当前位置:文档之家› 必修2遗传与进化知识点汇编

必修2遗传与进化知识点汇编

必修2遗传与进化知识点汇编
必修2遗传与进化知识点汇编

必修2遗传与进化知识点汇编

第一章遗传因子的发现

第一节孟德尔豌豆杂交试验(一)

1.孟德尔之所以选取豌豆作为杂交试验的材料是由于:

(1)豌豆是自花传粉植物,且是闭花授粉的植物;

(2)豌豆花较大,易于人工操作;

(3)豌豆具有易于区分的性状。

2.遗传学中常用概念及分析

(1)性状:生物所表现出来的形态特征和生理特性。

相对性状:一种生物同一种性状的不同表现类型。

区分:兔的长毛和短毛;人的卷发和直发等;兔的长毛和黄毛;牛的黄毛和羊的白毛

性状分离:杂种后代中,同时出现显性性状和隐性性状的现象。如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性

性状(dd)的现象。

显性性状:在DD×dd 杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。决定显性性状的为显性遗传因子(基因),用大写字

母表示。如高茎用D表示。

隐性性状:在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。决定隐性性状的为隐性基因,用小写字母表示,

如矮茎用d表示。

(2)纯合子:遗传因子(基因)组成相同的个体。如DD或dd。其特点纯合子是自交后代全为纯合子,无性状分离现象。

杂合子:遗传因子(基因)组成不同的个体。如Dd。其特点是杂合子自交后代出现性状分离现象。

(3)杂交:遗传因子组成不同的个体之间的相交方式如:DD×dd Dd×dd DD×Dd 等。

自交:遗传因子组成相同的个体之间的相交方式。如:DD×DD Dd×Dd等

测交:F1(待测个体)与隐性纯合子杂交的方式。如:Dd×dd

正交和反交:二者是相对而言的,

如甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交;

如甲(♂)×乙(♀)为正交,则甲(♀)×乙(♂)为反交。

3.杂合子和纯合子的鉴别方法

若后代无性状分离,则待测个体为纯合子

测交法

若后代有性状分离,则待测个体为杂合子

若后代无性状分离,则待测个体为纯合子

自交法

若后代有性状分离,则待测个体为杂合子

4.常见问题解题方法

(1)如后代性状分离比为显:隐=3 :1,则双亲一定都是杂合子(Dd)

即Dd×Dd 3D_:1dd

(2)若后代性状分离比为显:隐=1 :1,则双亲一定是测交类型。

即为Dd×dd 1Dd :1dd

(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。

即DD×DD 或 DD×Dd 或 DD×dd

5.分离定律

其实质就是在形成配子时,等位基因随减数第一次分裂后期同源染色体的分开而分离,分别进入到不同的配子中。

第2节孟德尔豌豆杂交试验(二)

1.两对相对性状杂交试验中的有关结论

(1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。(2) F1 减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非

等位基因)自由组合,且同时发生。

(3)F2中有16种组合方式,9种基因型,4种表现型,比例9:3:3:1

YYRR 1/16

YYRr 2/16

亲本类型

双显(Y_R_) YyRR 2/16 9/16 黄圆

YyRr 4/16

纯隐(yyrr) yyrr 1/16 1/16 绿皱

YYrr 1/16

重组类型

单显(Y_rr) YYRr 2/16 3/16 黄皱

yyRR 1/16

单显(yyR_) yyRr 2/16 3/16 绿圆

注意:上述结论只是符合亲本为YYRR×yyrr,但亲本为YYrr×yyRR,F2中重组类型为10/16 ,亲本类型为6/16。

2.常见组合问题

(1)配子类型问题

如:AaBbCc产生的配子种类数为2x2x2=8种

(2)基因型类型

如:AaBbCc×AaBBCc,后代基因型数为多少?

先分解为三个分离定律:

Aa×Aa后代3种基因型(1AA:2Aa:1aa)

Bb×BB后代2种基因型(1BB:1Bb)

Cc×Cc后代3种基因型(1CC :2Cc:1cc)

所以其杂交后代有3x2x3=18种类型。

(3)表现类型问题

如:AaBbCc×AabbCc,后代表现数为多少?

先分解为三个分离定律:

Aa×Aa后代2种表现型

Bb×bb后代2种表现型

Cc×Cc后代2种表现型

所以其杂交后代有2x2x2=8种表现型。

3.自由组合定律

实质是形成配子时,成对的基因彼此分离,决定不同性状的基因自由组合。

4.常见遗传学符号

符号P F1 F2 ×♀♂

含义亲本子一代子二代杂交自交母本父本

第二章基因和染色体的关系

第一节减数分裂和受精作用

知识结构:

精子的形成过程

减数分裂

卵细胞形成过程

减数分裂和受精作用

配子中染色体组合的多样性

受精作用

受精作用的过程和实质

1.正确区分染色体、染色单体、同源染色体和四分体

(1)染色体和染色单体:细胞分裂间期,染色体经过复制成由一个着丝点连着的两条姐妹染色单体。所以此时染色体数目要根据着丝点判断。

(2)同源染色体和四分体:同源染色体指形态、大小一般相同,一条来自母方,一条来自父方,且能在减数第一次分裂过程中可以两两配对的一对染色体。四分体指减数第一次分裂同源染色体联会后每对同源染色体中含有四条姐妹染色单体。

(3)一对同源染色体= 一个四分体=2条染色体=4条染色单体=4个DNA分子。

2.减数分裂过程中遇到的一些概念

同源染色体:上面已经有了

联会:同源染色体两两配对的现象。

四分体:上面已经有了

交叉互换:指四分体时期,非姐妹染色单体发生缠绕,并交换部分片段的现象。

减数分裂:是有性生殖的生物在产生成熟生殖细胞时进行的染色体数目减半的细胞分裂。

3.减数分裂

特点:复制一次,分裂两次。

结果:染色体数目减半(染色体数目减半实际发生在减数第一次分裂)。

场所:生殖器官内

4.精子与卵细胞形成的异同点

比较项目不同点相同点

精子的形成卵细胞的形成

染色体复制复制一次

第一次分裂一个初级精母细胞

(2n)产生两个大小

相同的次级精母细胞

(n)一个初级卵母细胞

(2n)(细胞质不均

等分裂)产生一个次

级卵母细胞(n)和一

个第一极体(n)

同源染色体联会,形成四

分体,同源染色体分离,

非同源染色体自由组合,

细胞质分裂,子细胞染色

体数目减半

第二次分裂两个次级精母细胞形

成四个同样大小的精

细胞(n)一个次级卵母细胞

(细胞质不均等分

裂)形成一个大的卵

细胞(n)和一个小的第

二极体。第一极体分

裂(均等)成两个第

二极体

着丝点分裂,姐妹染色单

体分开,分别移向两极,

细胞质分裂,子细胞染色

体数目不变

有无变形精细胞变形形成精子无变形

分裂结果产生四个有功能的精

子(n) 只产生一个有功能的

卵细胞(n)

精子和卵细胞中染色体

数目均减半

注:卵细胞形成无变形过程,而且是只形成一个卵细胞,卵细胞体积很大,细胞质中存有大量营养物质,为受精卵发育准备的。

5.减数分裂和有丝分裂主要异同点

比较项目减数分裂有丝分裂

染色体复制次数及时间一次,减数第一次分裂的间期一次,有丝分裂的间期细胞分裂次数二次一次

联会四分体是否出现出现在减数第一次分裂不出现

同源染色体分离减数第一次分裂后期无

着丝点分裂发生在减数第二次分裂后期后期

子细胞的名称及数目性细胞,精细胞4个或卵1个、

极体3个

体细胞,2个

子细胞中染色体变化减半,减数第一次分裂不变

子细胞间的遗传组成不一定相同一定相同

6.识别细胞分裂图形(区分有丝分裂、减数第一次分裂、减数第二次分裂)

(1)、方法三看鉴别法(点数目、找同源、看行为)

第1步:如果细胞内染色体数目为奇数,则该细胞为减数第二次分裂某时期的细胞。

第2步:看细胞内有无同源染色体,若无则为减数第二次分裂某时期的细胞分裂图;若有则为减数第一次分裂或有丝分裂某时期的细胞分裂图。

第3步:在有同源染色体的情况下,若有联会、四分体、同源染色体分离,非同源染色体自由组合等行为则为减数第一次分裂某时期的细胞分裂图;若无以上行为,则为有丝分裂的某一时期的细胞分裂图。

(2)例题:判断下列各细胞分裂图属何种分裂何时期图。

[解析]:

甲图细胞的每一端均有成对的同源染色体,但无联会、四分体、分离等行为,且每一端都有一套形态和数目相同的染色体,故为有丝分裂的后期。

乙图有同源染色体,且同源染色体分离,非同源染色体自由组合,故为减数第一次分裂的后期。

丙图不存在同源染色体,且每条染色体的着丝点分开,姐妹染色单体成为染色体移向细胞两极,故为减数第二次分裂后期。

7.受精作用:指卵细胞和精子相互识别、融合成为受精卵的过程。

注:受精卵核内的染色体由精子和卵细胞各提供一半,但细胞质几乎全部是由卵细胞提供,因此后代某些性状更像母方。

意义:通过减数分裂和受精作用,保证了进行有性生殖的生物前后代体细胞中染色体数目的恒定,从而保证了遗传的稳定和物种的稳定;在减数分裂中,发生了非同源染色体的自由组合和非姐妹染色单体的交叉互换,增加了配子的多样性,加上受精时卵细胞和精子结合的随机性,使后代呈现多样性,有利于生物的进化,体现了有性生殖的优越性。

