当前位置:文档之家› 接地变压器的作用

接地变压器的作用

接地变压器的作用
接地变压器的作用

接地变压器在电力系统中是属于保护设备。它的作用:

我国大多10kV的电压系统,均采用中性点不接地运行方式,以提高供电的可靠性;但随着系统的增大(变压器容量及出线的增多),当发生单相接地时,接地电容电流会很大,可能造成“弧光接地过电压”,伤害设备绝缘,造成设备损坏事故,为此人们想出了在中性点加装“消弧线圈”,当发生单相接地时,用消弧线圈的电感电流来平衡接地点的电容电流,避免形成弧光接地过电压。

但我国电力系统中的电力变压器10kV绕组大多是角形接线,没有中性点,致使消弧线圈没有办法安装;于是人们设计了“接地变压器”,接地变压器就是一个“星形”接线的变压器,通过这个星形接线的变压器,人造了一个“中性点”,就使消弧线圈能够接到这个人造中性点上,解决了10kV电压系统没有中性点的问题。

所以说,接地变压器就是为安装消弧线圈而装设的一个一次线圈为星形接线的,有中性点引出的变压器。它是为电力系统的安全而设置的。

电力变压器在电力系统中是属于电能传输设备,它的作用:

主要作用是变换电压,以利于功率的传输。

在同一段线路上,传送相同的功率, 电压经电力变压器升压后,线路传输的电流减小,可以减少线路损耗,提高送电经济性,达到远距离送电的目的,而降压则能满足各级使用电压的用户需要。

8、接地变压器、消弧线圈容量和额定电流的确定

(1)根据架空线或电缆参数计算公式计算电容电流I c

(2)消弧线圈容量的确定(见参考文献3)

Q = K×I c×U P/√3(8-1)

式中:K —系数,过补偿取1.35

Q —消弧线圈容量,kVA

(3)消弧线圈容量及额定电流的选择

根据最大电容电流I c,确定相应的消弧线圈容量及额定电流,使最大补偿电感电流满足要求。

(4)接地变压器容量选择

接地变除可带消弧圈外,兼作所用变。

式中:Q —消弧线圈容量,kVA

S —所变容量,kVA

Ф —功率因素角,°

S J—接地变容量,kVA

例如某110kV变电所,二台主变,10kV单母线分段,共24回电缆出线,两套装置补偿,一回电缆平均长度按2kM计算,所变容量100kVA,COSФ= 0.8。根据式(4-1)或式(4-2)有:

I c = 0.1×U P×L

= 0.1×10.5×2×12 = 25.2(A)

变电所增加电容电流为16%故I c = 25.2×1.16 = 29.23(A)

根据式(8-1):

Q = K×I c×U P/√3

= 1.35×29.23×10.5/√3

= 239(kVA)

根据消弧线圈容量系列性及最大电容电流I c,确定相应的Q = 300KVA,补偿电流调节范围为25—50A。

根据式(8-2):

选用400 kVA

因此整套装置,可调电抗器选用了型号为XHDCZ-300/10/25-50A(九档),容量为300kVA,系统电压10kV,额定电压6.062kV,补偿电流调节范围为25—50A。接地变压器选用了型号为DKSC-400/100/10.5,10.5±5%、容量为400kVA,二次容量为100kVA,系统电压10.5kV。

接地变的特点及作用

2010-05-28 17:00

接地变与普通变压器有何区别?

接地变压器的作用是在系统为△型接线或Y型接线中性点无法引出时,引出中性点用于加接消弧线圈,该变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是每相线圈分别绕在两个磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,

用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。而Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。

扩展阅读:我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。

但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。 1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2),由于持续电弧造成空气的离解,拨坏了周围空气的绝缘,容易发生相间短路; 3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法.

接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电阻和接地变才会通过IR= (U 为系统相电压,R1为中性点接地电阻,R2为接地故障贿赂附加电阻)的零序电路。根据上述分析,接地变的运行特点是;长是空载,短时过载。总之,接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。

