当前位置:文档之家› 许录平版数字图像处理复习材料(1)(2)新

许录平版数字图像处理复习材料(1)(2)新

许录平版数字图像处理复习材料(1)(2)新
许录平版数字图像处理复习材料(1)(2)新

数字图像处理复习材料(1)2010年——计算机科学、应用数学专业

第1章绪论

一、什么是图像?区分数字和模拟图像?

图是物体透射或反射光的分布。像是人的视觉系统对图在大脑中的印象。图像是图和像的有机结合。图像是对客观对象的一种可视表示,包含了被描述对象的有关信息。

根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。

二、图像处理的步骤及处理内容

主要步骤:图像信息的获取、存储、处理、传输、输出和显示。

主要内容:图像数字化、变换、增强、恢复、压缩编码、分割、分析描述和识别。

从图像识别的角度:图像预处理(增强、去噪等)、图像分割、图像识别(图像已得到)三、图像的数学表示

一幅图像所包含的信息首先表现为光的强度(intensity),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x,y,z,λ,t)

(x,y,z)空间坐标,λ波长,t时间,I光点(x,y,z)的强度(幅度)。表示一幅运动的(t)、彩色/多光谱的(λ)、立体的(x,y,z)图像。

(1)静止图像:I = f(x,y,z,λ)

(2)灰度图像:I = f(x,y,z,t)

(3)平面图像:I = f(x,y,λ,t)

(4)平面静止灰度图像:I = f(x,y)

四、数字图像处理系统的组成及作用

组成:由图像输入、图像存储、图像输出、图像通信、图像处理和分析5个模块组成。

作用:图像采集(数字化)、存储图像信息、显示或保存、传输通信、算法软件和计算机完成处理功能

五、数字图像处理的主要应用

信息安全:信息隐藏与数字水印,指纹、虹膜和面部识别(金融电子商务认证等);

图像检索:基于内容的图像检测、识别与检索(包括www);

通信方面:图像传输、数字电话、卫星通信等。压缩图像数据和动态图像(序列)传送。生物医学:细胞染色体血球分析、放射CT超声等图像、癌细胞识别、心脏动态分析等。

军事公安:军事目标探测、导弹制导、雷达声纳图像等;公安现场照片、指纹、足迹分析,人像、印章、手迹识别,集装箱核辐射成像检测,随身携带物X射线检查等。

交通管制和机场监控、流水线零件自动监测识别、邮件自动分拣和包裹的自动分拣识别等。第2章数字图像处理基础

一、三基色原理:人眼的视网膜上存在有大量能在适当亮度下分辨颜色的锥状细胞,分别对应红、绿、蓝三种颜色。红R、绿G、蓝B被称为三基色。

人眼所感受到的颜色其实是三种基色按照不同比例的组合。C = R(R)+ G(G)+ B(B)二、颜色模型:表示颜色的方法。面向机器(如显示器、摄像机、打印机等)RGB模型和面向颜色处理HSI(HSV)模型(面向人眼视觉,亮度I与彩色无关,HS与人感知对应)。1.RGB模型:在三维直角坐标系中,用相互垂直的三个坐标轴代表R、G、B三个分量,并将R、G、B分别限定在[0,1],则该单位正方体代表颜色空间,其中一个点代表一种颜色。2.HSI模型:利用颜色的三个属性色调H(hue)、饱和度S(saturation)和亮度I(intensity)组成一个表示颜色的圆柱体。H角度值色谱变化,S>1常数彩色饱和,I加小数改亮度

三、数字图像的矩阵表示

[f(0,0) f(0,1) ..... f(0,N-1)];

f(m,n)= [f(1,0) f(1,1) ..... f(1,N-1)];

.....

[f(M-1,0) f(M-1,1) ..... f(M-1,N-1)];

模板坐标:

[f(i-2,j-2) f(i-2,j-1) f(i-2,j) f(i-2,j+1) f(i-2,j+2)];

[f(i-1,j-2) f(i-1,j-1) f(i-1,j) f(i-1,j+1) f(i-1,j+2)];

[f(i,j-2) f(i,j-1) f(i,j) f(i,j+2) f(i,j+2) ];

[f(i+1,j-2) f(i+1,j-1) f(i+1,j) f(i+1,j+1) f(i+1,j+2)];

[f(i+2,j-2) f(i+2,j-1) f(i+2,j) f(i+2,j+1) f(i+2,j+2)];

四、数字图像的特点

1.信息量大:1024*768,256个灰度级的图像多少bit=1024*768*8位

2.占用频带宽。压缩的高要求。

3.像素间相关性大。(1) 帧内相邻像素相关性大;(2) 帧间对应像素相关性更大。

4.视觉效果的主观性大。

第3章图像变换

一、图像的几何变换(空间平移、比例缩放、旋转、仿射变换和图像插值)

实质:改变像素的空间位置,估算新位置的像素值。

基本几何变换的定义

通过坐标变换得新坐标u=a(x,y);v=b(x,y),原图像f(x,y)几何变换后:g(u,v)=f(a(x,y), b(x,y)); g(x,y)是目标图象。表面看没有值的改变。

二、几种常见的几何变换

u,v是新点的坐标

1.平移变换:u = x + x0;v = y + y0;

2.放缩变换:x方向放缩sx倍,y方向放缩sy倍。u = x*sx;v= y*sy ;

3.旋转变换:绕原点旋转θ度。u = x*cos(θ)-y*sin(θ);v= x*sin(θ)+y*cos(θ);

三、灰度插值(一般了解)

最近邻近插值、双线性插值(一阶)、卷积插值法。

四、非几何变换的定义(以下是非几何变换,补充概念)

对于原图象f(x,y)通这灰度值变换函数可唯一确定了非几何变换:g(x,y) = T(f(x,y))

g(x,y)是目标图象。没有几何位置的改变。彩色图像的变换要对不同层矩阵进行处理。

五、非几何变换核心是模板运算(技术:走遍每个元素)

所谓模板就是一个系数矩阵。模板大小(奇数),如:3*3等。最后再总结。

六、非几何变换:灰度级变换

灰度级变换:有图象求反、对比度拉伸、动态范围压缩、灰度级切片

七、离散傅立叶变换

1.傅里叶变换的重要性质及在图像处理中应用

变换核的可分离性(可将2D分为2次1D)、移位性、周期与共轭对称性、旋转不变性、实偶(奇)函数DFT、线性性、平均值、卷积定理、相关性定理。

应用:频谱分析、滤波、降噪等。

2.标准函数:fft2,ifft2,fftshift。

3.原理的理解及实现思路

(1)二维离散傅立叶变换(书上P39)

N-1 N-1

F(u,v) =1/N∑∑f(x,y)exp[-j2π(ux+vy)/N]

x=0 y=0

u = 0, 1, 2, …N-1; v = 0, 1, 2, ...N-1

N-1 N-1

f(x,y) =∑∑ F(u,v)exp[j2π(ux+vy)/N]

u=0 v=0

x = 0, 1, 2, ...N-1; y = 0, 1, 2, ...N-1

(2)实现算法:

对F的一个点的变换如下所示,走遍所有u,v即可(u,v为0~M-1,0~N-1)

k=0;

for x=0:M-1

for y=0:N-1

k= k +f(x,y)*exp(-j*2*pi*(u*x+v*y)/N);

end

end

F(u,v)=k;

