.b] (2) c由 称(1)和(2)为含参量]的正常积分.类似可定义含参量),的正常积分. 二含参量正常积分的连续性、可微性与可积性 1连续性 定理19. 1(连续性)若二元函数/(x,y)在矩形区域R = [a,h]x\c^d]±连续,则函数d Z(x)= 在[。㈤上连续. C 证设x 6 [a.h],对充分小的Ar, ^*x4-ZLr e [a,h](若工为区间端点则考虑Ar〉0或 k<0),于是 d Z(x + Ax)- /(x)= j[/(x + Ax,y)-/(x,y)]Jy (3) c 由于f^y)在有界闭区域R上连续,从而一致连续,即对任给的正数总存在某个正数 S ,对/?内任意两点(X], )与(尤2,光),只要 X,-X2\<3,_光|<$ 就有F3,)"-/(尤2,光』<£⑷所以由(3) (4)可得:当|4xj < 8 ,

第二类曲线积分的计算教案资料

第二类曲线积分的计 算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是 弯弯曲曲.怎么办呢?

为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P 与),(y x Q ,那么()y x F , =()),(),,(y x Q y x P j y x Q i y x P ),(),(+=由于 ),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方 向上的投影分别为11---=?-=?i i i i i i y y y x x x 与.记i i M M L 1- =),(i i y x ??从而力()y x F , 在小曲线段i i M M 1-上所作的功i W ?≈),(i F ηξ i i M M L 1- = ()i i P ηξ,i x ?+()i i Q ηξ,i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F , 沿L 所作的功可近似等 于 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),(),(ηη当0→T 时,右端积分和式的 极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分. 2.2 第二型曲线积分的定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限

第十九章含参量积分

第十九章 含参量积分 一. 填空题 1. 若(,)f x y 在矩形区域[,][,]R a b c d =?上_________,则 (,)(,)b d d b a c c a dx f x y dy dy f x y dx =? ??? 2. 含参量反常积分 2 cos 1xy dx x +∞+? 在____________上一致收敛. 3. 设(,)f x y 在[,][,)a b c ?+∞上连续,若含参量反常积分 ()(,)c I x f x y dy +∞= ? 在[,]a b 上___________,则()I x 在[,]a b 上连续. 4. (1)_______.n Γ+= 5. 在1110 (,)(1),0,0p q B p q x x dx p q --= ->>? 中如令 2cos x ?=, 则 (,)_______B p q = 6. 对于任何正实数,,p q Γ函数与B 函数之间的关系为(,)________.B p q = 7. (,)c f x y dy +∞ ? 在[,]a b 上不一致收敛是指______________. 8. 1 0lim _________.y -→=? 9. 设 2(), (1,1)(1sin )dx F y y y x π π-=∈-+?, 则 ()__________.F y '= 10. 利用Γ函数定义,4 ________.x e dx +∞ --∞ =? 二.证明题 1. 证明 22 222 1 () y x dx x y +∞ -+? 在(,)-∞+∞上一致收敛. 2. 证明 2 x y e dy +∞ -? 在[,](0)a b a >上一致收敛. 3. 证明若函数()f x 在[,]a A 连续, 则[,)x a A ?∈, 有 01lim [()()]()()x a h f t h f t dt f x f a h →+-=-?

第一型曲线积分

第一型曲线积分 标准式: dt t r t r f ds f ??'=Γ β α )()( 算法:参数法 1.求出Γ的一个向量参数方程)(t r r = 2.计算弧元dt t r ds )( '= 3.计算定积分dt t r t r f ?'β α )()( 特别地: 显示方程 )(x y ?= xoy 平面的圆的参数方程???==θ θ cos sin a y a x 为参数θ 第二型曲线积分 标准式: dt t r t r F p d p F ?? '?= ?Γ β α )()()(