浅谈太阳能光伏电站接地变压器容量的选择

浅谈太阳能光伏电站接地变压器容量的选择 发表时间:2019-04-15T12:53:54.813Z 来源:《防护工程》2018年第36期作者:周振宇[导读] 文章讨论了接地变压器容量选择时应注意的情况、常用的工程计算方法,最后结合工程实际进行了实例阐述。龙源(北京)太阳能技术有限公司 摘要:接地变压器是太阳能光伏电站内的重要电气设备,文章讨论了接地变压器容量选择时应注意的情况、常用的工程计算方法,最后结合工程实际进行了实例阐述。 关键词:光伏电站;接地形式;变压器容量 一、概述 光伏发电作为一种重要的太阳能利用方式,具有太阳能利用率高、无需储能设备、发电能力强等优点,目前我国太阳能发电已经具备成为战略能源的技术、成本和环境条件,2050年后可能成为主要电力供应来源之一。我国太阳能光资源丰富,光伏资源开发利用的前景非常广阔。目前,发改委能源局已决定将光伏发电作为一种重要的能源利用方式进行开发,太阳能光伏的装机容量不断扩大。 中性点的接地形式直接影响了电气设备的绝缘水平,以及光伏电站的安全性、可靠性和供电连续性。太阳能光伏发电站根据装机规模、并网电压等级、单相接地故障电流、保护装置灵敏度以及过电压水平的不同,中性点采用了不同的接地形式。本文比较了不同中性点接地形式在光伏发电站中的应用场景,并通过某光伏电站的案例,探讨了太阳能光伏发电站中接地变压器容量计算的方法,为未来并网光伏电站计算提供一定的参考。 二、不同规模光伏电站中性点接地形式的选择 中性点有效接地包括直接接地和经小电阻接地,非有效接地主要包括中性点不接地和经消弧线圈接地两种。 1、中性点直接接地 中性点直接接地系统单相接地电流很大,继电保护必然动作,其优点是过电压水平低,对电气设备的绝缘性能要求不高。 50MW及以上级的大型太阳能光伏电站,由于装机容量大,并网电压水平高,通常都为110kV及以上电压等级,因此升压变压器高压侧一般选择直接接地形式,并在变压器中性点设置隔离开关及避雷器保护,以便于调度灵活选择接地点。 2、中性点经电阻接地 中性点经电阻接地系统单相接地时,故障电流较大,可以触发继电保护动作,快速切除故障点,电网操作运行比较容易。由于具有以上优点,中性点经电阻接地的方式,尤其适用于电缆输电线路长,且电容电流比较大的光伏发电站。因此,目前兆瓦级以上的中大型太阳能光伏电站中,10kV或35kV电压等级汇集母线,多数都采用经电阻接地的方式。当变压器中性点未引出或无中性点时,需设置专用接地变压器。 3、中性点经消弧线圈接地 中性点经消弧线圈接地系统发生单相接地故障时,采用消弧线圈补偿电容电流,保证接地电弧快速熄灭,系统仍能继续运行一段时间,因此较适合应用于对供电可靠性要求较高的场合。但由于消弧线圈接地系统的继电保护较为难以实现,不能满足大中型光伏电站发生单相接地故障时快速、可靠切除故障点的要求。 因此目前兆瓦级以上的中大型太阳能光伏电站中,10kV或35kV电压等级汇集母线,越来越少采用中性点经消弧线圈接地的形式,早期的消弧线圈接地系统也正在陆续改造中。 4、中性点不接地 中性点不接地系统发生单相接地时,不形成短路回路,流经故障点的电流仅为接地电容电流,可以带故障运行一段时间。但不接地系统发生单相接地时,由于存在弧光重燃过电压,因此对系统电气设备的绝缘水平要求较高。太阳能光伏电站逆变器交流侧通常采用中性点不接地形式,就地升压变压器低压侧的中性点不引出或无中性点。 三、接地变压器的容量计算 太阳能光伏电站采用经电阻接地形式,当变压器中性点未引出或无中性点时,需设置专用接地变压器,其容量具体的计算方法如下: 1、确定接地变压器的额定电压。接于系统母线的三相接地变压器额定一次电压应与系统标称电压一致。 2、计算系统电容电流。系统的电容电流包括全部电缆线路和架空线路的电容电流,同时还应计入变电所电气设备产生的电容电流。 3、确定接地电阻器阻值。计算接地电阻器阻值时,应保证发生单相接地故障时,零序继电保护应能快速动作,可靠切除故障点。 4、计算接地变压器的容量。三相接地变压器的容量应与接地电阻额定容量相配合,接地变压器若带有二次绕组兼做站用电源时,还应考虑二次负荷容量。 四、工程实例 张北县六歪咀村某光伏发电站是一座设计规模为50MW的太阳能光伏电站,采用固定支架安装方式。 1、运行环境 根据建设单位提供的现场基本条件,光伏电站场址平均海拔高度为1340m,年平均温度3℃。当地海拔适中,温度较低,故选择变压器容量时,可不考虑高海拔降容及湿热环境影响。 2、电站主接线 该工程采用分块发电,集中并网的设计方案,将系统分成50个1MW并网发电单元。每个单元经过1台分裂变压器升压至35kV,每10台35kV升压变压器组成1个集电单元,通过电缆并接分组连接至升压站的35kV母线,再经主变升压至110kV,通过一回110kV线路至二台110kV 变电站,110kV系统采用中性点直接接地。35kV接线采用单母线接线,全站总共5回光伏集电线路进线,1回PT,1回无功补偿装置,1回接地变,1回站用变,1回主变出线。35kV系统采用中性点经电阻接地。 3、接地变压器容量计算 (1)接地变压器的一次额定电压与系统标称电压一致:Ur=35kV。

接地变压器的作用

接地变压器的作用 我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果; 1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2),由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路; 3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法.接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。 另外接地变有电磁特性,对正序、负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。 该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电阻和接地变才会通过IR= (U为系统相电压,R1为中性点接地电阻,R2为接地故障回路附加电阻)的零序电路。根据上述分析,接地变的运行特点是;长时空载,短时过载。 总之,接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。 变电站内现在一般采用的接地变压器有两个用途,1.供给变电站使用的低压交流电源,2.在10kV侧形成人为的中性点,同消弧线圈相结合,用于10kV发生接地时补偿接地电容电流,消除接地点电弧,其原理如下: - 1 -