要会写出反变换。

4.证明:(频率移位)

已知M*N的图像为f(m,n),其傅里叶变换为F(u,v)。求(-1)m+n f(m,n)的傅里叶变换。基本公式:

N-1 N-1

F(u,v) =1/N∑∑f(x,y)exp[-j2π(ux+vy)/N]

x=0 y=0

0.基础:e[jπ(x+y)]= (e[jπ])(x+y)=(cosπ+jsinπ)(x+y)=(-1) (x+y) cosπ=-1,sinπ=0

1.新f=f(x,y)exp[j2π(u0x+v0y)/N]代入基本式

新F(u,v) =∑∑f(x,y) exp[j2π(u0x+v0y)/N]exp[-j2π(ux+vy/N]

只看里面exp[-j2π((u-u0)x+(v-v0)y)/N]

=exp{-j2π[((u-u0)x+(v-v0)y)/N]}变成移位型

2.当u0=v0=N/2时(频谱中心化)

exp[j2π(u0x+v0y)/N]exp[-j2π(ux+vy)/N]中心到(N/2,N/2)

=exp[j2π(Nx/2+Ny/2)N]exp[-j2π(ux+vy)/N]

=exp[jπ(x+y)]exp[-j2π(ux+vy)/N]

=(-1) (x+y)exp[-j2π(ux +vy)/N]

3.得证明

八.哈达玛矩阵

H2=1 1H4= H2 H2H8= H4 H4

1 -1H

2 –H2H4 –H4

W2=?W4=?W8=?

九、离散余弦变换(原理同前,一般掌握)

十、简述二维DFT、DCT、DHT、DWT的异同

0:DFT函数fft2,ifft2。DCT函数dct2,idct2,DHT的hadamard,DWT要推出

1:DCT比DFT有更好的压缩功能。少数几个变换系数可表征信号总体。运算简单,变换后结果仍是实数。

2:DHT、DWT正反变换相同。是实函数变换。无正余弦计算。DHT的行(列)变号次数乱序,DWT则自然定序。所以,DWT可由DHT推出。

第4章图像增强

一、非几何变换:直方图(标准函数hist

1.图象直方图的定义(两种方法)

(1)灰度级[0,L-1]直方图是一个离散函数p(rk)= nk/n

n 像素总数;nk第k个灰度级的像素总数;rk第k个灰度级,k = 0,1,2,…,L-1

(2)灰度级[0,L-1]直方图是一个离散函数p(rk)= nk(不除n)k = 0,1,2,…,L-1

要求编写程序实现方法2的直方图,并会用imhist

A=imread('LENA256.bmp');B=double(A);

[m,n]=size(B);h=zeros(1,256);

for i=1:m

for j=1:n

k=B(i,j);

h(1,k+1)=h(1,k+1)+1;%该灰度单元++

end

end

imshow(A); imhist(A); plot(h)

2.直方图均衡化(自动调节图象对比度)

通过灰度级r的概率密度函数p(rk ),求出灰度级变换T(r) ,建立等值像素出现的次数与结果像素值之间的关系。要求会用求图均衡化。

3.直方图规定化

要求会用函数求规定化。

%求灰度图像直方图及均衡化,规定化

%横坐标是灰度级,纵坐标是灰度出现的频率(个数)

A=imread('LENA256.bmp');

B=histeq(A);%直方图均衡化

hgram=100:255;hgram1=zeros(256,1);%前100项为0,从100~255

hgram1(100:255)=hgram(1:156);%规定hgram1

C=histeq(A,hgram1);%直方图规定化

imhist(A);%显示直方图

imhist(B)%显示均衡化直方图

imhist(C)%显示规定化直方图0~255

二、图像平滑、锐化处理——空域

1.空域滤波处理的基本概念

定义:使用空域模板进行的图像处理,被称为空域滤波。模板本身被称为空域滤波器

●线性滤波器:线性系统和频域滤波概念在空域的自然延伸。其特征是结果像素值的计算由

00

1

(,)(,)0

(,)D u v D H u v D u v D ≤?=?

>?

下列公式定义:——算出一个数(均值滤波去除高斯噪声) R = w1z1 + w2z2 + … + wnzn

其中:wi i = 1,2, … ,n 是模板的系数

zi i = 1,2, … ,n 是被计算像素及其邻域像素的值 低通滤波器主要用途:钝化图像、去除噪音

高通滤波器主要用途:边缘增强、边缘提取

带通滤波器主要用途:删除特定频率、增强中很少用

●非线性滤波器:使用模板进行结果像素值的计算,结果值直接取决于像素邻域的值,而不使用乘积和的计算(不用R = ∑)——挑一个数

中值滤波用途:钝化图像、去除椒盐噪声。公式:R = mid {z k | k = 1,2,...,9} 最大值滤波用途:寻找最亮点。公式:R = max {z k | k = 1,2,...,9} 最小值滤波用途:寻找最暗点。公式:R = min {z k | k = 1,2, (9)

2.钝化滤波器

基本低通滤波(优点:降低噪音。钝化处理,恢复过分锐化的图像。删去无用的细小细节。图像创艺,有阴影、软边、朦胧效果。缺点:在去噪同时也钝化了边和尖锐的细节)

模板系数设计:1)大于0。2)都选1,或中间选1,周围选0.5(5*5为1或3*3为1,周围为0.5)。如3*3,5*5模板。3)求均值,/n

通过求均值,解决超出灰度范围问题。模板尺寸越大,图像越模糊,图像细节丢失越多 3.锐化滤波器

基本高通滤波(优点:强化边缘、克服边缘模糊及过度钝化。图像创意,只要边界。缺点:增强边缘的同时,也加强了噪声,丢失了图像的层次和亮度)

模板系数设计:1)中心系数为正值,外围为负值2)系数之和为0(书上为1)3)/n 有了正负了。微分滤波器的原理

均值∑产生钝化的效果,微分能产生相反的效果,即锐化。应用微分最常用的方法是计算梯度。函数f(x,y)在(x,y)处的梯度为一个向量:

af / ax=z5–z6近似

af / ay=z5–z8近似,组合为:

grad(x,y)=[(z5 - z6)2 + (z5 - z8)2]1/2

三、图像平滑、锐化处理——频域的低通滤波、高通滤波 1.低通滤波

基本低通滤波器

00

(,)(,)(4.45)

1

(,)D u v D H u v D u v D ≤?=-?

>

?