下图讲解受精作用的过程,强调受精作用是精子的细胞核和卵细胞的细胞核结合,受精卵中的染色体数目又恢复到体细胞的数目。

8.配子种类问题

由于染色体组合的多样性,使配子也多种多样,根据染色体组合多样性的形成的过程,所以配子的种类可由同源染色体对数决定,即含有n对同源染色体的精(卵)原细胞产生配子的种类为2n种。

第二节基因在染色体上

1.萨顿假说推论:基因在染色体上,也就是说染色体是基因的载体。因为基因和染色体行

为存在着明显的平行关系。

2.、基因位于染色体上的实验证据

果蝇杂交实验分析

3.一条染色体上一般含有多个基因,且这多个基因在染色体上呈线性排列

4. 基因的分离定律的实质基因的自由组合定律的实质

第三节伴性遗传

1.伴性遗传的概念

2. 人类红绿色盲症(伴X染色体隐性遗传病)

特点:⑴男性患者多于女性患者。

⑵交叉遗传。即男性→女性→男性。

⑶一般为隔代遗传。

2.抗维生素D佝偻病(伴X染色体显性遗传病)

特点:⑴女性患者多于男性患者。

⑵代代相传。

4、伴性遗传在生产实践中的应用

3、人类遗传病的判定方法

口诀:无中生有为隐性,有中生无为显性;隐性看女病,女病男正非伴性;显性看男病,男病女正非伴性。

第一步:确定致病基因的显隐性:可根据

(1)双亲正常子代有病为隐性遗传(即无中生有为隐性);

(2)双亲有病子代出现正常为显性遗传来判断(即有中生无为显性)。

第二步:确定致病基因在常染色体还是性染色体上。

①在隐性遗传中,父亲正常女儿患病或母亲患病儿子正常,为常染色体上隐性遗传;

②在显性遗传,父亲患病女儿正常或母亲正常儿子患病,为常染色体显性遗传。

③不管显隐性遗传,如果父亲正常儿子患病或父亲患病儿子正常,都不可能是Y染色体上

的遗传病;

④题目中已告知的遗传病或课本上讲过的某些遗传病,如白化病、多指、色盲或血友病等

可直接确定。

注:如果家系图中患者全为男性(女全正常),且具有世代连续性,应首先考虑伴Y遗传,无显隐之分。

第三章基因的本质

第一节 DNA是主要的遗传物质

1.肺炎双球菌的转化实验

(1)、体内转化实验:1928年由英国科学家格里菲思等人进行。

①实验过程

结论:在S型细菌中存在转化因子可以使R型细菌转化为S型细菌。

(2)、体外转化实验:1944年由美国科学家艾弗里等人进行。

①实验过程

结论:DNA是遗传物质

2.噬菌体侵染细菌的实验

1、实验过程

①标记噬菌体

含35S的培养基含35S的细菌35S 蛋白质外壳含35S的噬菌体

含32P的培养基含32P的细菌内部DNA含32P的噬菌体

②噬菌体侵染细菌

含35S的噬菌体细菌体内没有放射性35S

含32P的噬菌体细菌体内有放射线32P

结论:进一步确立DNA是遗传物质

3.烟草花叶病毒感染烟草实验:

(1)、实验过程

(2)、实验结果分析与结论

烟草花叶病毒的RNA能自我复制,控制生物的遗传性状,因此RNA是它的遗传物质。

4、生物的遗传物质

非细胞结构:DNA或RNA

生物原核生物:DNA

细胞结构

真核生物:DNA

结论:绝大多数生物(细胞结构的生物和DNA病毒)的遗传物质是DNA,所以说DNA是主要的遗传物质。

第二节 DNA分子的结构

1.DNA分子的结构

(1)基本单位---脱氧核糖核苷酸(简称脱氧核苷酸)

2、DNA分子有何特点?

⑴稳定性

是指DNA分子双螺旋空间结构的相对稳定性。

⑵多样性

构成DNA分子的脱氧核苷酸虽只有4种,配对方式仅2种,但其数目却可以成千上万,更重要的是形成碱基对的排列顺序可以千变万化,从而决定了DNA分子的多样性。

⑶特异性

每个特定的DNA分子中具有特定的碱基排列顺序,而特定的排列顺序代表着遗传信息,所以每个特定的DNA分子中都贮存着特定的遗传信息,这种特定的碱基排列顺序就决定了DNA分子的特异性。

3.DNA双螺旋结构的特点:

⑴DNA分子由两条反向平行的脱氧核苷酸长链盘旋而成。

⑵DNA分子外侧是脱氧核糖和磷酸交替连接而成的基本骨架。

⑶DNA分子两条链的内侧的碱基按照碱基互补配对原则配对,并以氢键互相连接。

4.相关计算

(1)A=T C=G

(2)(A+ C )/ (T+G )= 1或A+G / T+C = 1

(3)如果(A1+C1 ) / ( T1+G1 )=b 那么(A2+C2 ) / (T2+G2 ) =1/b

(4)(A+ T ) / ( C +G ) =(A1+ T1 ) / ( C1 +G1 ) = ( A2 + T2 ) / ( C2+G2 ) = a

4.判断核酸种类

(1)如有U无T,则此核酸为RNA;

(2)如有T且A=T C=G,则为双链DNA;

(3)如有T且A≠ T C≠ G,则为单链DNA ;

(4)U和T都有,则处于转录阶段。

第3节 DNA的复制

一、DNA分子复制的过程

解旋酶:解开DNA双链

聚合酶:以母链为模板,游离的四种脱氧核苷酸为原料,严格遵循碱基互

补配对原则,合成子链

连接酶:把DNA子链片段连接起来

1、概念:以亲代DNA分子为模板合成子代DNA的过程

2、复制时间:有丝分裂或减数第一次分裂间期

3. 复制方式:半保留复制

4、复制条件(1)模板:亲代DNA分子两条脱氧核苷酸链

(2)原料:4种脱氧核苷酸

(3)能量:ATP

(4)解旋酶、 DNA聚合酶等

5、复制特点:边解旋边复制

6、复制场所:主要在细胞核中,线粒体和叶绿体也存在。

7、复制意义:保持了遗传信息的连续性。

三、与DNA复制有关的碱基计算

1.一个DNA连续复制n次后,DNA分子总数为:2n

2.第n代的DNA分子中,含原DNA母链的有2个,占1/(2n-1)

3.若某DNA分子中含碱基T为a,

(1)则连续复制n次,所需游离的胸腺嘧啶脱氧核苷酸数为:a(2n-1)

(2)第n次复制时所需游离的胸腺嘧啶脱氧核苷酸数为:a·2n-1

第4节基因是有遗传效应的DNA片段

一、.基因的相关关系

1、与DNA的关系

①基因的实质是有遗传效应的DNA片段,无遗传效应的DNA片段不能称之为基因(非基因)。

②每个DNA分子包含许多个基因。

2、与染色体的关系

①基因在染色体上呈线性排列。

②染色体是基因的主要载体,此外,线粒体和叶绿体中也有基因分布。

3、与脱氧核苷酸的关系

①脱氧核苷酸(A、T、C、G)是构成基因的单位。

②基因中脱氧核苷酸的排列顺序代表遗传信息。

4、与性状的关系

①基因是控制生物性状的遗传物质的结构和功能单位。

②基因对性状的控制通过控制蛋白质分子的合成来实现。

二、DNA片段中的遗传信息

遗传信息蕴藏在4种碱基的排列顺序之中;碱基排列顺序的千变万化构成了DNA分子的多样性,而碱基的特异排列顺序,又构成了每个DNA分子的特异性。

第四章基因的表达

第一节基因指导蛋白质的合成

一、遗传信息的转录

1、DNA与RNA的异同点

核酸

项目

DNA RNA

结构通常是双螺旋结构,极少数病毒

是单链结构

通常是单链结构

基本单位脱氧核苷酸(4种)核糖核苷酸(4种)五碳糖脱氧核糖核糖

碱基A、G、C、T A、G、C、U

产生途径DNA复制、逆转录转录、RNA复制

存在部位主要位于细胞核中染色体上,极

少数位于细胞质中的线粒体和叶

绿体上

主要位于细胞质中

功能传递和表达遗传信息①mRNA:转录遗传信息,翻译的模板

②tRNA:运输特定氨基酸

③rRNA:核糖体的组成成分

2、RNA的类型

⑴信使RNA(mRNA)

⑵转运RNA(tRNA)

⑶核糖体RNA(rRNA)

3、转录

⑴转录的概念

⑵转录的场所主要在细胞核

⑶转录的模板以DNA的一条链为模板

⑷转录的原料4种核糖核苷酸

⑸转录的产物一条单链的mRNA

⑹转录的原则碱基互补配对

⑺转录与复制的异同(下表:)