浅谈接地变压器在风电场的应用

浅谈接地变压器在风电场的应用 摘要:通过阐述接地变压器的架构、接线方式和工作原理,说明接地变压器在 风电场的应用,为解决风电场出现的大规模风机脱网事故提供参考。 关键词:接地变压器、风机脱网、小电流接地系统、接地故障 1前言 2011年2月24日,甘肃酒泉桥西第一风电场场内升压站35kV馈线电缆头发 生故障,导致系统电压大幅跌落,波及该地区11个风场,引发598台风电机组 脱网,占在运风机的48.78%,西北电网在64 s内损失出力840.43 MW,西北主网频 率最低跌至49.854Hz。该事故是我国风电事故中由于35kV馈线故障引起风电机 组大规模脱网的典型事故,类似事故还有“西北4.17”事故,“西北4.3”事故,“张 北4.17”事故,均是由于主变低压侧故障导致的大规模风机脱网事故,对风电场 和电网的安全运行带来了严重影响。经过对以上事故的分析发现,发生事故的风 电场低压侧采用不接地运行方式,单项故障不能快速切除,是导致故障恶化,事 故扩大的主要原因。[1]我国风电场35kV侧一般都采用中性点不接地的运行方式,属于小电流接地系统,系统电容电流大到一定程度时,对接地故障所产生的接地 电流及其弧光间隙过电压将最终不能自熄,危及系统安全,导致事故扩大,因此 必须加以限制。 目前,对接地电流及其弧光间隙过电压的限制主要有2种措施:一种是在变电站 中的电源变压器中性点经消弧线圈接地,对接地电流进行感性补偿,使接地电弧 瞬间熄灭,达到限制弧光间隙过电压的目的,这种接地方式适用于以架空线路为主,电缆较少,电容电流比较小的风电场;另一种是在变电站中的电源变压器中 性点经接地电阻接地,在接地点注入电阻性电流,改变接地电流相位,加速泻放 回路中的残余电荷,促使接地电弧自熄,达到限制弧光间隙过电压的目的,这种 接地方式适用于电缆长度较大,电容电流比较大的风电场。同时,这种措施还可 提供足够的零序电流和零序电压,使接地保护可靠动作。但是风电场主变压器低 压侧一般为三角形接法,没有可以接地的中性点,因而需要采用专用接地变压器,做一个人为中性点连接消弧线圈或接地电阻。在发生接地故障时,接地变压器将 消弧线圈或接地电阻所产生的接地补偿电流送入电网,限制弧光间隙过电压,同 时提供足够的零序电流和零序电压,使接地保护可靠动作,快速切除故障线路和 设备,保证风电场和电网系统的安全运行。[2] 2接地变压器概述 接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。接地变压器的作用是为中性点不接 地的系统提供一个人为的中性点,便于采用消弧线圈或小电阻的接地方式,以减 小配电网发生接地短路故障时的对地电容电流大小,提高配电系统的供电可靠性。 [3] 2.1接线方式 接地变压器接线方式主要有YNyn联结,YNd联结和ZNyn联结等方式。我国 的接地变压器通常采用ZNyn型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,零序磁势正好大小相等、方向 相反而相互抵消,使得零序漏磁通减到很小,从而使它的零序电抗值很小,它的 容量可以与所联结的消弧线圈的容量相等,这样连接的好处是零序磁通可沿磁柱 流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以ZNyn型接地变压器

配电变压器的接地分析

配电变压器及断路器的接地分析 1 配电变压器防雷接线 配电变压器防雷接线见图1。 图1配电变压器防雷、工作、保护共同接地 1.1 关于接地电阻的规定 三点共同接地就意味着防雷接地(高压避雷器)、保护接地(外壳)和工作接地(低压中性点)共用一个接地装置,其接地电阻应满足三者之中的最小值,其中防雷接地一般规定小于10Ω,但要有垂直接地极,以利散流。低压工作接地一般应小于4Ω。因而接地电阻主要取决于高压侧对地击穿时的保护接地,一般情况下配电变压器都是向B类建筑物供电的,标准上有规定,只有当保护接地的接地电阻R≤50/I时,高压侧防雷及保护接地才能与低压侧工作接地共用一个接地装置。反过来说,如果采取三点共同接地,则R≤50/I时,其中I为高压系统的单相接地电流。 对不接地系统,I为系统的电容电流,对消弧线圈接地系统,I为故障点的残流。 如果按上述计算结果大于4Ω,则由低压工作接地要求,不得大于4Ω。公式R≤50/I中,50为低系统的安全电压,即高压侧对外壳单相接地时,接地电流流过接地装置的压降不得超过50 V。 而10 kV系统中的电容电流差别很大,有的不足10 A,有的高达上百安或数百安,所以配电变压器三点共同接地时,要根据所在高压系统的情况来确定接地装置的接地电阻,不能笼统地规定4Ω或10Ω。由于接地电阻大小与系统单相接地电流有关,与配变容量并无关,所以现场规程的说法没有道理。有的资料认为,当低压工作接地单独另设时,100 kVA以下的配电变压器的低压侧工作接地电阻,可放宽到10Ω,原因是变压器小,内阻抗大,限制了接地电流,也就限制了地电位的升高。(这解释了为什么夏天测三相不平衡电流零序电流