指数低通滤波 梯形低通滤波

%频域低通滤波ILPFP82 F=imread('LENA256.bmp');

[M,N]=size(F);ILPF=zeros(M,N);H=zeros(M,N);

F=fft2(F); fftshift(F);d0=250; for u=1:M

for v=1:N

d(u,v)=sqrt(u^2+v^2); if d(u,v)<=d0 H(u,v)=1; else H(u,v)=0; end ILPF(u,v)=H(u,v)*F(u,v); end

end

ILPFfiltered=ifft2(ILPF); imshow(F,[]);%原图 imshow(ILPFfiltered,[]); 替换阴影

BLPF 处理:

h (u,v)= 1/(1+0.414*(d/d0)^(2*n)); ELPF

h(u,v)=exp(log(1/sqrt(2))*(D(u,v)/D0)^n); TLPF 处理:

D(u,v)=sqrt(u^2+v^2); if D(u,v)

if (D(u,v)>=D0)&&(D(u,v)<=D1) THPFH(u,v)=(D(u,v)-D1)/(D0-D1); else

THPFH(u,v)=0; end end

2.高通滤波

基本高通滤波

巴特沃斯高通滤波

指数高通滤波

梯形高通滤波

3.同态滤波器

同态滤波是一种在频域中同时将图像亮度范围进行压缩和将图像对比度进行增强的方法。自然景物图像f(x,y)由照明函数f(x,y)和反射函数r(x,y)的乘积表示。

f(x,y)=i(x,y)r(x,y) i(x,y)为照明分量,是入射到景物的光强度;r(x,y)为反射分量,是受到景物反射的光强度。

工作程序

1取对数,相乘变相加lnf(x,y)=lni(x,y)+lnr(x,y)

2傅里叶变换F[lnf(x,y)]=F[lni(x,y)]+F[lnr(x,y)] 写成:Z(u,v)=I(u,v)+R(u,v) 3用滤波函数H(u,v)来处理Z(u,v),得到H(u,v)Z(u,v)=H(u,v)I(u,v)+H(u,v)R(u,v) 4傅里叶反变换到空域:s(x,y)=i’(x,y)r’(x,y)

5指数变换:g(x,y)=es(x,y)=ei’(x,y)er’(x,y)=i0(x,y) r0(x,y)

i0(x,y)、r0(x,y)为入射分量和反射分量。

H(u,v)被称为同态滤波器。

数字图像处理复习材料(2)2010年——计算机科学、应用数学专业

第5章图像恢复

1.图像退化模型

图像退化过程一般可看作是噪声污染的过程,假定是加性白噪声,退化图像为

g(x,y)=h(x,y)*f(x,y)+n(x,y)

2.逆滤波

由逆滤波的估计输出来看

F(u,v)=G(u,v)/H(u,v)= P(u,v)G(u,v)

如果H(u,v)在uv平面上某些区域等于0或非常小时,会存在病态现象。其处理方法是:

H(u,v)=0处理、H(u,v)在小区域时、消除振铃

3.维纳滤波器——寻找一个使统计误差函数e2=E{f-f^}2}=min最小的估计f^(最小均方误差滤波器)

4.约束最小平方滤波器与维纳滤波器都属于约束恢复滤波器,公式类似,但计算比后者简单些,不需知道图像和噪声的自相关矩阵Rf和Rn

5.灰度插值法有

最近邻近插值、双线性插值、三次插值

第6章图像压缩编码

1.图像压缩就是对给定量信息,通过消除数据冗余来减少表达这些信息所需的比特数。

数据冗余有:编码冗余、像素间冗余、心理视觉冗余——人观察图像主要是目标特征而不是像素,有些信息可以忽略。这被称为心理视觉冗余。

2.图像压缩编码

统计编码——霍夫曼、算术编码(掌握编码方法)

预测编码——重点介绍了差分脉冲编码调制DPCM的原理:将输入序列与预测值相减,得到预测误差值,量化该值后,经信道传送,作为预测器的下一个输出。

3.正交变换编码

(1)变换阵大小的选择(2)正交变换的特点(3)子图像系数的选取

正交变换使能量集中于低频,而高频能量小。再对变换系数进行截取和量化编码。

4.小波变换及其应用(小波变换dwt2在指定小波基后,将原矩阵分解为近似、水平、垂直、对解四部分,其中近似为低频,其余为高频)。通过idwt2可重建图像。改变系数可用水印。5.压缩标准。JPEG基于DCT变换、JPEG2000基于小波变换的编码方式。

6.基函数。傅里叶变换的基函数为正、余弦。离散余弦函数的基函数为余弦。小波变换的基函数为小波。

7.小波变换图像压缩步骤

(1)利用离散小波变换分解原图像,亮度、水平边缘、垂直边缘、对角边缘。

(2)对四个子波图像,根据人的视觉和心理特点进行量化和编码处理。

(3)通过小波反变换重构图像。

第7章图像分割

1.主要介绍了边缘检测和阈值分割两种技术。

(1)边缘检测——边缘反映了目标的主要特征,是图像识别、分类和理解的直接依据。边缘又是图像的轮廓,加重边缘并加回原图像中,可实现图像的锐化。

(2)阈值分割——图像中目标与背景、不同目标间的灰度值有明显差别,其灰度直方图呈

现双峰或多峰状,通过阈值的确定将图像分割不同的目标和背景区域。达到图像分割的目的。 2.梯度算子法——利用一阶导数检测边缘 已知函数f(x,y),在点(x,y)的梯度 Gx=αf/αx, Gy=αf/αy

f(x,y)的梯度=[Gx=αf/αx Gy=αf/αy]T 幅度G(x,y)=( Gx 2

+Gy 2)1/2

相位φ(x,y)=arctan(Gx/Gy)

梯度幅度计算的三种方法:原理法、绝对值和法、最大绝对值法P192 3*3区域坐标表示: [f(i-1,j-1)

f(i-1,j) f(i-1,j+1) ];

[f(i,j-1) f(i,j) f(i,j+2) ]; [f(i+1,j-1) f(i+1,j) f(i+1,j+1)]; X 方向的模板(基本型) [0 0 0 ] [-1 1 0 ] [0 0 0 ] Y 方向的模板 [0 -1 0 ] [0 1 0 ] [0 0 0 ]

3*3区域乘模板(点乘)后再相加。得到 Gx=-f(i,j-1)+f(i,j)

Gy=-f(i-1,j)+f(i,j)

总结:正交梯度法检测边缘点的过程 (1)f(x,y)

(2)与水平、垂直卷积(点乘再相加),进行合成,再进行阈值处理 (3)得到边缘点

3.常用的几种梯度算子方法(记忆:有正负0) (1)base 基本型

(2)Robert 四点差分 (3)Prewitt 平均差分 (4)Sobel 加权平均差分 (5)Kirsch 方向梯度 基本型 Robert Prewitt

Sobel

Kirsch

4.线检测模板

线的梯度定义:G(m,n)=max{|G1(m,n)|, |G2(m,n)|, |G3(m,n)|, |G4(m,n)|},0、45、90、-45度四个方向。

5.二阶导数

检测模板4邻检测模板,也可写出8邻检测模板? 0

-1 0

0 -1 0

6.会使用canny函数

7.阈值分割的T的确定

(1)指定(实验法)

(2)迭代法P214

?求出图像最大、最小灰度值,求出初始阈值T=(tmax+tmin)

?求出两部分平均灰度值t0、t1

?求新的阈值Tnew=(t0+t1)/2

?如果两次T相等或次数>要求次,结束。否则继续第二步。

(3)类间方差法

8.区域分割法

主要有区域增长法、分裂合并法。

区域增长法:简单生长法(点与生长点比)、质心生长法(点与已生长区域均值比)、混合生长法(相邻两区域比)

分裂合并法:先分解不重叠区域,再按相似性准则合并。

第8章图像描述

图像几何特征和几种常用图像描述方法(边界、矩、纹理、形态学)。

1.像素间基本关系

4连通(8连通)