阶段

项目

复制转录

时间细胞有丝分裂的间期或减

数第一次分裂间期

生长发育的连续过程

进行场所主要细胞核主要细胞核

模板以DNA的两条链为模板以DNA的一条链为模板原料4种脱氧核苷酸4种核糖核苷酸

条件需要特定的酶和ATP 需要特定的酶和ATP

过程在酶的作用下,两条扭成螺

旋的双链解开,以解开的每

段链为模板,按碱基互补配

对原则(A—T、C—G、T

—A、G—C)合成与模板

互补的子链;子链与对应的

母链盘绕成双螺旋结构

在细胞核中,以DNA解旋后

的一条链为模板,按照A—

U、G—C、T—A、C—G的

碱基互补配对原则,形成

mRNA,mRNA从细胞核进

入细胞质中,与核糖体结合

产物两个双链的DNA分子一条单链的mRNA

特点边解旋边复制;半保留式复

制(每个子代DNA含一条

母链和一条子链)

边解旋边转录;DNA双链分

子全保留式转录(转录后

DNA仍保留原来的双链结

构)

遗传信息的传递方向遗传信息从亲代DNA传给

子代DNA分子

遗传信息由DNA传到RNA

二、遗传信息的翻译

1、遗传信息、密码子和反密码子

遗传信息密码子反密码子

概念基因中脱氧核苷酸的

排列顺序

mRNA中决定一个氨

基酸的三个相邻碱基

tRNA中与mRNA

密码子互补配对的

三个碱基

作用控制生物的遗传性状直接决定蛋白质中的氨

基酸序列

识别密码子,转运

氨基酸

种类基因中脱氧核苷酸种

类、数目和排列顺序

的不同,决定了遗传

信息的多样性

64种

61种:能翻译出氨基酸

3种:终止密码子,不

能翻译氨基酸

61种或tRNA也为

61种

联系①基因中脱氧核苷酸的序列 mRNA中核糖核苷酸的序列

②mRNA中碱基序列与基因模板链中碱基序列互补

③密码子与相应反密码子的序列互补配对

2、翻译

⑴定义

⑵翻译的场所细胞质的核糖体上

⑶翻译的模板 mRNA

⑷翻译的原料 20种氨基酸

⑸翻译的产物多肽链(蛋白质)

⑹翻译的原则碱基互补配对

⑺翻译与转录的异同点(下表):

阶段

项目

转录翻译

定义在细胞核中,以DNA的一条链

为模板合成mRNA的过程

以信使RNA为模板,合成具有一

定氨基酸顺序的蛋白质的过程

场所细胞核细胞质的核糖体

模板DNA的一条链信使RNA

信息传递的方向DNA→mRNA mRNA→蛋白质原料含A、U、C、G的4种核苷酸合成蛋白质的20种氨基酸

产物信使RNA 有一定氨基酸排列顺序的蛋白质

实质是遗传信息的转录是遗传信息的表达

三、基因表达过程中有关DNA、RNA、氨基酸的计算

1、转录时,以基因的一条链为模板,按照碱基互补配对原则,产生一条单链mRNA,则转录产生的mRNA分子中碱基数目是基因中碱基数目的一半,且基因模板链中A+T(或C+G)与mRNA分子中U+A(或C+G)相等。

2.翻译过程中,mRNA中每3个相邻碱基决定一个氨基酸,所以经翻译合成的蛋白质分子中氨基酸数目是mRNA中碱基数目的1/3,是双链DNA碱基数目的 1/6 。

第2节基因对性状的控制

一、中心法则

⑴DNA→DNA:DNA的自我复制;

⑵DNA→RNA:转录;

⑶RNA→蛋白质:翻译;

⑷RNA→RNA:RNA的自我复制;

⑸RNA→DNA:逆转录。

DNA→DNA RNA→RNA

DNA→RNA 细胞生物病毒

RNA→蛋白质 RNA→DNA

二、基因、蛋白质与性状的关系

1、(间接控制)

酶或激素细胞代谢

基因性状

结构蛋白细胞结构

(直接控制)

2、基因型与表现型的关系,基因的表达过程中或表达后的蛋白质也可能受到环境因素的影响。

3、生物体性状的多基因因素:基因与基因、基因与基因产物、基因与环境之间多种因素存

在复杂的相互作用,共同地精细地调控生物的性状。

第五章基因突变及其他变异

第一节基因突变和基因重组

一、基因突变的实例

1、镰刀型细胞贫血症

⑴症状

⑵病因基因中的碱基替换

直接原因:血红蛋白分子结构的改变

根本原因:控制血红蛋白分子合成的基因结构的改变

2、基因突变

概念:DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变

二、基因突变的原因和特点

1、基因突变的原因有内因和外因

物理因素:如紫外线、X射线

⑴诱发突变(外因)化学因素:如亚硝酸、碱基类似物

生物因素:如某些病毒

⑵自然突变(内因)

2、基因突变的特点

⑴普遍性

⑵随机性

⑶不定向性

⑷低频性

⑸多害少利性

3、基因突变的时间

有丝分裂或减数第一次分裂间期

4.基因突变的意义:是新基因产生的途径;生物变异的根本来源;是进化的原始材料

三、基因重组

1、基因重组的概念

随机重组(减数第一次分裂后期)

2、基因重组的类型

交换重组(四分体时期)

3.时间:减数第一次分裂过程中(减数第一次分裂后期和四分体时期)

4.基因重组的意义

四、基因突变与基因重组的区别

基因突变基因重组

本质基因的分子结构发生改变,产生

了新基因,也可以产生新基因型,

出现了新的性状。

不同基因的重新组合,不产生新基

因,而是产生新的基因型,使不同

性状重新组合。

发生时间及

原因细胞分裂间期DNA分子复制时,

由于外界理化因素引起的碱基对

的替换、增添或缺失。

减数第一次分裂后期中,随着同源

染色体的分开,位于非同源染色体

上的非等位基因进行了自由组合;

四分体时期非姐妹染色单体的交叉

互换。

条件外界环境条件的变化和内部因素

的相互作用。

有性生殖过程中进行减数分裂形成

生殖细胞。

意义生物变异的根本来源,是生物进

化的原材料。

生物变异的来源之一,是形成生物

多样性的重要原因。

发生可能突变频率低,但普遍存在。有性生殖中非常普遍。

第二节染色体变异

一、染色体结构的变异(猫叫综合征)

1、概念

缺失

2、变异类型重复

倒位

易位

二、染色体数目的变异

1.染色体组的概念及特点

2.常见的一些关于单倍体与多倍体的问题

⑴一倍体一定是单倍体吗?单倍体一定是一倍体吗?

(一倍体一定是单倍体;单倍体不一定是一倍体。)

⑵二倍体物种所形成的单倍体中,其体细胞中只含有一个染色体组,这种说法对吗?为

什么?

(答:对,因为在体细胞进行减数分裂形成配子时,同源染色体分开,导致染色体数目减半。)

⑶如果是四倍体、六倍体物种形成的单倍体,其体细胞中就含有两个或三个染色体组,我们可以称它为二倍体或三倍体,这种说法对吗?

(答:不对,尽管其体细胞中含有两个或三个染色体组,但因为是正常的体细胞的配子所形成的物种,因此,只能称为单倍体。)

(4)单倍体中可以只有一个染色体组,但也可以有多个染色体组,对吗?

(答:对,如果本物种是二倍体,则其配子所形成的单倍体中含有一个染色体组;如果本物种是四倍体,则其配子所形成的单倍体含有两个或两个以上的染色体组。)

3.总结:多倍体育种方法:

单倍体育种方法:

列表比较多倍体育种和单倍体育种:

多倍体育种单倍体育种

原理染色体组成倍增加染色体组成倍减少,再加倍后得到纯种(指每对染色体上成对的基因都是纯合的)

常用方法秋水仙素处理萌发的种子、幼苗花药的离体培养后,人工诱导染色体加倍优点器官大,提高产量和营养成分明显缩短育种年限

缺点适用于植物,在动物方面难以开展技术复杂一些,须与杂交育种配合

4.染色体组数目的判断

(1)细胞中同种形态的染色体有几条,细胞内就含有几个染色体组。

问:图中细胞含有几个染色体组?

(2)根据基因型判断细胞中的染色体数目,根

据细胞的基本型确定控制每一性状的基因出现的次数,该次数就等于染色体组数。

问:图中细胞含有几个染色体组?