Znyn-曲折接线接地变压器的原理

Znyn 曲折接线接地变压器的原理 变压器的接线方式除了Y/ Y、Y/Δ,Δ/Δ等几种外,还有些比较特殊的接线方式,例如曲折接线,通常用Z 来表示,有人将它称为“千鸟接法”,但多数都称为曲折接线法。曲折接线的变压器既具有三角型接线变压器可以承担单相负荷的特点,同时也有星形接线变压器具有的中性点的特点。但同普通的Y/ Y形接地变压器比较,它具有普通接地变压器所不具有的优点,曲折接线变压器的零序阻抗小,更适合做接地变压器使用,能够更好的配合消弧线圈使用。由于曲折接线变压器有同普通变压器的不一样性,因此,本文主要就其原理、特性以及在试验中注意的问题进行分析。 1曲折接线变压器的原理及结构特点 1. 1 原理 曲折接线变压器通常有Znyn11(图1)或Znyn1 (图3)2 种接法。这里以Znyn11 接线来加以叙述。曲折接线变压器由所用变负载和消弧线圈负载组成。高压绕组的每相线圈分成匝数相等的2 部分,分别依次套装于三相铁心的上、下2 铁心柱上,如图1 所示。上半部分线圈是带调压分接的主绕组;下半部分是具有移相作用的移相绕组,移相绕组与调压绕组在每相上具有60°的相位关系,如图2 所示。其有关原理如下: 在图1中,AA′,BB′,CC′为高压带调压主绕组; A′O ,B′O ,C′O 为高压移相绕组; ao ,bo ,co 为低压绕组,如图2 所示。

依据余弦定理得:UAO 2= U2 AA 2′+ U2A′O 2 + UAA′×UA′O UBO 2= U2 BB 2′+ U2B′O 2+ UBB′×UB′O , UCO 2 = U2CC 2′+ U2C′O 2+ UCC′×UC′O , 式中: UAO ——A 相相电压; UOB ——B 相相电压; UCO ——C 相相电压; UAA’——A 相主绕组电压; UBB’——B 相主绕组电压; UCC’——C 相主绕组电压; UA′O ——A 相移相绕组电压; UB′O ——B 相移相绕组电压; UC′O ——C 相移相绕组电压。 依据余弦定理得低压为 Uab = 3 ×Uao , Ubc = 3 ×Ubo , Uca = 3 ×Uco 。 1. 2 结构特点 在运行过程中,当变压器通过一定大小零序电流时,在同一铁心柱上的2 个单绕组的电流方向相反且大小相等,使得零序电流产生的磁势正好相反抵消,从而使零序阻抗也很小。在发生故障时,接地变压器中性点过补偿电容电流,呈现感性,由于有很小的零序阻抗,使零序电流通过时,产生的阻抗压降尽可能的小,以保证系统的安全。但在制造过程中高压绕组的上下包的匝数和几何尺寸不可能完全相等,使得零序电流产生的磁势不可能正好相反抵消,还是产生了一定的零序阻抗,通常在6~10Ω左右,相对于星形接线的变压器的零序阻抗600Ω而言,其优势不言而喻。此外,曲折接地变压器还可以使空载电流和空载损耗尽可能小。同普通星形接线变压器比较,由于曲折接线变压器的一相是由2 个铁心柱的绕组组成,结合其向量图可知,与普通星形接线变压器比较,当电压相同时要多绕2/ 3 = 1. 16 倍匝数的线圈,因此,就决定了其磁通密度要比星形接线变压器高1. 16 倍。