当前像素为黑,其4(8)个近邻至少一个为黑。

连通域:相互连在一起黑色像素的集合。

2.像素间距离(对两个点来说)

欧几里得距离(平方和的根)、街区距离(绝对值的和)、棋盘距离(绝对值的最大)

3.目标物的边界描述

边界描述是将目标物的边界用简洁的数值序列表示。

链码——任一条边界点连成的曲线序列,可由起点坐标和代表各方向的方向符构成的数码序列(链码)表示。存贮了目标信息(位置、周长、形状)。根据4方向数或8方向数,会写出曲线的链码表示。

为克服码串较长、噪声影响、起点及旋转影响的问题,提出了起点归一化、差分码两种方法。4.图像的几何特征(对区域来说)

面积、周长、圆形度、外接矩形、偏心率、紧凑性

5.图像的不变矩

目标图像的形状描述可用不变矩来描述。不变矩具有平移、旋转、缩放不变性。

对一个图像进行计算后,可得到不变矩的7个参数。可用来进行形状识别。

6.数学形态学

(1)四种基本运算:腐蚀、膨胀、开运算、闭运算

(2)可实现骨架化、细化、粗化、修剪、区域填充等功能。

第9章图像分类识别

1.图像分类识别系统

图像获取→图像预处理→图像分割→特征提取→分类识别

2.图像匹配

模板匹配——已知模板T、搜索图像S,将T在S上平移,模板盖住的S区域为子图。

比较T与S子图来看相似性。问题:需要逐点检测,计算量大。

人们关心的不是目标区域内所有像素,而是目标特征。常用的匹配特征:特征点、字符串、形状数等。

4.图像分类

监督分类——根据预先已知类别训练样本的学习,形成固化的记忆模式,再对未知数据进行分类。

非监督分类(聚类分析法)——在无先验知识的情况下,根据模式之间相似性做类别划分,将相似性强的划分为同类别,体现了物以类聚的思想。 5.图像识别

统计模式识别、结构模式识别、神经网络识别

6.神经网络识别—— 在分割后图像的基础上,进行特征提取。通过学习样本,形成了固化的记忆模式(神经网络)。然后再对新目标识别分类。神经网络分为三层,输入、隐含、输出层。

相关技术:

预处理(去噪、增强等滤波)——图像分割——特征提取(主成分、不变矩)——输入神经网络——输出

走遍元素的基本思想

(1)傅里叶变换:F(u,v)=∑∑f(x,y)E(x,y,u,v),反变换f(x,y)= ∑∑F(u,v)E(u,v,x,y)只是求了一个点。再加上两重循环,走遍每个u,v (或x,y )P39的实现

(2)频域的高、低通滤波:P82的实现 开始:图像I→F=fft2(I)

核心:d(u,v)=sqrt(u 2+v 2)→根据d ,得到不同的H(u,v) →G(u,v)=H(u,v)*F(u,v) 对G(u,v)走遍元素。 结束:新I=ifft2(G)

(3)均值类滤波:利用模板走遍元素的方法,求对LENA256.bmp 均值滤波(其它各类平均同样原理) [f(i-1,j-1) f(i-1,j) f(i-1,j+1) ]; [1 1 1] [2 2 2] [f(i,j-1) f(i,j) f(i,j+2) ]; [1 1 1] [2 2 2] [f(i+1,j-1)

f(i+1,j) f(i+1,j+1)];

[1 1

1]

[2 2

2]

将上面用s=∑∑按要求写出/9,f(i,j)=s 相当于3*3的1模板。走遍元素。2:m-1,2:n-1 核心:上面两个矩阵点乘,然后再按列按行相加。形成s 思考:如果模板矩阵改变,计算原理一样。 原始方法:按3*3的1阵写出坐标的相加。

f(i,j)=(f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)+f(i,j-1)+f(i,j)+f(i,j+2)+f(i+1,j-1)+f(i+1,j)+f(i+1,j+1))/9; (4)中值、最大值、最小值滤波。

f(i,j)=(f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)+f(i,j-1)+f(i,j)+f(i,j+2)+f(i+1,j-1)+f(i+1,j)+f(i+1,j+1))/9; 将上式+改为,然后根据要求加median 、max 、min 即可。再思考:sum(sum(F .*G)) (5)模板锐化P90:方法同(2)。原是3*3的1模板,现改为相应3*3有正负有0的模板(4邻域、8邻域仍是3*3)。 (6)边缘检测(与上面区别:用了两个模板3*3,但要合起来再走遍元素) 横纵结合:平方和求根、绝对值和、绝对值最大

(7)阈值分割。已知T ,如何对灰度图像进行阈值分割,分为黑白图像? 方法1:仍采用走遍元素。I 为图像矩阵,H 为结果矩阵(同样大小0阵)。

if I(i,j)>T H(i,j)=1 else H(i,j)=0; 再套上二重循环即可。方法2:H=I>T更简单。不用循环。

数字图像处理实验 实验二

实验二MATLAB图像运算一、实验目的 1.了解图像的算术运算在数字图像处理中的初步应用。 2.体会图像算术运算处理的过程和处理前后图像的变化。 二、实验步骤 1.图像的加法运算-imadd 对于两个图像f x,y和 (x,y)的均值有: g x,y=1 f x,y+ 1 (x,y) 推广这个公式为: g x,y=αf x,y+β (x,y) 其中,α+β=1。这样就可以得到各种图像合成的效果,也可以用于两张图像的衔接。说明:两个示例图像保存在默认路径下,文件名分别为'rice.png'和'cameraman.tif',要求实现下图所示结果。 代码: I1 = imread('rice.png'); I2 = imread('cameraman.tif'); I3 = imadd(I1, I2,'uint8'); I4 = imadd(I1, I2,'uint16'); subplot(2, 2, 1), imshow(I1), title('?-ê?í???1'); subplot(2, 2, 2), imshow(I2), title('?-ê?í???2'); subplot(2, 2, 3), imshow(I3), title('8??í?????ê?'); subplot(2, 2, 4), imshow(I4), title('16??í?????ê?'); 结果截图:

2.图像的减法运算-imsubtract 说明: 背景图像可通过膨胀算法得到background = imopen(I,strel('disk',15));,要求实现下图所示结果。 示例代码如下: I1 = imread('rice.png'); background = imerode(I1, strel('disk', 15)); rice2 = imsubtract(I1, background); subplot(2, 2, 1), imshow(I1), title('?-ê?í???'); subplot(2, 2, 2), imshow(background), title('±3?°í???'); subplot(2, 2, 3), imshow(rice2), title('′|àíoóμ?í???'); 结果截图: 3.图像的乘法运算-immultiply

数字图像处理 作业1汇总

数字图像处理 报告标题:01 报告编号: 课程编号: 学生姓名: 截止日期: 上交日期:

摘要 (1)编写函数计算灰度图像的均方误差(MSE)、信噪比(SNR)、峰值信噪比(PSNR)、平均绝对误差(MAE);(2)编写函数对灰度图像经行降采样,直接消除像素以及消除像素前进行简单平滑滤波;(3)编写函数对图像进行放大,分别使用像素直接复制和双线性插值的方法:(4)编写函数用题目给出的量化步骤Q去量化灰度图像,并给出相应的MSE和直方图;(5)编写函数对灰度图像执行直方图均衡化,显示均衡前后的直方图。同时,熟悉使用MATLAB,并且熟练操作对图像进行各种修改变换等。 KEY WORD :MATLAB MSE、PSNR 直方图量化