(3)根据染色体数目和染色体形态数确定染色体数目。染色体组数=细胞内染色体数目/染色体形态数

果蝇的体细胞中含有8条染色体,4对同源染色体,即染色体形态数为4(X、Y视为同种形态染色体),染色体组数目为2。人类体细胞中含有46条染色体,共23对同源染色体,即染色体形态数是23,细胞内含有2个染色体组。

4.三倍体无子西瓜的培育过程图示:

注:亲本中要用四倍体植株作为母本,二倍体作为父本,两次使用二倍体花粉的作用是不同的。

单倍体与多倍体的区别

二倍体(2N=2x)

三倍体(2N=3x)

多倍体(2N=nx)

(a+b) (a+b)

注:x染色体组,a、b为正整数。

生物体

合子

2N= (a+b) x

发育

直接发育成生物体:单倍体(N=ax)

雌配子(N=ax)

直接发育成生物体:单倍体(N=bx)

雄配子(N=bx)

①由合子发育来的个体,细胞中含有几个染色体组,就叫几倍体;

②而由配子直接发育来的

,不管含有几个染色组,都只能叫单倍体。

第三节人类遗传病

第6章从杂交育种到基因工程

第1节杂交育种与诱变育种

一、杂交育种

1.概念:是将两个或多个品种的优良性状通过交配集中一起,再经过选择和培育,获得新品

种的方法。

2.原理:基因重组。通过基因重组产生新的基因型,从而产生新的优良性状。

3.优点:可以将两个或多个优良性状集中在一起。

4.缺点:不会创造新基因,且杂交后代会出现性状分离,育种过程缓慢,过程复杂。

二、诱变育种

1.概念:指利用物理或化学因素来处理生物,使生物产生基因突变,利用这些变异育成新品

种的方法。

2.诱变原理:基因突变

3.诱变因素:

(1)物理:X射线,紫外线,γ射线等。

(2)化学:亚硝酸,硫酸二乙酯等。

4.优点:可以在较短时间内获得更多的优良性状。

5.缺点:因为基因突变具有不定向性且有利的突变很少,所以诱变育种具有一定盲目性,所以利用理化因素出来生物提高突变率,且需要处理大量的生物材料,再进行选择培育。三、四种育种方法的比较

杂交育种诱变育种多倍体育种单倍体育种

原理基因重组基因突变染色体变异染色体变异

方法杂交激光、射线或化学

药品处理

秋水仙素处理萌发种子

或幼苗

花药离体培养

后加倍

优点可集中优良性状时间短器官大和营养物质含量高缩短育种年限

缺点育种年限长盲目性及突变频率

较低动物中难以开展成活率低,只适用

于植物

举例高杆抗病与矮杆

感病杂交获得矮

杆抗病品种高产青霉菌株的育

三倍体西瓜抗病植株的育成

第二节基因工程及其应用

1.概念

2.原理基因重组

3.转基因生物和转基因食品的安全性

例题:下图中A-E表示几种不同育种方法

A.

B. ①

C. AABBDD × RR ABDR AABBDDRR

普通小麦黑麦不育杂种小黑麦

DDTT × ddtt F1 F2能稳定遗传的

D. 高秆矮秆矮秆抗锈病的品种

抗锈病易染锈病

①②③

DDTT × ddtt F1配子幼苗能稳定遗传的

E. 高秆矮秆矮秆抗锈病的品种

抗锈病易染锈病

F. 其它生物基因

植物细胞新细胞具有新性状的植物体

A:克隆 B:诱变育种 C:多倍体育种 D:杂交育种

E:单倍体育种 F:基因工程

第7章现代生物进化理论

第1节现代生物进化理论的由来

一、拉马克的进化学说

1、拉马克的进化学说的主要内容

(1)、生物都不是神创的,而是由更古老的生物传衍来的。这对当时人们普遍信奉的神创造成一定冲击,因此具有进步意义。

(2)、生物是由低等到高等逐渐进化的。拉马克几乎否认物种的真实存在,认为生物只存在连续变异的个体。

(3)、对于生物进化的原因,他认为:一是“用进废退”的法则;二是“获得性遗传”

的法则。但这些法则缺乏事实依据,大多来自于主观推测。

2、拉马克的进化学说的历史意义

二、达尔文自然选择学说

(一)、达尔文自然选择学说的主要内容

1.过度繁殖 ---- 选择的基础

生物体普遍具有很强的繁殖能力,能产生很多后代,不同个体间有一定的差异。

2.生存斗争 ---- 进化的动力、外因、条件

大量的个体由于资源空间的限制而进行生存斗争。在生存斗争中大量个体死亡,只有少数的个体生存下来。

生存斗争包括三方面:

(1)生物与无机环境的斗争

(2)种内斗争

(3)种间斗争

生存斗争对某些个体的生存不利,但对物种的生存是有利的,并推动生物的进化。

3.遗传变异 ---- 进化的内因

在生物繁殖的过程中普遍存在着遗传变异现象,生物的变异是不定向的,有的变异是有利的,有的是不利的,其中具有有利变异的个体就容易在生存斗争中获胜生存下去,反之,具有不利变异个体就容易被淘汰。

4.适者生存 ---- 选择的结果

适者生存,不适者被淘汰是自然选择的结果。自然选择只选择适应环境的变异类型,通过多次选择,使生物的微小有利变异通过繁殖遗产给后代,得以积累和加强,使生物更好的适应环境,逐渐产生了新类型。

所以说变异不是定向的,但自然选择是定向的,决定着进化的方向。

(二)、达尔文的自然选择学说的历史局限性和意义

三、达尔文以后进化理论的发展

第2节现代生物进化理论的主要内容

一、种群基因频率的改变与生物进化

(一)种群是生物进化的基本单位

1、种群:生活在一定区域的同种生物的全部个体叫种群。

种群特点:种群中的个体不是机械的集合在一起,而是通过种内关系组成一个有机的整体,个体间可以彼此交配,并通过繁殖将各自的基因传递给后代。

2、基因库

3、基因频率、基因型频率及其相关计算

基因频率=

基因型频率=

两者联系:

(1)种群众一对等位基因的频率之和等于1,基因型频率之和也等于1。

(2)一个等位基因的频率=该等位基因纯合子的频率+ 杂合子的频率。

(二)突变和基因重组产生进化的原材料

可遗传的变异:基因突变、染色体变异、基因重组

突变包括基因突变和染色体变异

突变的有害或有利不是绝对的,取决于生物的生存环境

(三)自然选择决定生物进化的方向

生物进化的实质是基因频率的改变

二、隔离与物种的形成

(一)、物种的概念

1、物种的概念

地理隔离量变

2、隔离

生殖隔离质变

注:一个物种的形成必须要经过生殖隔离,但不一定经过地理隔离,如多倍体的产生。(二)、种群与物种的区别与联系

种群物种

概念生活在一定区域的同种生物的全部

个体

能够在自然状况下相互交配并且产生可育后代

的一群生物

范围较小范围内的同种生物的个体分布在不同区域内的同种生物的许多种群组成

判断标准种群必须具备“三同”;即同一时

间、同一地点、同一物种

主要是形态特征和能否自由交配并产生可育后

联系一个物种可以包括许多种群,同一个物种的多个种群之间存在着地理隔离,长期发展下去可成为不同亚种,进而可能形成多个新种。

地理隔离阻断基因交流不同的突变基因重组和选择基因频率向不同方向改变种群基因库出现差异差异加大生殖隔离新物种形成

三、共同进化与生物多样性的形成

(一)、共同进化1、概念

不同物种间的共同进化

2、含义

生物与无机环境之间的相互影响和共同演变

(二)、生物多样性的形成

基因多样性

1、生物多样化的内容物种多样性

生态系统多样性

2、生物多样性形成的进化历程

(1)关键点:

真核生物出现后有性生殖方式的出现,生物进化速度明显加快;

寒武纪大爆发:形成生态系统的第三极(消费者),对植物的进化产生影响;

原始两栖类的出现:生物登陆改变着环境,陆地上复杂的环境为生物的进化提供了条件。(2)进化顺序

简单复杂水生陆生低等高等异样自养

厌氧需氧无性有性单细胞多细胞细胞内消化细胞外消化

高中生物遗传与进化知识点

必修2遗传与进化知识点汇编 第一章遗传因子的发现 第一节孟德尔豌豆杂交试验(一) 1.孟德尔之所以选取豌豆作为杂交试验的材料是由于: (1)豌豆是自花传粉植物,且是闭花授粉的植物; (2)豌豆花较大,易于人工操作; (3)豌豆具有易于区分的性状。 2.遗传学中常用概念及分析 (1)性状:生物所表现出来的形态特征和生理特性。 相对性状:一种生物同一种性状的不同表现类型。 区分:兔的长毛和短毛;人的卷发和直发等; 兔的长毛和黄毛;牛的黄毛和羊的白毛 性状分离:杂种后代中,同时出现显性性状和隐性性状的现象。如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。 显性性状:在DD×dd 杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。 决定显性性状的为显性遗传因子(基因),用大写字母表示。如高茎用D表示。 隐性性状:在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。决定隐性性状的为隐性基因,用小写字母表示,如矮茎用d表示。 (2)纯合子:遗传因子(基因)组成相同的个体。如DD或dd。其特点纯合子是自交后代全为纯合子,无性状分离现象。 杂合子:遗传因子(基因)组成不同的个体。如Dd。其特点是杂合子自交后代出现性状分离现象。 (3)杂交:遗传因子组成不同的个体之间的相交方式。 如:DD×dd Dd×dd DD×Dd等。 自交:遗传因子组成相同的个体之间的相交方式。 如:DD×DD Dd×Dd等 测交:F1(待测个体)与隐性纯合子杂交的方式。 如:Dd×dd 正交和反交:二者是相对而言的, 如甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交; 如甲(♂)×乙(♀)为正交,则甲(♀)×乙(♂)为反交。 3.杂合子和纯合子的鉴别方法 若后代无性状分离,则待测个体为纯合子 测交法 若后代有性状分离,则待测个体为杂合子 若后代无性状分离,则待测个体为纯合子 自交法 若后代有性状分离,则待测个体为杂合子 4.常见问题解题方法 (1)如后代性状分离比为显:隐=3 :1,则双亲一定都是杂合子(Dd) 即Dd×Dd 3D_:1dd (2)若后代性状分离比为显:隐=1 :1,则双亲一定是测交类型。 即为Dd×dd 1Dd :1dd (3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。 即DD×DD 或DD×Dd 或DD×dd