浅谈变压器中性点接地刀闸的操作

浅谈变压器中性点接地刀闸的操作 变压器中性点接地刀闸的切换,是变压器操作中的重要内容之一。在电网实际操作中,应注意以下事项: 1.对变压器进行操作前,一般应先推上变压器中性点接地刀闸,操作完毕后,再将变压器中性点刀闸置于系统要求的位置,以防止操作过电压危及设备安全。 2.在三圈变压器高压侧停电,中、低压侧运行的方式下,应推上高压侧中性点接地刀闸。因为在这种方式下,虽然变压器高压侧开关在断开位置,但其高压绕组仍处于运行状态,为保证该方式下变压器高压侧发生故障时,零序电流等保护能够正确动作,故应推上变压器中性点接地刀闸。 3.变压器停电检修时,应拉开其中性点接地刀闸。不论是中性点直接接地还是中性点不接地系统,正常运行中其中性点都存在一定的位移电压,该中性点位移电压在系统发生单相接地等故障时会增大。如果在停电检修时不将检修设备中性点与运用中设备的中性点断开,就有可能使这些电压通过中性点传递到检修设备上去,危及人身和设备的安全。因此,拉开被检修设备的中性点地刀,应作为现场保证安全的技术措施之一予以落实。 4.同一厂站多台变压器间中性点接地刀闸的切换,为保证电网不失去应有的接地点,应采用先合后拉的操作方式,即先合上备用接地点刀闸,再拉开工作接地点刀闸。 5.自耦变压器和绝缘有特殊要求的变压器中性点,应采取直接接地方式,不宜切换。由于自耦变压器的特殊结构,其一、二次绕组之间不仅存在磁的联系,而且还有电的联系,为避免高压侧网络发生单相接地故障时,在低压绕组上出现超过其绝缘水平的过电压,其中性点必须直接接地。对于绝缘有特殊要求的变压器,为防止过电压危及设备安全,其中性点也宜直接接地。 6.对变压器中性点接地刀闸的操作,必须同步进行零序保护的切换。在一、二次切换操作过程中,操作人员必须根据现场变压器零序保护的配置和实际接线,合理安排一、二次操作步骤,严防不合理的操作顺序引发操作事故。 7.变压器中性点接地运行方式的变更,应根据系统总体要求,按照保持网络零序阻抗基本不变的原则,由调度下令进行

变压器安装规范

变压器安装规范 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

变压器安装规范 配电变压器可以安装在室内,也可以安装在室外,都有具体的安装规范。 一是安装位置应靠近负荷中心,一般低压供电半径不宜超过500m,避开易燃易爆场所、污秽及低凹地带,并便于运输、检修及维护。 二是变压器要有出厂合格证书、说明书、检验报告单等资料。检查外观有无瓷件和油箱损坏或渗油现象。投运前还要进行现场测试。 三是配电变压器台架距离地面高度,农村为,城镇为3~。配电安装后必须平稳牢固,变压器上部应用GJ-16mm2或GJ-25mm2镀锌钢绞线和花兰螺丝与台架杆捆紧。变压器台架安装时,容量应控制在315KVA及以下。 四是避雷器引下线、变压器外壳、低压侧中性线接地必须连在一起,通过接地引下线连接入地。容量100KVA及以上配电变压器接地电阻不大于4欧,100KVA以下配电变压器接地电阻不大于10欧。 五是高低压引线应用绝缘线,城镇配电变压器低压侧宜用铜绝缘线。高压引线不小于 25mm2,低压引线视变压器容量而定,但必须满足额定电流的需要,连接点应用铜铝设备线夹或铜铝接线鼻子固定,接线时要防止导电杆转动,避免造成配电变压器内部短路。 六是配电变压器分接开关需要调整必须由修试人员进行,调正后要用电桥测试直流电阻并合格。 七是变压器台架虽然有造价低、便于维护等优点,但转角杆、分支杆、设有线路开关、高压进户线或电缆头的电杆,或交叉路口的电杆、低压接户线较多的电杆不宜装设变压器台 架。变压器台架一般采用三杆式,在受地理条件限制时可采用双杆式。8M台架杆台架的具 体安装尺寸规范如图。台架由10#镀锌槽钢构成,距地面的高度不小于,在实际安装时,高 度为,10M台架杆时为。 城镇配电变压器低压出线侧应装可挑式。农村低压侧电缆进线时,台架杆上应装电缆支架,电缆固定在支架上,尽可能减少变压器低压桩头拉力。

(完整版)变压器中性点接地电阻柜工作原理

目录 1. 概述................................................ - 1 - 2. 引用标准............................................ - 2 - 3. 型号含义............................................ - 2 - 4. 产品特点............................................ - 2 - 5. 使用条件............................................ - 3 - 6. 变压器中性点接地电阻柜工作原理 ...................... - 4 - 7. 变压器中性点接地电阻柜主要技术参数 .................. - 5 - 8. 变压器中性点接地电阻柜接线原理图 .................... - 6 - 9. 发电机中性点接地电阻柜工作原理 ...................... - 7 - 10. 发电机中性点接地电阻柜主要技术参数 .................. - 7 - 11. 发电机中性点接地电阻柜接线原理图 .................... - 8 - 12. 中性点接地电阻柜结构及安装尺寸 ...................... - 8 - 13. 订货须知........................................... - 10 -