其中),,(R Q P F = 符号按参数增加的方向积分为正 算法: 一.参数法 dt t z t y t x t r R t r Q t r P dz R Qdy Pdx p d p F ))(),(),(())(),(),(()('''?= ++= ???? Γ Γ β α 二.Green 公式(二维) (封闭曲线的积分 转化到 所围成曲面的积分即二重积分) dxdy y P x Q Qdy Pdx ???Ω ?Ω ??- ??= +)( (定向:一个人沿着Ω?走的正方向行进时,区域Ω总在这个人的左边) 三.Stokes 公式(三维) (封闭曲线的积分 转化到 封闭的曲面的积分 封闭的曲面即有所围区域体即二重积分之和) ?? ?∑ ∑ ??????= ++R Q P z y x dxdy dzdx dydz dz R Qdy Pdx 应用:求曲面面积 ??????= - =-= D D D xdy dx y ydx xdy D 2 1)(σ 第一型曲面积分 标准式:(1)dudv r r r f fd v u ? ?? ∑ ? ?= σ

第二类曲线积分的计算修订版

第二类曲线积分的计算 Document number:PBGCG-0857-BTDO-0089-PTT1998

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

第二类曲线积分典型例题解析

第二类曲线积分典型例 题解析 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

高等数学(2)第12章第二类曲线积分典型例题解析 例1 若对任意的x ,y 有y P x Q ??≡??,设C 是有向闭曲线,则?+C y Q x P d d = . 解:由格林公式将 其中D 为C l 围成的平面区域,及条件y P x Q ??≡??知,应该填写:0 例2._______d d =+-?y x x y l ,其中l 是延圆周1)1()1(22=-+-y x 正向一周. 解:因为圆周1)1()1(22=-+-y x 所围圆面积D 为:π?21,由格林公式得:???+=+-D l y x y x x y d d )11(d d =π2,应该填写:π2 例3 若),(y x P 及),(y x Q 在单连通域D 内有连续的一阶偏导数,则在D 内,曲线积分?+l y Q x P d d 与路径无关的充分必要条件是( ). A .在域D 内恒有y Q x P ??=?? B .在域D 内恒有y P x Q ??=?? C .在D 内任一条闭曲线l '上,曲线积分0d d ≠+?'l y Q x P D .在D 内任一条闭曲线l '上,曲线积分0d d =+?' l y Q x P 解:若),(),,(y x Q y x P 在单连通区域D 内有一阶连续偏导数,则 ?+l y y x Q x y x P d ),(d ),(与路径无关D y x y P x Q ∈??=???),(,。 所以选择:B 例4 设C 是平面上有向曲线,下列曲线积分中,( )是与路径无关的. A .?+C y x x yx d d 332 B .?-C y x x y d d C .?-C y x x xy d d 22 D .?+C y y x yx d d 332

数学分析19含参量积分总练习题(含参考答案)

第十九章 含参量积分 总练习题 1、在区间1≤x ≤3内用线性函数a+bx 近似代替f(x)=x 2,试求a,b 使得积分?-+3 122)(dx x bx a 取最小值. 解:设f(a,b)=?-+3 122)(dx x bx a , 由f a (a,b)=2?-+3 12)(dx x bx a =4a+8b-3 52=0, f b (a,b)=2?-+3 12)(dx x bx a x =8a+ 352b-40=0, 得驻点a=3 11 -,b=4. 又f aa =2?31dx =4, f bb =2?312 dx x =3 52, f ab =f ba =2?31xdx =8, 即f aa ·f bb -f ab 2=316>0, ∴(311-,4)是f 唯一的极小值点,即a=3 11 -,b=4时,积分取最小值. 2、设u(x)=?1 0)(),(dy y v y x k ,其中k(x,y)=???>-≤-y x x y y x y x ),1(),1(与v(y)为[0,1]上 的连续函数,证明:u ”(x)=-v(x). 证:当0≤x ≤1时,u(x)=?10)(),(dy y v y x k =?-x dy y v x y 0)()1(+?-1 )()1(x dy y v y x . 由各项被积函数及其对x 偏导函数都连续知, u ’(x)=?-x dy y yv 0 )(+x(1-x)v(x)+?-1 )()1(x dy y v y -x(1-x)v(x) = -?x dy y yv 0)(+?-1 )()1(x dy y v y . u ”(x)=-xv(x)-(1-x)v(x)=-v(x). 3、求函数F(a)=?∞ +- 2)1sin(dx x x a 的不连续点, 并作函数F(a)的图像. 解:由?+∞ sin dx x ax =2 π sgna ,

相关主题
文本预览
相关文档 最新文档