人教版数学必修二知识点总结

第一章立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱:定义:两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱' ' ' ' 'E D C B A ABCDE-或用对角线的端点字母,如五棱柱' AD。 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥:定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥' ' ' ' 'E D C B A P- 几何特征:侧面、对角面是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台' ' ' ' 'E D C B A P- 几何特征:①上下底面是相似平行多边形②侧面是梯形③侧棱交于原棱锥的顶点。 (4)圆柱:定义:以矩形一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥顶点;③侧面展开图是一弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段与'x轴平行且长度不变; ②原来与y轴平行的线段与'y轴平行,长度减为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高,'h为斜高,l为母线) ch S= 直棱柱侧面积 rh Sπ 2 = 圆柱侧 ' 2 1 ch S= 正棱锥侧面积 rl Sπ = 圆锥侧面积 ') ( 2 1 2 1 h c c S+ = 正棱台侧面积 l R r Sπ) (+ = 圆台侧面积 ()l r r S+ =π2 圆柱表 ()l r r S+ =π 圆锥表 ()2 2R Rl rl r S+ + + =π 圆台表 (3)柱体、锥体、台体的体积公式

(完整版)高中生物生物的进化知识点归纳

高中生物生物的进化知识点归纳 名词: 1、过度繁殖:任何一种生物的繁殖能力都很强,在不太长的时间内能产生大量的后代表现为过度繁殖。 2、自然选择:达尔文把这种适者生存不适者被淘汰的过程叫作自然选择。 3、种群:生活在同一地点的同种生物的一群个体,是生物繁殖的基本单位。个体间彼此交配,通过繁殖将自己的基因传递给后代。 4、基因库:种群全部个体所含的全部基因叫做这个种群的基因库,其中每个个体所含的基因只是基因库的一部分。 5、基因频率:某种基因在整个种群中出现的比例。 6、物种:指分布在一定的自然区域,具有一定的形态结构和生理功能,而且在自然状态下能互相交配,并产生出可育后代的一群生物个体。 7、隔离:指同一物种不同种群间的个体,在自然条件下基因不能自由交流的现象。包括: a、地理隔离:由于高山、河流、沙漠等地理上的障碍,使彼此间不能相遇而不能交配。(如: 东北虎和华南虎) b、生殖隔离:种群间的个体不能自由交配或交配后不能产生可育的后代。 语句: 1、达尔文自然选择学说的内容有四方面:过度繁殖;生存斗争;遗传变异;适者生存。 2、达尔文认为长颈鹿的进化原因是:长颈鹿产生的后代超过环境承受能力(过度繁殖);它们都要吃树叶而树叶不够吃(生存斗争);它们有颈长和颈短的差异(遗传变异);颈长的能吃到树叶生存下来,颈短的因吃不到树叶而最终饿死了(适者生存)。 3、现代生物进化理论的基本内容也有四点:种群是生物进化的单位;突变和基因重组产生进化的原材料;自然选择改变基因频率;隔离导致物种形成。 4、种群基因频率改变的原因:基因突变、基因重组、自然选择。生物进化其实就是种群基因频率改变的过程。 5、基因突变和染色体变异都可称为突变。突变和基因重组使生物个体间出现可遗传的差异。 6、种群产生的变异是不定向的,经过长期的自然选择和种群的繁殖使有利变异基因不断积累,不利变异基因逐代淘汰,使种群的基因频率发生了定向改变,导致生物朝一定方向缓慢进化。因此,定向的自然选择决定了生物进化的方向。(实例——桦尺蠖在工业区体色变黑:a、从宏观上看:19世纪中期桦尺蠖的浅色性状与环境色彩相似,属于保护色,较能适应环境而大量生存;黑色性状与环境色彩差异很大,不能适应环境,易被捕食者捕食,因此,突变产生后,后代的个体数受到限制。19世纪中期到20世纪中期,由于地衣死亡,桦尺蠖栖息的树干裸露并被烟熏黑,使得黑色性状与环境色彩相似而大量生存,浅色性状与环境色彩差异很大,易被捕食者捕食而大量被淘汰。表现为适者生存,不适者被淘汰。

必修2 遗传与进化 知识梳理.pdf

必修2 遗传与进化知识梳理 第一章遗传因子的发现1.豌豆作遗传实验材料的优点 ⑴豌豆是植物,而且是,所以它能避免外来花粉粒的干扰。 ⑵豌豆品种间具有一些的、易的性状。 2.基因分离定律的实质是:(1)在杂合体的细胞中,位于一对同源染色体的,具有一定的性;( 2)在减数分裂形成配子的过程中,会随同源染色体的分开而,分别进入两个配子中,独立的随配子遗传给后代。 3.基因的自由组合定律的实质是:(1)位于染色体上的的分离或组合是互不干扰的;(2)在减数分离过程中,染色体上的彼此分离的同时,染色体上的自由组合。 4.孟德尔获得成功的原因 (1)首要条件是正确选用试验材料即。(2)采用由单因素到的研究方法。(3)用学方法对试验结果进行分析。(4)科学地设计。 5.相关概念 相对性状、显性性状、隐性性状、性状分离、表现型、基因型、等位基因、显性基因、隐性基因、杂交、测交、自交 第二章基因与性状的关系 1.减数分裂与有丝分裂(以2N、精细胞形成为例) ⑴细胞图像特征比较: 细胞图形独有特点分裂方式细胞名称 ①前期染色体随机分布在细胞内,有染色单体,中心体向两极移动。 ②中期染色体有规律分布在赤道板位置

③后期纺缍丝牵引染色体移向两极 2.减数分裂和受精作用过程的染色体数目的变化曲线图 DNA 4N - -------- 染色体 2N - N - 有丝分裂减数分裂受精有丝分裂时间 作用 3.杂合子(YyRr)产生配子的情况 可能产生配子的类型实际能产生配子的种类 一个精原细胞种种() 一个雄性个体种种() 一个卵原细胞种种() 一个雌性个体种种() (1)伴X染色体隐性遗传(例如:) 遗传规律:随向后代传递,即儿子的致病基因一定来自,而父亲的致病基因一定遗传给,当母亲为患者时,一定是患者。“母病必病,女病必病。”遗传特点:患者中多于 (2)伴X染色体显性遗传(例如:) 遗传规律:随向后代传递,即儿子的致病基因一定来自,而父亲的致病基因一定遗传给,当父亲为患者时,一定是患者。“父病必病,子病必病。”

高中生物必修2遗传与进化知识点总结

高中生物必修2遗传与进化知识点总结(整理人:陆保宗) 第一章遗传因子的发现 第一节孟德尔豌豆杂交试验(一) 一、1、孟德尔之所以选取豌豆作为杂交试验的材料是由于: (1)豌豆是自花传粉植物,且是闭花授粉的植物; (2)豌豆花较大,易于人工操作;(3)豌豆具有易于区分的性状。 2、遗传学中常用概念及分析 性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。 相对性状:同一种生物的同一种性状的不同表现类型。如:兔的长毛和短毛;人的卷发和直发等;兔的长毛和黄毛;牛的黄毛和羊的白毛 二、孟德尔一对相对性状的杂交实验 相关概念 1、显性性状与隐性性状 显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。 隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。 性状分离:在杂种后代中出现不同于亲本性状的现象) 2、显性基因与隐性基因 显性基因:控制显性性状的基因。隐性基因:控制隐性性状的基因。 附:基因:控制性状的遗传因子( DNA分子上有遗传效应的片段) 等位基因:决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。 3、纯合子与杂合子 纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):显性纯合子(如AA的个体) 隐性纯合子(如aa的个体) 杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离) 4、表现型与基因型 表现型:指生物个体实际表现出来的性状。 基因型:与表现型有关的基因组成。(关系:基因型+环境→表现型) 5、杂交与自交 杂交:基因型不同的生物体间相互交配的过程。如:DD×dd Dd×dd DD×Dd等 自交:基因型相同的生物体间相互交配的过程。(指植物体中自花传粉和雌雄异花植物的同株受粉)如:DD×DD Dd×Dd等 测交:让F1与隐性纯合子杂交。(可用来测定F1的基因型,属于杂交)如:Dd×dd 三、常见问题解题方法 (1)如后代性状分离比为显:隐=3 :1,则双亲一定都是杂合子(Dd) 即Dd×Dd 3D_:1dd (2)若后代性状分离比为显:隐=1 :1,则双亲一定是测交类型。 即为Dd×dd 1Dd :1dd (3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。 即DD×DD 或DD×Dd 或DD×dd 四、分离定律其实质 ..就是在形成配子时,等位基因随减数第一次分裂后期同源染色体的分开而分离,分别进入到不同的配子中。 第2节孟德尔豌豆杂交试验(二)

高中地理必修二知识点汇总

第一章人口的变化 第一节人口的数量变化 一、人口的自然增长 1、世界人口规模 (1)“世界60亿人口日”——1999年10月12日,世界人口已经相当庞大。(2)2008年,世界人口达到67亿。 2、人口的自然增长:人口自然增长率=出生率—死亡率 3、人口自然增长数量=人口基数×人口自然增长率 4、世界人口增长的差异 二、人口增长模式及其转变 1、构成:出生率、死亡率、自然增长率 2、类型: (1)原始型:高出生率、高死亡率、低自然增长率 (2)传统型:高出生率、低死亡率、高自然增长率 (3)现代型:低出生率、低死亡率、低自然增长率 3、转变:从原始型——传统型——现代型逐步过渡。

