当前位置:文档之家› 真空泵过负荷跳闸原因分析

真空泵过负荷跳闸原因分析

真空泵过负荷跳闸原因分析
真空泵过负荷跳闸原因分析

投运#4热泵时真空泵过负荷跳闸

原因分析及防范措施

(一)事故前工况

2019年10月15日,运行四值白班。#4机负荷31MW,主汽流量140t/h,主汽压力8.7Mpa,主汽温度525℃,真空–76kPa,排汽温度46℃。

(二)事件经过

15:00组织运行人员投运#4机热泵,先开热泵到真空泵入口管道阀门后,稍开热泵凝汽器供汽蝶阀。

15:30分#1水环真空泵由正常运行的85A电流突然升至150A,真空泵掉闸。启动#2真空泵,设备状态显示开超时。就地检查真空泵,两台泵液位均在50cm。再次启动#2真空泵,过负荷跳闸,并且从#2真空泵排气孔和汽水分离器溢流管喷水。#4机真空从–76kPa逐渐下降,空冷岛凝结水温度从45℃逐渐下降,运行人员降低负荷以维持机组真空,联系热泵运维人员立即关闭热泵抽真空门和热泵凝汽器进汽蝶阀。

降负荷至27MW时,退#3抽加热蒸汽,高加疏水倒至低加,厂用电电源切至备用电源。负荷10MW时,真空值–45kPa,空冷三个街区风机满转速,两侧凝结水温度接近环境温度。在降低负荷的同时电气人员对#2真空泵重新送电并启动,电流依然为150A跳闸,检查真空泵轴承无冒烟迹象,排除轴承磨损导致电流增加的原因。

因两台真空泵跳闸现象相同,排除真空泵组故障的原因。从真空系统经过初步分析怀疑开热泵抽真空门时有水进入真空泵导致过负荷。核对热井就地、远方水位一致,排汽管道不存在满水现象;敲打空冷凝结水集箱和真空泵入口立管没有集水现象。将两台真空泵汽水分离器水位排空后,再次启动#2真空泵从该泵汽水排气孔及汽水分离器溢水管仍喷水,电流在98~150A晃动,约2分钟后该泵汽水排气孔及汽水分离器溢水管停止喷水,机组真空开始上涨,空冷三个街区两侧凝结水温度开始上涨,真空涨至–75kPa,将真空值降到–60kPa空冷两侧凝结水温度恢复至正常值。开旁真空泵补水至稍低于正常水位,启动#1真空泵试转,电流110A,就地真空泵运行正常,并缓慢下降至正常值。停运#2真空泵,机组恢复正常运行。

机组恢复正常后,重新投运#4机热泵,开启热泵抽真空手动门后,运行真空泵电流突然超限,并有大量水从真空泵排气管排出,立即停止投运热泵。与热泵运维人员共同检查热泵系统,发现热泵凝结水箱满水。关闭乏汽至热泵凝汽器进汽蝶阀和热泵抽真空门,启动热泵凝结水泵进行排水。

(三)主要原因分析

#4热泵机组凝汽器进汽蝶阀不严,造成机组排汽在热泵机组凝汽器中不断凝结。热泵机组凝汽器满水,开启热泵至真空泵入口管道抽真空阀门后,将凝结水吸至真空泵内,造成#1、

#2真空泵过负荷运行掉闸。

(四)防范措施

1.夏季机组运行期间,集控运行人员和热泵运维人员要加强对热泵机组的检查,尤其对热泵机组真空和热泵凝汽器水位的监视,防止发生因热泵凝汽器进汽蝶阀不严和热泵机组系统漏真空造成运行机组漏真空。

2.供热期,热泵投运前要求热泵运维人员检查热泵机组凝汽器和热泵小凝结水箱水位正常,系统已处于备用状。

3.在投运热泵系统时,操作要缓慢,就地与远方加强联系;先缓慢开启热泵抽真空门,同时监视真空泵电流是否正常,就地派人检查泵运行情况,如发现电流升高,应立即停止操作,关闭抽真空门。抽真空门开启后,检查热泵真空值是否正常,如正常方可进行下一步操作。

4.抽真空门全开,热泵系统真空正常后,缓慢开乏汽至热泵凝汽器电动门,运行人员及热泵运维人员要严密监视热泵凝汽器水位和热泵小凝结水箱水位,热泵凝汽器排水畅通。运行人员仍要监视真空泵电流,如发现电流升高,应立即停止操作,关闭热泵凝汽器进汽蝶阀和热泵抽真空门。