1.概述 电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点电阻接地系统近年来在我国城市电网和工业企业的配电网中得到越来越广泛的应用。中性点经电阻接地系统在世界上很多国家,比如美国,欧洲,日本,俄罗斯等有着很多年的成熟可靠运行经验。 在6-35KV电网,我国基本上采用中性点不接地或消弧线圈(谐振)接地方式。近20多年来一些城市电网负荷迅速增长、电缆线路增加很快、系统电容电流急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门在广泛考察、了解国外配电网中性点接地情况的基础上,结合本地电网的具体情况,经过充分的分析、研究,逐步采用中性点经电阻接地方式。例如广州、深圳、上海、北京、珠海、天津、厦门、南京、苏州工业园区、无锡、汕头、惠州、顺德、东莞等。中性点经电阻接地方式在上述城市配网中已有多年运行经验,经过数个变电站及电厂实际应用证明,采用中性点接地是降低中压配电网内部过电压及消除谐振过电压的最有效的方式,对降低系统过电压水平、提高系统可靠性具有良好的效果。。 现在,中性点经电阻接地方式已被写入电力行业规程,电力行业标DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第3.1.4条规定:“6-35KV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。”第3.1.5条规定:“6KV和10KV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。” HT—DZ型中性点接地电阻柜适用于6~35kV、50Hz中压配电电网中,是用于连接变压器或发电机与大地之间的一种限流保护电气设备。当配电网内部出现故障时(二相短路、单相接地、单相断路等),配电网中性点将产生偏移,此时中性点接地电阻将配电网中性点经电阻强制接地并限制其故障电流,使继电保护设备有足够时间进行检测实现跳闸和备 - 1 -

变压器接地系统

变压器接地系统 1低压配电系统接地型式概述 民用建筑中的配电变压器。现时有35/0.4 kV、10/0.4 kV、6.3/0.4 kV 等.而以1O,O.4 kV为常见。变压器单台容量有的已超过2 000kV·A,提供本建筑物或建筑群所需220/380 V低压电源。此类配电站多附设在相应建筑物内,低压电源系统的接地型式,以TN-S系统为主,也有使用TT接地型式。所需接地体大多使用自然接地体。也有使用人工接地体或两者相结合。 低压电源系统接地型式,按电源系统和电气设备不同的接地组合来分类。根据IEC标准规定。低压电源系统接地型式,一般由两个字母组成,必要时可加后续字母,其中第一个字母表示电源接地点对地的关系(直接接地,不接地)。第二个字母表示电气设备外露可导电部分与地的关系(独立于电源系统接地点的直接接地.N--直接与电源系统接地点或与该点引出的导体相连接)。后续字母表示中性线与保护线的关系(C--中性线N与保护线PE合并,中性线N与保护线PE分开)。故低压电源系统的接地型式可分为五种。在民用建筑中使用最多的为TN-S、,IN-C-S、TT三种。而变配电站中常用的为TN-S或TT 两种.在此三种接地型式中,规定了电源的中性点应直接接地,电气设备的外露可导电部份应接地。 上述电源系统,指提供用电设备的220/380 V电源,如:由变压器低压侧开始至配电屏,由屏至配电箱。由箱至水泵电动机的低压电源系统等,上述电气设备包括了变压器、配电屏(箱)、电梯、水泵等,故上述的电源中性点,就是该配电系统的中性点,就是变压器的中性点。显然这类变压器应有两种接地要求,即中性点的直接接地,称为工作接地;变压器外壳接地。称为保护接地。工作接地的作用是使低压电源系统在正常工作或事故情况下,降低人体的接触电压,保障电器设备的可靠动作,迅速切断故障设备,降低电器设备和输电线路的绝缘水平。保护接地的作用是在电气设备电源系统运行故障时,保障人身和设备的安全。如何正确处理上述配电站及变压器的工作接地和保护接地,使其安全可靠运行是我们应该认真去研究解决的重要内容。现分述于下。 2现时常见的四种接地的具体作法 2.1接地型式为TN-S系统。由变压器低压侧中性点接线柱上。并联三根导体。其中一根引往变电站内MEB板(总等电位板),该导体有用扁钢也有用单芯电缆。另两根导体,均为铜排,同时引入进线屏。一根引入4极开关的第4极配出N铜排,另一根与PE铜母排相连接。再由该PE母排用扁钢与MEB板相

细说--接地变、消弧线圈及自动补偿装置的原理和选择

接地变、消弧线圈及自动补偿装置的原理和选择 1问题提出 随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。 210kV中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。 3系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: 3.1当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。 3.2配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。 3.3当有人误触带电部位时,由于受到大电流的烧灼,加重了对触电人员的伤害,甚至伤亡。 3.4当配电网发生单相接地时,电弧不能自灭,很可能破坏周围的绝缘,发展成相间短路,造成停电或损坏设备的事故;因小动物造成单相接地而引起相间故障致使停电的事故也时有发生。 3.5配电网对地电容电流增大后,对架空线路来说,树线矛盾比较突出,尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。 4单相接地电容电流的计算 4.1空载电缆电容电流的计算方法有以下两种: (1)根据单相对地电容,计算电容电流(见参考文献2)。 Ic=√3×UP×ω×C×103(4-1) 式中:UP━电网线电压(kV) C━单相对地电容(F) 一般电缆单位电容为200-400pF/m左右(可查电缆厂家样本)。 (2)根据经验公式,计