技术探讨 数字图像处理是基于Matlab来实现的,由于Matlab 独特的功能和对矩阵,图像,函数灵活的处理,因而用于图像的处理相当的方便。 task1 均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)。可以使用使用for循环语句,分别计算图像MSE/SNR/PSNR/MAE,具体的计算公式见附录代码,下面只附运算原理代码 均方误差(MSE): sum=sum+(a(i,j)-b(i,j))^2; MSE=sum/(M*N) 信噪比(SNR): sum2=sum2+a(i,j)^2; SNR=10*log10(sum2/MSE) 峰值信噪比(PSNR): sum=sum+(a(i,j)-b(i,j))^2; PSNR=10*log10(255^2/MSE) 平均绝对误差(MAE): sum=sum+a(i,j)+b(i,j); MAE=sum/(M*N) 在每次对同一个图像处理时它们的均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)都会有所不同,因为它是原图像与加噪后的图像比较,而电脑的每次操作都会对加噪过得图像有影响。 task3 按比例缩小灰度图像 (1)直接消除像素点: I1=g(1:m:end,1:m:end);I1 为缩小后的图像,g为原图。 (2)先平滑滤波再消除像素点: 滤波函数,g=imfilter(I,w,'corr','replicate'); task4 对图像的放大运用了pixel repetition法以及双线性插值法: 它有三种插值法:即最近邻插值(pixel repetition)、双线性插值、双三次插值(缩放倍数为0.5) ;缩放与放大由给定的参数来确定。 ;缩放与放大由给定的参数来确定。而缩小则同样适用I1=g(1:m:end,1:m:end); 而放大的代码为“J=imresize(I,m,'nearest');%使用pixel repetition法”和“J=imresize(I,m,'bilinear');%使用双线性插值法” 放大倍数更改m值即可 task4 对图像的量化,使用“J=histeq(I,x); ”,x为可变的量化步长 task5 灰度图像的量化和直方图均衡化直接调用函数。“J=histeq(I)”“imhist(I,64)”

数字图像处理实验2

Exercise 3 https://www.doczj.com/doc/442551573.html,e picture “Fig0401.tif” to do the following questions: ①Read the picture, and write down the Fourier transform program of it. >> f=imread('Fig0401.tif'); >> g=fft2(f); Warning: FFTN on values of class UINT8 is obsolete. Use FFTN(DOUBLE(X)) or FFTN(SINGLE(X)) instead. > In uint8.fftn at 10 In fft2 at 19 >> s=abs(g); >> imshow(s,[])

②Use the function fftshift to center the spectrum. >> fc=fftshift(g); >> imshow(abs(fc),[]) ③Use logarithmic transformation to enhance the centered spectrum. >> s2=log(1+abs(fc)); >> imshow(s2,[])

④Visualize the dealing results of step②and step③. 结果如上 2.Generate a filter function H ①Use function fspecial to generate a ‘laplacian’ spatial domain filter h >> h=fspecial('laplacian',0.5) h= 0.3333 0.3333 0.3333 0.3333 -2.6667 0.3333 0.3333 0.3333 0.3333 ②Use function freqz2 to convert the spatial domain filter h to frequency domain filter H. >>h= freqz2(h);

数字图像处理大作业

大作业指导书 题目:数字图像处理 院(系):物联网工程学院 专业: 计算机 班级:计算机1401-1406 指导老师: 学号: 姓名: 设计时间: 2016-2017学年 1学期

摘要 (3) 一、简介 (3) 二、斑点数据模型 .参数估计与解释 (4) 三、水平集框架 (5) 1.能量泛函映射 (5) 2.水平集传播模型 (6) 3.随机评估方法 (7) 四、实验结果 (8) 五、总结 (11)

基于水平集方法和G0模型的SAR图像分割 Abstract(摘要) 这篇文章提出了一种分割SAR图像的方法,探索利用SAR数据中的统计特性将图像分区域。我们假设为SAR图像分割分配参数,并与水平集模型相结合。分布属于G分布中的一种,处于数据建模的目的,它们已经成功的被用于振幅SAR图像中不同区域的建模。这种统计数据模型是驱动能量泛函执行区域映射的基础,被引用到水平集传播数值方案中,将SAR 图像分为均匀、异构和极其异构区域。此外,我们引入了一个基于随机距离和模型的评估过程,用于量化我们方法的鲁棒性和准确性。实验结果表明,我们的算法对合成和真实SAR 数据都具有准确性。+ 简介 1、Induction(简介) 合成孔径雷达系统是一种成像装置,采用相干照明比如激光和超声波,并会受到斑点噪声的影响。在SAR图像处理过程中,返回的是斑点噪声和雷达切面建模在一起的结果。这个积性模型(文献[1])因包含大量的真实SAR数据,并且在获取过程中斑点噪声被建模为固有的一部分而被广泛应用。因此,SAR图像应用区域边界和目标检测变得更加困难,可能需要斑点去除。因此,斑点去除是必需的,有效的方法可以在文献[2][3][4][5][6][7][8][9][10]中找到。 对于SAR图像分割,水平集方法构成一类基于哈密顿-雅克比公式的重要算法。水平集方法允许有效的分割标准公式,从文献[12]中讨论的传播函数项可以得到。经典方法有着昂贵的计算成本,但现在的水平集的实现配置了有趣的低成本的替换。 水平集方法的一个重要方面,比如传播模型,可以用来设计SAR图像的分割算法。这个传播函数能够依据伽马和伽马平方根法则将斑点统计进行整合,函数已经被广泛地应用于SAR图像中的均质区域分割。Ayed等基于伽马分布任意建模,设计方案将SAR图像分成多个均质区域。尽管多区分割问题已经解决,该方案人需要一定数量的区域作为输入。Shuai 和Sun在文献[16]中提出对这个方法进行了改进,他们使用了一个有效的传播前收敛判断。Marques等引入了一个类似于含有斑点噪声图像中目标检测的框架,将基于本地区域的斑点噪声统计融合进去。这些作者采用伽马平方根对均质区域进行建模并用一个自适应窗口方案检测本地的同质性。 最近,新的SAR数据模型比如K,G,显示出了优势。经典法则受限于均质区域特性的描述,而最近的法则展现出了在数据建模中更有吸引力的特性。法则允许同构、异构和高度异构幅度SAR数据的建模。这个分布族提供了一组参数,可以描述SAR图像中的不同区域。分布的参数信息,可以被广泛的应用于设计SAR图像处理和分类技术。在文献[21]中,Mejail 等人介绍了SAR监督数据分类器,它基于其参数映射并实现了有趣的结果。Gambini等人在文献[22]中使用这个分布的一个参数来量化SAR数据的粗糙度,通过活动轮廓和B样条差值来检测边缘。然而,这种技术需要一个初始分割步骤,并受拓扑限制。一般来说,活动轮廓方法不能解决不连续区域分割的问题。 本文介绍了一种新的水平集算法来实现SAR图像中均质、异构和极其异构区域分割的目标。由于分布能够描述SAR图像的同质性和规模,我们的方法采用分布对斑点数据进行建模。这些分布参数基于每一个域点进行估计,通过这些信息,我们可以在水平集分割框架内得到一个能量泛函来驱动向前传播(front propagation)。该泛函以最大化不同区域平均能量间的差异作为结束。最终水平集阶段以能量带作为依据得到SAR图像的分割结果。