4、转变的因素:生产力水平、国家政策、社会福利、自然环境、文化观念、宗教信仰 5、分布:发达国家——现代型;发展中国家——传统型 强调:南非、冰岛——传统型;中国、韩国、古巴、新加坡、乌拉圭——现代型 第二节人口的空间变化 一、人口的迁移 1、人口迁移:人的居住地在国际或本国范围内发生改变。 2、人口迁移的判断:是否发生了地域上的移动(行政区位的改变);是否有居住地的改变;时间的改变(通常为一年) 3、人口迁移的类型:国际迁移、国内迁移 二、影响人口迁移的因素 1、主要因素 (1)自然环境因素:气候、土壤、水、矿产资源、自然灾害 (2)经济因素:经济发展、交通、通信 (3)政治因素:政策、社会变革、战争 (4)文化因素:宗教、民族、文化教育 2、对影响因素的评价: (1)经济因素往往起着重要作用 (2)某种特定的时空条件下,任何因素都可能成为决定性因素。

第三节人口的合理容量 一、地球最多能养活多少人——环境人口容量 1、环境承载力 2、环境人口容量 3、影响因素:资源、科技发展水平、开放程度、消费水平 4、世界环境人口容量:乐观无限、悲观已过、客观百亿 二、地球上适合养活多少人——人口合理容量 1、人口合理容量<环境人口容量 2、保持合理人口容量的紧迫性表现: 日益严峻的人口过快增长问题、人口城市化问题、城市人口老龄化问题3、保持合理人口容量的措施: (1)国际社会倡导尽最大可能把人口控制在合理规模内 (2)建立公平秩序保证大多数人拥有不断追求高水平生活质量的平等权利 第二章城市与城市化 第一节城市内部空间结构 一、城市形态类型——团块状条带状组团状 二、城市土地利用和功能分区 1、城市土地利用类型 2、城市功能区的形成:同类活动的空间集聚效应形成功能区 3、城市功能区的特点: (1)无明显界线 (2)某种功能为主,可能兼有其他功能 5、其他功能区:行政区、文化区、中心商务区 三、城市内部空间结构的形成和变化 1、城市内部空间结构的定义 2、城市内部空间结构的模式:同心圆模式、扇形模式、多核心模式

生物必修二遗传与进化知识点总结

生物必修二知识点总结一、遗传的基本规律 (1)基因的分离定律①豌豆做材料的优点:(1)豌豆能够严格进行自花授粉,而且是闭花授粉自然条件下能保持纯种。(2)品种之间具有易区分的性状。②人工杂交试验过程:去雄(留下雌蕊)→套袋(防干扰)→人工传粉③一对相对性状的遗传现象:具有一对相对性状的纯合亲本杂交,后代表现为一种表现型,F1代自交,F2代中出现性状分离,分离比为3:1。 ④基因分离定律的实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂时,等位基因会随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。 (2)基因的自由组合定律 ①两对等位基因控制的两对相对性状的遗传现象:具有两对相对性状的纯合子亲本杂交后,产生的F1自交,后代出现四种表现型,比例为9:3:3:1。四种表现型中各有一种纯合子,分别在子二代占1/16,共占4/16;双显性个体比例占9/16;双隐性个体比例占1/16;单杂合子占2/16×4=8/16;双杂合子占4/16;亲本类型比例各占9/16、1/16;重组类型比例各占3/16、3/16 ②基因的自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。 ③运用基因的自由组合定律的原理培育新品种的方法:优良性状分别在不同的品种中,先进行杂交,从中选择出符合需要的,再进行连续自交即可获得纯合的优良品种。 记忆点: 1.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。 2.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后

高中数学必修二知识点整理

高中数学 必修2知识点 第一章 空间几何体 1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积2 2 R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底31 3台体的体积 h S S S S V ?++ =)3 1 下下 上上( 4球体的体积 33 4 R V π= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 D C B A α L A · α 222r rl S ππ+=

知识点汇总及复习题——生命的起源与进化

生物的起源与进化 基础知识巩固 一、地球上生命的起源 1.多数学者认为:原始大气中的无机物到有机物, 再到原始生命,这一过程是在原始地球上进行 2.原始地球条件:高温、高压、紫外线以及雷电、原始海洋、无氧气 3.原始大气成分来自于火山喷发,有水蒸气、氢气、氨、甲烷、二氧化碳、硫化氢气体构成。原始大气中与现在大气明显的区别是没有氧气。 4.地球上生命的生存需要物质和能量。 5.米勒的实验:米勒将原始大气中的成分充入烧瓶中,通过火花放电,制成了一些有机物。(1)原料:甲烷、水蒸气、氢、氨等。 (2)产物(证据):氨基酸。 (3)结论:原始地球上能形成简单有机物。 6. 原始大气在高温、紫外线以及雷电等自然条件的长期作用条件下,形成了许多简单的有机物。后来,地球的温度逐渐降低,原是大气中的水蒸气凝结成雨降落到地面上,这些有机物又随着雨水进入湖泊和河流,最终汇集到原始的海洋中。 7. 原始生命诞生于原始海洋。原始海洋就像一盆稀薄的热汤,其中所含的有机物,不断地相互作用,经过极其漫长的岁月,大约在地球形成以后10亿年左右,才逐渐形成了原始的生命。 8.多数学者认为:原始大气中的无机物到有机物, 再到原始生命,这一过程是在原始地球上进行的。 9.原始地球条件: 高温、高压、紫外线以及雷电、原始海洋、无氧气。 10.蛋白质、核酸是生命中重要的物质。 11. 原始生命起源于非生命物质,过程如下:无机物→小分子有机物→大分子有机物→原始生命。(但是从大分子有机物到原始生命的过渡还没有被实验验证) 二、生物进化的证据 1.比较法:根据一定的标准,把彼此有某种联系的事物加以对照,确定它们的相同和不同之处。 2.证据

遗传与进化知识点总结

遗传与进化知识点总结 第一章第一节 1.孟德尔通过分析豌豆杂交实验的结果,发现了生物遗传的规律。 2.孟德尔在做杂交实验时,先除去未成熟花的全部雄蕊,这叫做去雄。 3.一种生物的同一性状的不同表现类型,叫做相对性状。 4.孟德尔把F1显现出来的性状,叫做显性性状,未显现出来的性状叫做隐性性状。在杂种后代中,同时出现显性性状和隐性性状的现象叫做性状分离。 5.孟德尔对分离现象的原因提出了如下假说: (1)生物的性状是由遗传因子决定的,其中决定显现性状的为显性遗传因子,用大写字母表示,决定隐性性状的为隐性遗传因子,用小写字母表示。 (2)体细胞中的遗传因子是成对存在的,遗传因子组成相同的个体叫做纯合子,遗传因子组成不同的个体叫做杂合子。 (3)生物体在形成生殖细胞——配子时,成对的遗传因子彼此分离,分别进入不同的配子中,配子中只含有每对遗传因子的一个。 (4)受精时,雌雄配子的结合是随机的。 6.测交是让F1 与隐性纯合子杂交。 7.孟德尔第一定律又称分离定律。在生物的体细胞中,控制同一性状的遗传因子成对存在的,不相融合,在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同配子中,随配子遗传给后代。 第一章第二节 1.孟德尔用纯种黄色圆粒豌豆和纯种绿色皱粒豌豆作亲本杂交,无论正交还是反交,结出的种子(F1)都是黄色圆粒。这表明黄色和圆粒是显性性状,绿色和皱粒是隐性性状。 2.孟德尔让黄色圆粒的F1自交,在产生的F2中发现了黄色圆粒和绿色皱粒,还出现了亲本所没有的性状组合绿色圆粒和黄色皱粒。 3.纯种黄色圆粒和纯种绿色皱粒豌豆的遗传因子组成分别是YYRR和yyrr,它们产生的F1遗传因子组成是YyRr ,表现为黄色圆粒。 4.孟德尔两对相对性状的杂交实验中,F1(YyRr)在产生配子时,每对遗传因子彼此分离,不同对的遗传因子可以自由组合。F1产生的雌配子和雄配子各有4种:YR、Yr、yR、yr ,数量比例是:1:1:1:1 。受精时,雌雄配子的结合是随机的,雌、雄配子结合的方式有16 种,遗传因子的结合形式有9 种:YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、yyRr、yyrr 。性状表现有4 种:黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,它们之间的数量分比是9:3:3:1 。 5.让子一代F1(YyRr)与隐性纯合子(yyrr)进行杂交,无论是F1作母本,还是作父本,后代表现型有4 种:黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,它们之间的比例是9:3:3:1 ,遗传因子的组合形式有9 种:YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、yyRr、yyrr 。 6.孟德尔第二定律也叫做自由组合定律,控制不同性状的遗传因子的分离和组合是互不干扰的,在形成配子时,决定同一性状的遗传因子彼此分离,决定不同性状的遗传因子自由结合。 7.1909年,丹麦生物学家约翰逊给孟德尔的“遗传因子”一词起名叫做基因,并提出了表现型和基因型的概念。