配电变压器的接地分析

配电变压器及断路器得接地分析 1 配电变压器防雷接线 配电变压器防雷接线见图1。 图1配电变压器防雷、工作、保护共同接地 1、1 关于接地电阻得规定 三点共同接地就意味着防雷接地(高压避雷器)、保护接地(外壳)与工作接地(低压中性点)共用一个接地装置,其接地电阻应满足三者之中得最小值,其中防雷接地一般规定小于10Ω,但要有垂直接地极,以利散流。低压工作接地一般应小于4Ω。因而接地电阻主要取决于高压侧对地击穿时得保护接地,一般情况下配电变压器都就是向B类建筑物供电得,标准上有规定,只有当保护接地得接地电阻R≤50/I时,高压侧防雷及保护接地才能与低压侧工作接地共用一个接地装置。反过来说,如果采取三点共同接地,则R≤50/I时,其中I为高压系统得单相接地电流。 对不接地系统,I为系统得电容电流,对消弧线圈接地系统,I为故障点得残流。 如果按上述计算结果大于4Ω,则由低压工作接地要求,不得大于4Ω。公式R≤50/I中,50为低系统得安全电压,即高压侧对外壳单相接地时,接地电流流过接地装置得压降不得超过50 V。 而10kV系统中得电容电流差别很大,有得不足10 A,有得高达上百安或数百安,所以配电变压器三点共同接地时,要根据所在高压系统得情况来确定接地装置得接地电阻,不能笼统地规定4Ω或10Ω。由于接地电阻大小与系统单相接地电流有关,与配变容量并无关,所以现场规程得说法没有道理。有得资料认为,当低压工作接地单独另设时,100 kVA以下得配电变压器得低压侧工作接地电阻,可放宽到10Ω,原因就是变压器小,内阻抗大,限制了接地电流,也就限制了地电位得升高。(这解释了为什么夏天测三相不平衡电流零序电流为什么这么大。原因:在于我们选错了测量点,测量得就是接地扁铁,其中含有电容电流。正确得测量

接地变与普通变压器有何区别

接地变与普通变压器有何区别? 接地变压器的作用是在系统为△型接线或Y型接线中性点无法引出时,引出中性点用于加接消弧线圈,该变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是每相线圈分别绕在两个磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。而Z 型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。 扩展阅读:我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。2),由于持续电弧造成空气的离解,拨坏了周围空气的绝缘,容易发生相间短路;3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法. 接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,其中性点接地电阻和接地变才会通过IR= (U为系统相电压,R1为中性点接地电阻,R2为接地故障贿赂附加电阻)的零序电路。根据上述分析,接地变的运行特点是;长是空载,短时过载。总之,接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。 。。。。。。。。。。。。 从变压器的原理图看,一般的变压器和隔离变压器的区别是什么? 用以对两个或多个有耦合关系的电路进行电隔离的变压器。其变比为1。在电力系统中,为了防止架空输电线路上的雷电波进入室内,需经过隔离变压器联络。即使架空线路电压与室内

浅谈变压器铁芯接地电流的测量方法

浅谈变压器铁芯接地电流的测量方法 【摘要】为防止主变压器铁芯出现多点接地,相关的规程规定:交接、检修、例行、诊断要进行铁芯接地电流的测量。铁芯接地电流的测量多使用钳形电流表进行,但测量点的不同,会出现远远大于0.1A标准的异常情况。本文就正确的测量点作了分析和解释。 【关键词】变压器;铁芯接地电流;测量点 主变压器铁芯用与铁芯相接触的铜杆经套管引出后,再用一根扁铁:扁铁的一端与套管联结,扁铁的另一端与变电站的地网进行联结。当用扁铁与地网进行联结时,有以下几种方式:①、在扁铁的末端又联结了两根扁铁:一根扁铁与变压器的油箱铁壳联结;一根扁铁与地网联结;②、在扁铁的末端首先与变压器的油箱铁壳联结,联结后再用一根扁铁与地网进行联结;③、扁铁直接与地网进行联结。而变压器的油箱铁壳一般在对角的的两点各用一根扁铁在地网的不同点进行联结。 案例: 1、本公司110KVB变电站#1主变铁芯接地方式为:在扁铁引出线的末端又联结了两根扁铁:一根扁铁与变压器的油箱铁壳联结;一根扁铁与地网进行联结。2012年2月18日,用钳形电流表分别卡在与变压器油箱铁壳联结的扁铁和卡在与地网联结的扁铁进行铁芯接地电流的测量,电流显示异常数字为5A,严重超过测量规程。试验人员多次在该两处测量,电流均维持在5A,故相关人员在没有校验仪器的情况下,用一个正常使用的3000W的电炉,电流显示正常为14A,故初步判断该测量表计正常。随后,拆除与变压器的油箱铁壳联结的螺丝,只测与地网联结的扁铁,电流显示正常:0.1A以下。同时发现在如此大的电流作用下,拆除与变压器的油箱铁壳联结的螺丝时,并无任何火花现象,故判断铁芯接地电流并无异常。 2、本公司另一110KVD变电站#1、#2主变铁芯接地方式为:扁铁引出线的末端首先与变压器的油箱铁壳联结,联结后再用一根扁铁与地网进行联结。2013.2.13仍然用钳形电流表卡在油箱铁壳与地网联结的扁铁上进行接地电流的测量(当时未发现扁铁引出线的末端首先与变压器的油箱铁壳联结),电流显示为更加严重的数字:14A。经分析后,决定将钳形电流表卡在铁芯引出线的末端但还未与变压器的油箱铁壳联结处的扁铁上进行:电流显示正常14mA。 为何会出现,钳形电流表显示异常的情况呢?对此,笔者有以下几点思考: 一、漏磁现象使变压器外壳产生感应电流 由电磁感应现象可知,当穿过导体回路的磁通量发生变化时,回路中会产生感应电动势,由其所引起的电流称为感应电流。现各种电磁器件中,常用铁磁