5.在热泵投运时,派人就地监护真空泵汽水分离器的液位,如果其液位上升,立即打开汽水分离器的放水门排至低位,并减少补水量,待热泵投运中无异常补水至正常水位,就地观察真空泵分离器水位正常、运行正常。

6.热泵机组投运后,热泵机组凝结水排负米坑,如热泵凝结水箱水位高,注意调整热泵凝结水管至负米坑手动门,防止负米坑满水。待排污2小时后,通知化验班化验热泵凝结水水质,合格后导至机组凝结水箱,并加强对凝结水箱水位的监视,不得高于1600mm。热泵凝结水一般铁含量超标,硬度合格,如出现硬度超标,需进一步核实热泵凝汽器铜管是否泄漏所致。

7.投运热泵时,如真空下降过快,值长立即安排降机组负荷,根据负荷情况适时将高加疏水导入低加,以及三抽退出母管运行,加强汽机主要参数的监视,确保机组不非停。与此现时要加强锅炉燃烧调整,监护好各炉汽包水位和主汽温度。

漏电保护器跳闸6种常见问题排查解决方法

漏电保护器不同于断路器和隔离开关。断路器除了有分合电路功能外,还具有短路保护功能。隔离开关只有分合电路功能。漏电保护器除了分合电路功能,并有短路保护功能外,还具有漏电保护功能(漏电电流在30mA——500mA不等)。 建筑供配电系统多采用TN—C—S系统。一般设置两级漏电保护开关。第一级设置在电源进户处的总开关处,即电源进户处的总开关选用漏电电流值为300mA——500mA的4级(L1、L2、L3和N线)的漏电开关;第二级设置在用户开关箱中的插座回路(悬挂式空调回路允许不设置漏电开关),选用漏电电流值为30mA的2级(L1或L2或L3和N线)的漏电开关。从而防止了用电人员触电事故的发生及提高了建筑供配电系统安全运行的可靠性。 漏电保护开关故障跳闸后,万万不可将漏电保护开关的漏电流检测环节摘掉。应根据故障跳闸现象,分析故障跳闸原因,找出解决故障方法。漏电开关故障跳闸现象大致有6种: 第1种,用电设备本身绝缘损坏,导致用电时发生漏电开关故障跳闸现象; 第2种,线路潮湿绝缘强度降低,导致非用电时漏电开关故障跳闸现象; 第3种,人身意外触电,导致漏电开关故障跳闸现象; 第4、5、6种,施工安装时接线不正确,导致用电时发生漏电开关故障跳闸现象。 详细分析如下↓↓↓ 第1种:用电设备本身绝缘损坏而漏电(设备中的N线与PE线短接)。如图1所示。 故障现象:插座回路用电时,插座回路漏电开关跳闸。 故障原因:经分析线路接线正确无误,故判断为用电设备本身绝缘损坏而漏电(设备中的N 线与PE线短接)。 解决方法:更换或维修用电设备。 第2种:线路潮湿绝缘强度降低。如图1所示。 故障现象:不用电时,也出现AL1中的总漏电开关或插座回路漏电开关跳闸。 故障原因:经分析,线路潮湿绝缘强度降低,导致漏电流超过了漏电开关允许漏电流值。也可能因线路短路所致。 解决方法:烘干线路,提高绝缘强度。检查线路若是短路所致,排除短路故障。 第3种:有人触电,出现AL1中的总漏电开关或插座回路漏电开关跳闸。如图1所示。 故障现象:AL1中的总漏电开关或插座回路漏电开关跳闸。

(完整word版)漏电跳闸原因分析

0前言 漏电保护器在人身安全、设备保护和防止电气火灾等方面起着重要的作用。由于它使用安全方便得到广泛应用,而使用中也存在这样那样的问题、笔者从使用者的角度介绍它的相关知识和注意事项故障处理。 漏电保护器又叫漏电开关、它有电磁式、电子式等几种: 1漏电保护器的工作原理 1.1电磁式漏电保护器的工作原理 主要由高导磁材料(坡莫合金)制造的零序电流互感器、漏电脱扣器和常有过载及短路保护的断路器组成、全部另件安装在一个塑料外壳中。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值。零序电流互感器的二次绕组就输出一个信号,并通过漏电脱扣器使断路器在0.1秒内切断电源,从而起到漏电和触电保护作用。当被保护的线路或电动机发生过载或短路时,断路器中的电磁式液压延时脱扣器中热元件上的双金属片发热动作、使开关分闸,切断电源。 1.2电子式漏电保护器的工作原理 主要由零序电流互感器,集成电路放大器,漏电脱扣器及常有过载和短路保护的断路器组成。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值,零序电流互感器的二次绕组就输出一个信号,经过集成电路放大器放大后,使漏电脱扣器动作驱动断路器脱扣,从而切断电源起到漏电和触电保护作用。如果使用兼有过压保护是利用分压原理取得过电压信号,使可控硅导通,切断电源。 2漏电断路器的选用原则 2.1根据使用目的和电气设备所在的场所来选择 漏电断路器用于防止人身触电,应根据直接接触和间接接触两种触电防护的不同要求来选择。 2.1.1直接接触触电的防护 因直接接触触电的危害比较大,引起的后果严重,所以要选用灵敏度较高的漏电断路器,对电动工具、移动式电气设备和临时线路,应在回路中安装动作电流为30 mvA,动作时间在0.1 s之内的漏电断路器。对家用电器较多的居民住宅,最好安装在进户电能表后。 如果一旦触电容易引起二次伤害(比如高空作业),应在回路中安装动作电流为15 mA,动作时间在0.1 s之内的漏电断路器。对于医院中的电气医疗设备,应安装动作电流为6 mA,动作时间在0.1 s之内的漏电断路器。