必修二知识点梳理

7.(36分)读下图,回答下列问题。 (1)说明在地形影响下,该区域城镇和交通线路的分布特征。(6分) (2)简述图中滦河三角洲的成因。(6分) (3)比较图中(a)与(b),分析滦河河道的变化及其人为原因。(8分) 2010年,曹妃甸新建的首钢京唐钢铁厂已全面投入生产。 (4)说明钢铁厂建设对曹妃甸地区经济发展的带动作用。(8分) (5)概述制约华北平原农业生产的自然因素,并提出应对措施。(8分) 【答案】 (1)平原:城镇数量多,密度大,交通线路密集; 山地和高原:城镇数量少,密度小,交通线路稀疏。 (2)在滦河河口附近,流速减缓,泥沙堆积,形成三角洲。 (3)河道变窄,分叉减少。 主要由于上游沿线修建水库拦水,自滦河向流域外引水,滦河流域生产生活用水量增加,河流流量减少,沼泽湿地被开发为盐田、鱼塘。 (4)拉动基础设施建设;带动相关产业集聚;促进当地商业、服务业的发展;增加当地就业岗位和经济收入。 (5)制约因素:降水偏少,水资源短缺,多旱涝、寒潮、冰雹、风沙、病虫害、土壤盐碱化等;应对措施:完善农田水利设施和防护林体系;增加农业技术投入,发展节水农业;加强对灾害的监测和

第一章人口的变化 1.1 人口的数量变化 1、一个地区人口的自然增长,是由出生率和死亡率共同决定的。 2、几个重要的人口日:“世界60亿人口日”(1999/10/12);中国13亿人口(2005/1/6)。 3、人口增长的历史阶段 4、20世纪以来特别过去100多年人口增长迅速的原因: 过去100多年,伴随着生产工具和社会生产力等方面的进步,人类对自然环境开发利用和改造的范围不断扩大,对各种灾害和疾病的防御能力也不断提高,使人类对自然环境的利用和适应性不断增强,死亡率进一步降低。 5、某个地区人口自然增长的数量受人口自然增长率和人口基数大小共同影响。 6、发达国家和发展中国家人口变化比: 7、人口增长模式由出生率、死亡率、自然增长率三个指标构成。 公式:自然增长率=出生率-死亡率 8、三种人口增长模式特点 9、人口增长模式的转变: 人口增长模式是由原始型向传统型,继而向现代型转变。 转变的因素:生产力水平、国家政策、社会福利、自然环境、文化观念 10、大部分发达国家(欧洲、北美为代表)为现代型,大多数发展中国家为传统型,中国为

2020新课标高考生物二轮练习:教材“边角”冷知识热考 必修2 遗传与进化 Word版含解析

必修2遗传与进化 边角12突变果蝇的变异类型验证 按照遗传规律,白眼雌果蝇(X w X w)与红眼雄果蝇(X W Y)交配,后代雄果蝇都应该是白眼的,后代雌果蝇都应该是红眼的。可是有一天,摩尔根的合作者布里吉斯(Bridges)发现白眼雌果蝇和红眼雄果蝇杂交所产生的子一代中出现了一个白眼雌果蝇。大量的观察发现,在上述杂交中,2 000~3 000只红眼雌果蝇中会出现一只白眼雌果蝇,同样在2 000~3 000只白眼雄果蝇中会出现一只红眼雄果蝇。你怎样解释这种奇怪的现象?如何验证你的解释? ——[摘自必修2 P38“拓展题”] 提示:雌果蝇卵原细胞减数分裂过程中,在2 000~3 000个细胞中,有一次发生了差错,两条X染色体不分离,结果产生的卵细胞中可能含有两条X染色体或不含X染色体,如含X w X w染色体的卵细胞与含Y染色体的精子受精,产生基因型为X w X w Y的个体为白眼雌果蝇;如果不含X染色体的卵细胞与含X W染色体的精子受精,产生基因型为X W O的个体为红眼雄果蝇,这样就可以解释上述现象。可以用显微镜检查细胞中的染色体,如果在上述杂交子一代中出现的那只白眼雌果蝇中找到Y染色体,在那只红眼雄果蝇中找不到Y染色体,就可以证明解释是正确的。 【预测】 1.果蝇的性别决定方式为XY型,XX、XXY的受精卵发育成雌性个体,XY和XO的受精卵发育成雄性个体;摩尔根的合作者布里吉斯用白眼雌果蝇(X b X b)与红眼雄果蝇(X B Y)进行杂交实验,观察后代红眼雌蝇中有千分之一左右的白眼雌蝇,白眼雄蝇中有千分之一左右的红眼雄蝇。下图为果蝇细胞分裂图,其中能解释其产生原因的是() A.①②B.①③ C.②④D.③④ 解析:选D。图示4个细胞均发生分裂异常。在卵细胞形成过程中,减数第一次分裂同源染色体未分开(图③)或减数第二次分裂染色单体未分开(图④)时,出现性染色体为X b X b和O 的卵子,前者与含Y染色体的精子结合,将生成基因型为X b X b Y的雌性白眼果蝇,后者与含X B染色体的精子结合,将生成基因型为X B O的红眼雄果蝇。 2.1909年,摩尔根开展了关于果蝇白眼性状遗传的研究,他将白眼雄蝇与纯合的红眼雌蝇杂交,F1都是红眼;F2中红眼雌果蝇2 459只,红眼雄果蝇1 011只,白眼雄果蝇782只(设有关基因用R、r表示)。请回答下列问题: (1)在上述果蝇眼色中,________是显性性状,其遗传符合________定律。 (2)摩尔根的合作者布里吉斯在重复摩尔根的果蝇伴性遗传实验时,又发现了例外现象。

高中生物必修二遗传与进化知识点

必修二 遗传与进化 第一章 遗传因子的发现 第1节 孟德尔的豌豆杂交试验(一) 一.前人的观点:两个亲本杂交后,双亲的遗传物质会在子代体内发生混合,使子代表现出介于双亲之间的性状。 二.孟德尔:19世纪中期,奥地利人,遗传学之父。 三.自交与杂交:自交指基因型相同的个体之间的交配,两性花的花粉,落到同一朵花的雌蕊柱头上的过程叫做自花传粉,也叫自交;杂交指基因型不同的个体之间的交配,两花之间的传粉过程叫异花传粉,不同植株的花进行异花传粉时,供应花粉的植株叫做父本(♂),接受花粉的植株叫做母本(♀)。 四.选用豌豆做遗传试验的原因:豌豆是自花传粉植物,而且是闭花受粉,也就是豌豆花在未开放时,就已经完成了受粉,避免了外来花粉的干扰。所以豌豆在自然状态下一般都是纯种,用豌豆做人工杂交实验,结果既可靠,又容易分析。 五.孟德尔的实验:先除去未成熟化的全部雄蕊,这叫做去雄,然后套上纸袋,待雄蕊成熟时,采取另一植株的花粉,散在去雄花的雌蕊的柱头上,再套上纸袋。他发现,无论用高茎豌豆做母本(正交),还是做父本(反交)杂交后产生的第一代总是高茎。之后他用子一代自交,结果在第二代植株中,不仅有高茎,还有矮茎的。孟德尔没有停留在对实验现象的观察与描述上,而是对子二代中不同性状的个体进行数量统计,结果发现高茎与矮茎的数量比接近3:1。孟德尔又用杂种子一代高茎豌豆与隐形纯合子矮茎豌豆杂交,后代中性状分离比接近1:1。孟德尔所做的测交实验的结果验证了它的假说。 六.相对性状:一种生物的同一种性状的不同表现类型,叫做相对性状。 七.显隐性状:孟德尔把子一代显示出来的形状叫做显性性状;未显现出来的形状叫做隐形性状。 八.性状分离:在杂交后代中,同时出现显性性状和隐性性状的现象叫做性状分离。 九.孟德尔对分离现象的解释:(1)生物的性状是由遗传因子决定的。这些因子就像一个个独立的颗粒,既不会相互融合,也不会在传递中消失。每个因子决定着一种特定的性状,其中决定显性性状的为显性遗传因子,决定隐性性状的为隐性遗传因子;(2)体细胞中遗传因子是成对存在的。遗传因子组成相同的个体叫做纯合子,遗传因子组成不同的个体叫做杂合子;(3)生物体在形成生殖细胞——配子时,成对的遗传因子彼此分离,分别进入不同的配子中,配子中只含有每对遗传因子中的一个;(4)受精时,雌雄配子的结合是随机的。 十.高茎豌豆与矮茎豌豆杂交实验的遗传图解: P : × F 1 × 配子 配子 F 1 F 2 十一.假说—演绎法:在观察和分析基础上提出问题以后,通过推理和想象提出解释问题的 假说,根据假说进行演绎推理,再通过实验检验演绎推理的结论。如果实验结果与预DD dd D d Dd Dd Dd D D d d Dd Dd DD dd

高中必修二数学知识点全面总结

第1章 空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底31 3台体的体积 h S S S S V ?++=)31 下下上上( 4球体的体积 33 4 R V π= 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 222r rl S ππ+=

2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形, 锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2 作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2