接地变压器

接地变压器 今天,看一个印度的标书,看到earthing transformer.感到很惊讶,因为在中压系统中国外大部分地区都是三相直接接地的,大概只有北欧瑞典那块儿是跟国内一样的。而这个earthing transformer 绝对是出现在不接地系统中的。 下面转载一下网易电气论坛上我觉得讲得比较好的一个片断。 我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。由于该运行方式简单、投资少,所以在我国电网初期阶段一直采用这种运行方式,并起到了很好的作用。但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。 1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2),由于持续电弧造成空气的离解,拨坏了周围空气的绝缘,容易发生相间短路; 3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸; 这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。 为了解决这样的办法。接地变压器(简称接地变)就在这样的情况下产生了。 接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。该绕组对正序和负序电流呈

浅谈配电变压器接地优化

浅谈配电变压器接地优化 摘要:变压器作为电力系统中不可或缺的设备,对整个电力系统的运行稳定性、安全性和经济性有着至关重要的意义。但是变压器本身是一个长期处于负荷运行 的设备,在长时间运行中必然会受到外界因素的影响,出现各种故障问题,特别 是在雷雨天气,如果接地系统出现故障,其安全事故的发生率变得更高。因此, 有必要对配电变压器接地进行优化创新。 关键词:配电变压器;接地;优化 1对配电变压器接地优化的重要性 现在,随着用电设备的大幅度增加,用电负荷以及用电密度在急剧增大,配 电变压器使用也越来越广泛,数量增加很快。配电变压器是整个供电系统中的重 要设备,它主要根据电磁感性原理将高电压、小电流的交流电能转换成同等频率 的低电压、大电流的电能。供用户日常使用。因此,配电变压器是否正常运作将 直接关系到用户的日常生活及生产,是非常重要的。而变压器的接地,涉及到变 压器的安全运行,更是不容忽视。对配电变压器接地进行优化,可以减少安全事 故的产生,提高系统的安全性。 2 变压器接地概述 变压器是一个由铁芯、油箱、冷却系统等部件组合而成的一个复合型电气设备,其属于静态运行装置的电气设备。变压器运行的稳定性、安全性和经济性直 接决定着电力系统中供电功能的正常发挥,因此维修人员一定要做好定期检查工作,提前了解变压器运行原理,科学了解变压器运行状态,从而达到合理施工和 维护要求。接地作为当今变压器安全防护的主要方式,只有科学、合理接地才能 确保变压器运行安全与稳定,减少变压器故障的发生,真正实现防患于未然的工 作目标。铁芯接地作为当今变压器接地的主要方式,为了确保接地的合理性,接 地方式的选择必须要正确,下面我们就铁芯接地中需要注意的事项分析。 首先,在接地连接安装中,如果夹件上下间存在拉杆且不具备绝缘特性的时候,接地连接的时候应当将铜片连接在夹片上,让夹片能绕过螺杆而连接到土地 连接件中。其次,当上下夹件处于绝缘体的时候,应当在铁片堆成的位置上安装 连接器,在应用的时候还可以通过夹片与铁片之间的连接方式来处理,从而确保 了接地质量,满足了电力系统的运行安全需要。第三,在接地连接工作中,如果 变压器运行环境处于多雨潮湿地带,那么还需要选择接地套管的时候注意套管的 防腐蚀以及防水性,水流进入到芯片而造成变压器运行故障。 3变压器优化接地应注意的问题 我国低压配电系统绝大多数是中性点接地系统。在这种系统中, 配电变压器高压侧避雷器接地端、低压绕组中性点和配电变压器外壳共用一套接地装置。相关 规程规定: 当配电变压器容量为100 kV?A 及以下时, 接地电阻不得大于10Ω; 当配 电变压器容量大于100 kV?A 时, 接地电阻不得大于4 Ω。配电变压器接地不良或 接地电阻超过上述规定值, 虽然危险, 但由于它不像相线那样, 一有故障就会造成停电, 因而常常被人们忽视。为了保证设备和人身安全, 对配电变压器接地装置不应 忽视, 而应该认真对待。 3.1采用TN-C系统需注意的问题 配电变压器低压侧中性点接地, 并与高压侧避雷器接地共用一个接地装置, 适 应于大量采用的低压系统为TN和IT 但是如采用IT制式, 则中性点就不能接地。 需防爆的场所最好采用系统, 中性点不接地, 外壳单独接地, 这样相线碰地或碰外壳,

相关主题
文本预览
相关文档 最新文档