数字图像处理期末复习题2教学总结

第六章图像的锐化处理 一.填空题 1. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。垂直方向的微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 2. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Roberts交叉微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 3. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Sobel 微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 4. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Priwitt微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 5. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Laplacian微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 6. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Wallis 微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 7. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。水平方向的微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 8. 图像微分______________了边缘和其他突变的信息。(填“增强”或“削弱”) 9. 图像微分______________了灰度变化缓慢的信息。(填“增强”或“削弱”) 10. 图像微分算子______________用在边缘检测中。(填“能”或“不能”) 四.简答题 1. 图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方? 2. 一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同? 3. 简述水平方向的微分算子的作用模板和处理过程。 4. 简述垂直方向的微分算子的作用模板和处理过程。 5. 已知Laplacian微分算子的作用模板为:,请写出两种变形的Laplacian算子。解答: 1. 图像的细节是指画面中的灰度变化情况,包含了图像的孤立点、细线、画面突变等。孤 立点大都是图像的噪声点,画面突变一般体现在目标物的边缘灰度部分。 2. 一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界 比较清晰;二阶微分算子获得的边界是比较细致的边界。反映的边界信息包括了许多的细节 信息,但是所反映的边界不是太清晰。 五.应用题 1. 已知Roberts算子的作用模板为:,Sobel算子的作用模板为: 。 设图像为:

数字图像处理实验

研究性实验五 一、实验说明: 一个用瓶子装各种工业化学品的装瓶公司听说你成功解决了成像问题,并雇佣你设计一种检测瓶子未装满的方法。当瓶子在传送带上运动,并通过自动装填机和封盖机进行包装时有如下图所示的情景。当液体平面低于瓶颈底部和瓶子肩部的中间点时,认为瓶子未装满。瓶子的横断面上的倾斜部分及侧面定义为瓶子的肩部。瓶子在不断移动,但公司有一个图像系统,装备了有效捕捉静止图像的前端闪光照明设备。所以你可以得到非常清晰的图像。基于以上你得到的资料,提出一个检测未完全装满的瓶子的解决方案。清楚地表述你做的所有设想和很可能对你提出的解决方案产生影响的假设。 二、实验思路分析: 三、实验步骤 步骤一:读入原始图像

步骤二:将图像进行二值化处理 BW = im2bw(I,0.7); 由于原始图像中白色比较明显,瓶身的颜色和背景比较相近,所以直接进行二值化处理,将未装满液体的信息提取出来。 步骤三:将图像聚类后进行连通域的膨胀。 将图像二值化后发现图中存在噪声,选择将图像进行模糊膨胀后再二值化处理,从而去掉小连通域的干扰。 步骤四:重新二值化膨胀后的图像

步骤五:标记连通域,并统计每个连通域的面积。 经统计得到从左到右的连通域面积分别为3495 4398 11212 4398 2573,限定范围,可知11212对应的连通域所对应的瓶子是不符合要求的。 四、实验代码 功能:找出图像中灌装不合格的瓶子。 说明:(1)输入的图像必须是灰度图,否则需要将之格式转换。 (2)图像处理的步骤是:①对灰度图像glass.jpg进行二值化,②进行形态学处理, ③计算白色连通区域的面积和质心等,④通过判断质心的坐标和未装灌的面积得出是否合格。图像处理后五个白色区域面积为: [2374, 2739, 8381, 2739, 1660;] 五个质心的坐标数据: [20.6251,48.0434,138.6046,46.6575,256.2667,84.9748,376.6046,46.6575,484.6181,47.9084;] 通过没有装灌部分的面积大于2900来判定装灌不合格,两个合格的值为2739,其余未照全的部分判断还可以 根据其质心判断,合格的瓶子为46.6575,坐标过大也不合格,这里取50。 源代码: clear all; close all; T = 200; % 全局阈值200时效果要好一些,手动选出的值 %step1 读取和显示原始图像,显示原始图像的直方图 picOP = imread('glass.jpg'); % 读入图像 figure,imshow(picOP),title('原始灰度图像'); % 显示图像 figure, imhist(picOP), title('原始灰度图像直方图'); % 显示原始图像的直方图 % step2 转化为二值图像 picB = picOP; % 复制灰度图像到picB picBW = im2bw(picB,T/255); % 采用全局阈值进行灰度图像转变为二值图像 figure,imshow(picBW),title('全局阈值下二值图像'); % 显示二值图像 % step3 进行形态学操作,转化为有利于处理的图像 picMORPHOLOGY = picBW ; % 复制准备形态学处理 se = strel('square',10); % 结构化元素 fo = imopen(picMORPHOLOGY,se); % 开操作 figure,imshow(fo),title('开运算之后图像'); % 输出开运算之后图像 % step4 计算出各个白色连通区域(未装灌区域)面积和质心坐标

数字图像处理大作业.doc

-------------精选文档 ----------------- 1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请 给出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1 像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I);%对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100)% 阈值为 100 I1(i,j)=255; else I1(i,j)=0;%进行二值化

-------------精选文档 ----------------- end end end figure; imshow(I1); Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c%找出每两个条纹之间的距离

2.现有 8 个待编码的符号 m0,,m7, 它们的概率分别为 0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3.请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

数字图像处理期末考题

数字图像处理 一、填空题 1、数字图像的格式有很多种,除GIF格式外,还有jpg 格式、tif 格式。 2、图像数据中存在的有时间冗余、空间冗余、结构冗余、信息熵冗余、知识 冗余、视觉冗余。 3、在时域上采样相当于在频域上进行___延拓。 4、二维傅里叶变换的性质___分离性、线性、周期性与共轨对称性、__位 移性、尺度变换、旋转性、平均值、卷积。(不考) 5、图像中每个基本单元叫做图像元素;在早期用picture表示图像时就称为 像素。 6、在图象处理中认为线性平滑空间滤波器的模板越大,则对噪声的压制越 好 ;但使图像边缘和细节信息损失越多; 反之, 则对噪声的压制不好 ,但对图像的细节等信息保持好。模板越平,则对噪声的压制越好 ,但对图像细节的保持越差;反之,则对噪声的压制不好,但对图像细节和边缘保持较好。 7、哈达玛变换矩阵包括___+1 和___—1 两种矩阵元素。(不要) 8、对数变换的数学表达式是t = Clog ( 1 + | s | ) 。 9、傅里叶快速算法利用了核函数的___周期性和__对称性。(不要) 10、直方图均衡化的优点是能自动地增强整个图像的对比度。(不要) 二、选择题 ( d )1.一幅灰度级均匀分布的图象,其灰度范围在[0,255],则该图象的信息量为: a. 0 .255 c ( c )2.采用模板[-1 1]主要检测____方向的边缘。 a.水平 b.45 c.垂直 ( c )3. 下列算法中属于图象平滑处理的是: a.梯度锐化 b.直方图均衡 c. 中值滤波增强 ( b )4.图象与灰度直方图间的对应关系是: a.一一对应 b.多对一 c.一对多 d.都不对 ( a )5.对一幅图像采样后,512*512的数字图像与256*256的数字图像相比较具有的细节。 a.较多 b.较少 c.相同 d.都不对 ( b )6.下列算法中属于点处理的是: a.梯度锐化 b.二值化 c.傅立叶变换 d.中值滤波 ( d )7.二值图象中分支点的连接数为: .1 c ( a )8.对一幅100100像元的图象,若每像元用8bit表示其灰度值,经霍夫曼编码后压缩图象的数据量为40000bit,则图象的压缩比为: :1 :1 c.4:1 :2 ( d )9.下列算法中属于局部处理的是: a.灰度线性变换 b.二值化 c.傅立叶变换 d.中值滤波 ( b )10.下列图象边缘检测算子中抗噪性能最好的是: a.梯度算子算子算子d. Laplacian算子

数字图像处理实验2冈萨雷斯.