必修2遗传与进化知识点

必修2遗传与进化知识点 第一章第1节孟德尔豌豆杂交试验(一) 1.孟德尔之所以选取豌豆作为杂交试验的材料是由于: (1)豌豆是自花闭花传粉植物;豌豆花较大,易于人工操作 (2)成熟后籽粒留在豆荚内,便于观察和计数。; (3)豌豆具有多个稳定的易于区分的性状。 2.遗传学中常用概念及分析 (1)性状:生物所表现出来的形态结构特征和生理特性。 相对性状:同一种生物同一种性状的不同表现类型。举例:人的卷发和直发等。 性状分离:杂种后代中,同时出现显性性状和隐性性状的现象。 显性性状:在DD×dd 杂交试验中,F1表现出来的性状即为显性。用大写字母表示。 如用D表示。 隐性性状:在DD×dd杂交试验中,F1未显现出来的性状为隐性。用小写字母表示,如用d表示。 (2)纯合子:相同基因(遗传因子)组成的个体。如DD或dd。其特点是纯合子不含等位基因,自交后代全为纯合子,无性状分离现象。 杂合子:不同基因(遗传因子)组成的个体。如Dd。其特点是杂合子含等位基因,自交后代出现性状分离现象。 (3)杂交:如:DD×dd、Dd×dd、DD×Dd等。 自交:如:DD×DD、Dd×Dd等,基因型相同的个体间。 测交:F1(待测个体)与隐性纯合子杂交的方式。如:Dd×dd 正交和反交:二者是相对而言的, 如甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交; 如甲(♂)×乙(♀)为正交,则甲(♀)×乙(♂)为反交。 3.杂合子和纯合子的鉴别方法:常用测交方法最省时间。自交方法较省力,但时间长。 若后代无性状分离,则待测个体为纯合子 测交法 若后代有性状分离,则待测个体为杂合子 若后代无性状分离,则待测个体为纯合子 自交法 若后代有性状分离,则待测个体为杂合子 例:奶牛毛色黑白斑对红白斑是显性,要鉴定一头黑白斑公牛是否为纯合子,最快速的实验方案是: A.与纯种黑白斑母牛交配 B.与杂种黑白斑母牛交配 C.与纯种红白斑母牛测交 D.研究其双亲的表现型 4.常见问题解题方法 (1)如后代性状分离比为显:隐=3 :1,则双亲一定是杂合子即Dd×Dd 3D_:1dd (2)若后代性状分离比为显:隐=1 :1,则双亲一定是测交。即为Dd×dd 1Dd :1dd (3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。 即DD×DD 或DD×Dd 或DD×dd 第2节孟德尔豌豆杂交试验(二)

高中生物必修二知识点总结(精华版)

生物必修2复习知识点 第二章基因和染色体的关系 第一节减数分裂 一、减数分裂的概念 减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。 (注:体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。) 二、减数分裂的过程 1、精子的形成过程:精巢(哺乳动物称睾丸) ●减数第一次分裂1、精子的形成过程:精巢(哺乳动物称睾丸)间期:染色体复制(包括DNA复制和蛋白质的合成)。 前期:同源染色体两两配对(称联会), 形成四分体。四分体中的非姐妹染色单 体之间常常交叉互换。 中期:同源染色体成对排列在赤道板上 (两侧)。 后期:同源染色体分离;非同源染色体 自由组合。 末期:细胞质分裂,形成2个子细胞。 ●减数第二次分裂(无同源染色体 ......) 前期:染色体排列散乱。 中期:每条染色体的着丝粒都排列在细胞中央的赤道板上。 后期:姐妹染色单体分开,成为两条子染色体。并分别移向细胞两极。 末期:细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。

2、卵细胞的形成过程:卵巢 附:减数分裂过程中染色体和DNA 的变化规律 三、精子与卵细胞的形成过程的比较 精子的形成 卵细胞的形成 不 同点 形成部位 精巢(哺乳动物称睾丸) 卵巢 过 程 有变形期 无变形期 子细胞数 一个精原细胞形成4个精子 一个卵原细胞形成1个卵细胞+3个极体 相同点 精子和卵细胞中染色体数目都是体细胞的一半

高中生物遗传与变异知识点汇总

高中生物遗传与变异知识点 一、遗传的基本规律 一、基本概念 1.概念整理: 杂交:基因型不同的生物体间相互交配的过程,一般用 x 表示 自交:基因型相同的生物体间相互交配;植物体中指雌雄同花的植株自花受粉和雌雄异花的同株受粉,自交是获得纯系的有效方法。一般用表示。测交:就是让杂种子一代与隐性个体相交,用来测定F1的基因型。 性状:生物体的形态、结构和生理生化的总称。相对性状:同种生物同一性状的不同表现类型。 显性性状:具有相对性状的亲本杂交,F1表现出来的那个亲本性状。 隐性性状:具有相对性状的亲本杂交,F1未表现出来的那个亲本性状。 性状分离:杂种的自交后代中,同时显现出显性性状和隐性性状的现象。显性基因:控制显性性状的基因,一般用大写英文字母表示,如D。 隐性基因:控制隐性性状的基因,一般用小写英文字母表示,如d。 等位基因:在一对同源染色体的同一位置上,控制相对性状的基因,一般用英文字母的大写和小写表示,如D、d。 非等位基因:位于同源染色体的不同位置上或非同源染色体上的基因。 表现型:是指生物个体所表现出来的性状。 基因型:是指控制生物性状的基因组成。 纯合子:是由含有相同基因的配子结合成的合子发育而成的个体。 杂合子:是由含有不同基因的配子结合成的合子发育而成的个体。 2.例题: (1)判断:表现型相同,基因型一定相同。( x ) 基因型相同,表现型一定相同。(x ) 纯合子自交后代都是纯合子。(√)

纯合子测交后代都是纯合子。( x ) 杂合子自交后代都是杂合子。( x ) 只要存在等位基因,一定是杂合子。(√) 等位基因必定位于同源染色体上,非等位基因必定位于非同源染色体上。( x ) (2)下列性状中属于相对性状的是( B ) A.人的长发和白发 B.花生的厚壳和薄壳 C.狗的长毛和卷毛 D.豌豆的红花和黄粒 (3)下列属于等位基因的是( C ) A. aa B. Bd C. Ff D. YY 二、基因的分离定律 1、一对相对性状的遗传实验 2、基因分离定律的实质 生物体在进行减数分裂形成配子的过程中,等位基因会随着同源染色体的分开而分离,分别进入到两种不同的配子中,独立地遗传给后代。基因的分离定律发生是由于在减数分裂第一次分裂后期,同源染色体分开时,导致等位基因的分离。 例: (1)在二倍体的生物中,下列的基因组合中不是配子的是( B ) A.YR B. Dd C.Br D.Bt (2)鼠的毛皮黑色(M)对褐色(m)为显性,在两只杂合黑鼠的后代中,纯种黑鼠占整个黑鼠中的比例是(B ) A.1/2 B.1/3 C.1/4 D.全部

必修2遗传与进化—教材填空

必修2遗传与变异——教材填空 1、豌豆是自花传粉植物,而且是闭花授粉,也就是豌豆花在未开放时,就已经完成了受粉,避免了外来花粉的干扰。所以豌豆在自然状态下一般都是纯种。 2、两性花的花粉,落到同一朵花的雌蕊柱头上的过程叫做自花授粉,也叫自交。豌豆花的 结构很适合自花传粉。 3、两朵花之间的传粉过程叫做异花传粉。孟德尔在做杂交实验时,先除去未成熟花的全部 雄蕊,这叫做去雄。然后,套上纸袋。待雌蕊成熟时,采集另一植株的花粉,撒在去雄花 的雌蕊的柱头上,再套上纸袋。 4、在杂种后代中,同时出现显性性状和隐性性状的现象叫做性状分离。 5、孟德尔针对豌豆的一对相对性状杂交实验提出的“分离假设”:生物体在形成配子时, 成对的遗传因子彼此分离,分别进入不同的配子中。配子中只含有每对遗传因子中的一个。 6、孟德尔用测交实验验证了其“分离假设”是正确的。 7、孟德尔一对相对性状的实验结构及其解释,后人把它们归纳为孟德尔第一定律,又称为分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传 给后代。 8、孟德尔针对豌豆的两对相对性状杂交实验提出的“自由组合假设”:F1(YyRr)在产生配子时,每对遗传因子彼此分离,不同对的遗传因子可以自由组合。这样F1产生的雌配子和雄配子各有4种:YR、Yr、yR、yr。它们之间的数量比为1:1:1:1。 9、孟德尔用测交实验验证了其“自由组合假设”是正确的。 10、自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时, 决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。 11、控制相对性状的基因,叫做等位基因,如D和d。 12、任何哺乳动物的精子是在睾丸中形成的。睾丸里有许多曲细精管。曲细精管中有大量 的精原细胞。精原细胞是原始的雄性生殖细胞。在减数第一次分裂前的间期,精原细胞的 体积增大,染色复制,成为初级精母细胞。 13、对于进行有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞 中染色体数目的恒定,对于生物的遗传和变异,都是十分重要。 14、萨顿的推理,也是类比推理。他将看不见的基因与看得见的染色体的行为进行类比, 根据其惊人的一致性,提出基因位于染色体上的假说。类比推理得出的结论并不具有逻辑

相关主题
文本预览
相关文档 最新文档