实验二灰度直方图及直方图均衡化 一、 实验目的: 1、直方图显示 2、计算并绘制图像直方图 3、直方图均衡化二、实验内容 学习使用函数 imhist(, histeq(, bar(, stem(, plot(, imadjust(,及 title, axis, set 等描述图像工具。 1、直方图显示 显示图 Fig0354(a(einstein_orig.tif,标注图的题目为:EINSTEIN ,作出其直方图,调整参数如下图所示: EINSTEIN

4 2、分别用 bar 和 stem 函数显示直方图 由 h=imhist( 获得直方图;分别用 bar 和 stem 显示直方图 h ,并通过参数调整,改变直方图的显示方式。用 axis 设置轴的最大、最小值(例如:axis([0 255 0 15000];),用 set 设置显示坐标的间隔(例如:set(gca,’xtick ’, 0:50:255)。作出如下的直方图: 00 50

100 150 200 250 3、用 plot 函数显示直方图要求同 2. 12000 1000080006000400020000 0 50 100 150 200 250 300 4、用 imadjust( 函数调整图像对比度,并用 imhist( 查看调整前后直方图的变化。 3 . 2 . 1 . 0 . 4

5、用 histeq( 进行直方图均衡化,并用 imhist( 查看均衡化前后直方图的变化。

4 三、实验要求 将本实验的 10 个图用 MATLAB 显示到屏幕上。程序: i=imread('Fig0354(a(einstein_orig.tif'; imshow(i; title('EINSTEIN'; figure; imhist(i; title('直方图';

数字图像处理大作业

1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请给 出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I); %对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100) %阈值为100 I1(i,j)=255; else I1(i,j)=0; %进行二值化 end end end figure; imshow(I1);

Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c %找出每两个条纹之间的距离

2. 现有8个待编码的符号m0,……,m7,它们的概率分别为0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3. 请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

数字图像处理期末复习

遥感与数字图像处理基础知识 一、名词解释: 数字影像图像采样灰度量化像素 数字影像:数字影像又称数字图像,即数字化的影像。基本上是一个二维矩阵,每个点称为像元。像元空间坐标和灰度值均已离散化,且灰度值随其点位坐标而异。 图像采样:指将在空间上连续的图像转换成离散的采样点集的操作。 灰度量化:将各个像素所含的明暗信息离散化后,用数字来表示。 像素:像素是A/D转换中的取样点,是计算机图像处理的最小单元 二、填空题: 1、光学图像是一个连续的光密度函数。 2、数字图像是一个_离散的光密度_函数。 3、通过成像方式获取的图像是连续的,无法直接进行计算机处理。此外,有些遥感图像是通过摄影方式获取的,保存在胶片上。只有对这些获取的图像(或模拟图像)进行数字化后,才能产生数字图像。数字化包括两个过程:___采样___和__量化___。 4、一般来说,采样间距越大,图像数据量____小____,质量____低_____;反之亦然。 5、一幅数字图像为8位量化,量化后的像素灰度级取值范围是________的整数。设该数字图像为600行600列,则图像所需要的存储空间为________字节。 6、设有图像文件为200行,200列,8位量化,共7个波段,则该图像文件的大小为________。 三、不定项选择题:(单项或多项选择) 1、数字图像的________。 ①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的 ③两者都是连续的④两者都是离散的 2、采样是对图像________。 ①取地类的样本②空间坐标离散化③灰度离散化 3、量化是对图像________。 ①空间坐标离散化②灰度离散化③以上两者。 4、图像灰度量化用6比特编码时,量化等级为________。 ①32个②64个③128个④256个 5、数字图像的优点包括________。 ①便于计算机处理与分析②不会因为保存、运输而造成图像信息的损失 ③空间坐标和灰度是连续的

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作....................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验二:图像的灰度变换和直方图变换............................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验三:图像的平滑处理....................................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验四:图像的锐化处理......................................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。

《数字图像处理》课后作业2015

《数字图像处理》课后作业(2015) 第2章 2.5 一个14mm?14mm的CCD摄像机成像芯片有2048?2048个像素,将它聚焦到相距0.5m远的一个方形平坦区域。该摄像机每毫米能分辨多少线对?摄像机配备了一个35mm镜头。(提示:成像处理模型见教材图2.3,但使用摄像机镜头的焦距替代眼睛的焦距。) 2.10 高清电视(HDTV, High Definition TV )使用1080条水平电视线(TV Line)隔行扫描来产生图像(每隔一行在显像管表面画出一条水平线,每两场形成一帧,每场用时1/60秒,此种扫描方式称为1080i,即1080 interlace scan;对应的有1080p,即1080 progressive scan,逐行扫描)。图像的宽高比是16:9。水平电视线数(水平行数)决定了图像的垂直分辨率,即一幅图像从上到下由多少条水平线组成;相应的水平分辨率则定义为一幅图像从左到右由多少条垂直线组成,水平分辨率通常正比于图像的宽高比。一家公司已经设计了一种图像获取系统,该系统由HDTV图像生成数字图像,彩色图像的每个像素都有24比特的灰度分辨率(红、绿、蓝分量各8比特)。请计算不压缩时存储90分钟的一部HDTV电影所需要的存储容量。 2.22 图像相减常用于在产品装配线上检测缺失的元件。方法是事先存储一幅对应于正确装配的产品图像,称为“金”图像(“golden” image),即模板图像。然后,在同类型产品的装配过程中,采集每一装配后的产品图像,从中减去上述模板图像。理想情况下,如果产品装配正确,则两幅图像的差值应为零。而对于缺失元件的产品,其图像与模板图像在缺失元件区域不同,两幅图像的差值在这些区域就不为零。在实际应用中,您认为需要满足哪些条件这种方法才可行? 第3章 3.5 在位平面分层中, (a)如果将低阶位平面的一半设为零值,对一幅图像的直方图大体上有何影响? (b)如果将高阶位平面的一半设为零值,对一幅图像的直方图又有何影响? 3.6 试解释为什么离散直方图均衡化技术一般不能得到平坦的输出直方图。 3.14 右图所示的两幅图像差异很大,但它们的直方图却相同。假设每幅图像都用一个3×3的均值滤波模板进行模糊处理,那么: (a)模糊后的两幅图像的直方图还相同吗?试解释原因。 (b)如果您认为模糊后的两幅图像的直方图不相同,请画出这两幅 图像的直方图。

数字图像处理期末复习试题3

1、数字图像:指由被称作像素的小块区域组成的二维矩阵。将物理图像行列划分后,每个小块区域称为像素(pixel)。 数字图像处理:指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术. 2、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。 3、灰度直方图:指反映一幅图像各灰度级像元出现的频率。 4、中值滤波:指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 像素的邻域 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。 像素的四邻域 像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 三、简答题( 每小题10分,本题共30 分 ): 1. 举例说明直方图均衡化的基本步骤。 直方图均衡化是通过灰度变换将一幅图象转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 直方图均衡化变换:设灰度变换s=f(r)为斜率有限的非减连续可微函数,它将输入图象Ii(x,y)转换为输出图象Io(x,y),输入图象的直方图为Hi(r),输出图象的直方图为Ho(s),则根据直方图的含义,经过灰度变换后对应的小面积元相等:Ho(s)ds=Hi(r)dr 直方图修正的例子 假设有一幅图像,共有6 4(6 4个象素,8个灰度级,进行直方图均衡化处理。 根据公式可得:s2=0.19+0.25+0.2l=0.65,s3=0.19+0.25+0.2l+0.16=0.8l,s4=0.89,s5=0.95,s6=0.98,s7=1.00 由于这里只取8个等间距的灰度级,变换后的s值也只能选择最靠近的一个灰度级的值。因此,根据上述计算值可近似地选取: S0≈1/7,s 1≈3/7,s2≈5/7,s3≈6/7,s4≈6/7,s5≈1,s6≈l,s7≈1。 可见,新图像将只有5个不同的灰度等级,于是我们可以重新定义其符号: S0’=l/7,s1’=3/7,s2’=5/7,s3’=6/7,s4’=l。 因为由rO=0经变换映射到sO=1/7,所以有n0=790个象素取sO这个灰度值;由rl=3/7映射到sl=3/7,所以有1 02 3个象素取s 1这一灰度值;依次类推,有850个象素取s2=5/7这一灰度值;由于r3和r4均映射到s3=6/7这一灰度值,所以有656+329=98 5个象素都取这一灰度值;同理,有245+1 22+81=448个象素都取s4=1这一灰度值。上述值除以n=4096,便可以得到新的直方图。 2. 简述JPEG的压缩过程,并说明压缩的有关步骤中分别减少了哪种冗余? 答:分块->颜色空间转换->零偏置转换->DCT变换->量化->符号编码。颜色空间转换,减少了心理视觉冗余;零偏置转换,减少了编码冗余;量化减少了心理视觉冗余;符号编码由于是霍夫曼编码加行程编码,因此即减少了编码冗余(霍夫曼编码)又减少了像素冗余(行程编码)。 JPEG2000的过程:图像分片、直流电平(DC)位移,分量变换,离散小波变换、量化,熵编码。3、Canny边缘检测器 答:Canny边缘检测器是使用函数edge的最有效边缘检测器。该方法总结如下:1、图像使用带有指定标准偏差σ的高斯滤波器来平滑,从而可以减少噪声。2、在每一点处计算局部梯度g(x,y)=[G2x+G2y]1/2 和边缘方向α(x,y)=arctan(Gy/Gx)。边缘点定义为梯度方向上其强度局部最大的点。3、第2条中确定的边缘点会导致梯度幅度图像中出现脊。然后,算法追踪所有脊的顶部,并将所有不在脊的顶部的像素设为零,以便在输出中给出一条细线,这就是众所周知的非最大值抑制处理。脊像素使用两个阈值T1和T2做阈值处理,其中T1

数字图像处理实验报告 (2)

数字图像处理试验报告 实验二:数字图像得空间滤波与频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26日 1、实验目得 1、掌握图像滤波得基本定义及目得. 2、?理解空间域滤波得基本原理及方法。 3、掌握进行图像得空域滤波得方法。 4、?掌握傅立叶变换及逆变换得基本原理方法。 5、?理解频域滤波得基本原理及方法。 6、掌握进行图像得频域滤波得方法。 2、实验内容与要求 1、?平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同 一图像窗口中。 2)?对加入噪声图像选用不同得平滑(低通)模板做运算,对比不同模板所形成得效果, 要求在同一窗口中显示。 3) 使用函数 imfilter时,分别采用不同得填充方法(或边界选项,如 零填充、’replicate'、'symmetric’、’circular')进行低通滤波,显 示处理后得图像. 4)运用for循环,将加有椒盐噪声得图像进行10 次,20 次均值滤波,查瞧其特点,显示均值处理后得图像(提示:利用fspecial函数得’average’ 类型生成均值滤波器)。 5)?对加入椒盐噪声得图像分别采用均值滤波法,与中值滤波法对有噪声得图像做处理, 要求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后得图像。 2、锐化空间滤波 1)?读出一幅图像,采用3×3得拉普拉斯算子 w = [ 1, 1, 1;1– 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 得拉普拉斯算子, 如 5 ×5得拉普拉斯算子 w =[ 1 1 1 1 1 1 1 1 1 1 1 1 —24 1 1 1 1 1 1 1 1 1 1 1 1] 3)?分别采用5×5,9×9,15×15与25×25大小得拉普拉斯算子对blurry_moon、tif

研究生数字图像处理作业

一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。 频域降噪。对图像而言,噪声一般分布在高频区域,而图像真是信息主要集中在低频区,所以,图像降噪一般是利用低通滤波的方法来降噪。边缘增强。图像的边缘信息属于细节信息,主要由图像的高频部分决定,所以,边缘增强一般采取高通滤波,分离出高频部分后,再和原频谱进行融合操作,达到边缘增强,改善视觉效果,或者为进一步处理奠定基础的目的。 1频域降噪,主程序如下: I=imread('lena.bmp'); %读入原图像文件 J=imnoise(I,'gaussian',0,0.02);%加入高斯白噪声 A=ilpf(J,0.4);%理想低通滤波 figure,subplot(222);imshow(J);title('加噪声后的图像'); subplot(222);imshow(A);title('理想低通滤波'); B=blpf(J,0.4,4);%巴特沃斯低通滤波 subplot(223);imshow(B);title('巴特沃斯低通滤波'); C=glpf(J,0.4);%高斯低通滤波 subplot(224);imshow(C);title('高斯低通滤波'); 用到的滤波器函数的程序代码如下: function O=ilpf(J,p) %理想低通滤波,p是截止频率 [f1,f2]=freqspace(size(J),'meshgrid'); hd=ones(size(J)); r=sqrt(f1.^2+f2.^2); hd(r>p)=0; y=fft2(double(J)); y=fftshift(y); ya=y.*hd; ya=ifftshift(ya); ia=ifft2(ya); O=uint8(real(ia)); function O=blpf(J,d,n) %巴特沃斯低通滤波器,d是截止频率,n是阶数[f1,f2]=freqspace(size(J),'meshgrid'); hd=ones(size(J)); r=f1.^2+f2.^2; for i=1:size(J,1) for j=1:size(J,2) t=r(i,j)/(d*d); hd(i,j)=1/(t^n+1); end end y=fft2(double(J)); y=fftshift(y); ya=y.*hd;

相关主题
文本预览
相关文档 最新文档