10KV线路跳闸的主要原因

2、故障跳闸原因分析 (1)漯河供电公司郊区10KV线路大都分布在野外、点多、线长、面广、受季节性影响的特点比较明显,6-8月这3个月累计跳闸达109次,占线路跳闸总数的%,期间正是迎峰度夏高峰期,雷雨大风天气多、温度高、湿度大、树木生长旺盛,易于发生各类跳闸故障。 (2)从各类故障跳闸比例中可以看出,因线路配电设备自身原因,占线路跳闸总数的31%为最高,分析其原因有以下几点: 一是80%以上的线路设备是农网前两期时代的产物,受当时资金及技术条件的限制,工程标准起点低,网架结构薄弱,装备水平差,近年来负荷发展快,导线截面小,极易引发线路故障,如跳闸次数最多的商农线、姬工线等大都因负荷电流大,而烧坏刀闸和烧断跳线弓子等故障。 二是由于线路年久失修,加之部分线段污染严重,一遇恶劣天气易发生绝缘子击穿放电、避雷器击穿损坏、跌落保险熔管烧毁、引流线断落等故障引起跳闸。 三是线路导线80%以上为裸体线,档距大,弧垂超标,遇大风时易造成导线舞动,引发相间短路故障。 四是由于郊区负荷年增长率在35%以上,配电变压器的增容布点远远跟不上负荷的发展速度,由此屡屡造成因配变过负烧毁引起线路跳闸,据调查统计2011年烧毁各类型号的变压器62台,烧毁配变的主要原因固然有设备过负方面的(如某些厂家的变压器短时过载能力较差),但也有管理方面的,所烧毁的变压器80%以上是因三相负荷不平衡引起单相线圈烧毁。 (3)因用户配电设备原因,占线路跳闸总数的%。仅次于公用线路配电设备,分析其原因在于乡镇供电所对专变用户的设备疏于管理。 (4)因外力破坏原因占线路跳闸总数的%。如因司机违规驾驶撞击电杆,高架车挂断导线,施工取土挖断电缆等事故,如3月7日9点零7分Ⅰ姚工线被吊车撞断杆子,导致线路短路跳闸。

变频器频繁跳闸的解决方法

变频器频繁跳闸的解决 方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

变频器跳闸的解决方案瑞康钛业公司: 经多次到贵公司生产现场实地了解及对设备的检查情况,贵公司由于生产调速的需要,在公司各地使用变频器,其中一些变频器负荷较轻,一些负荷较重。贵公司经常发生锅炉房和煤气发生站变频器跳闸而其他变频器几乎不跳闸的情况。而贵公司这两处变频器设备又是非常关键的设备,该处设备的跳闸事故给公司的正常生产带来严重影响。 变频器跳闸时的情况:经检查安川变频器跳闸记录为欠电压跳闸;询问西门子变频器跳闸时的情况,据操作工反应显示为F003(欠电压)故障。同时据贵公司技术人员反应,当变频器跳闸时,伴随着明显的电压波动情况。 一、锅炉房和煤气发生站变频器频繁跳闸时的可能原因检查及分析: 1设备本身正常;经过对这两处变频器控制的电机检查、控制线路、按钮、电源线路的走向和绝缘检查,均正常,不存在偶然性故障的可能情况。 2变频器参数设置正常;参数为对正常风机常规设置,不存在有明显数据不属实的情况。 对变频器、电机、线路均进行了检测,设备均正常;因而排除了设备方面可能存在的问题引起变频器跳闸,在结合变频器跳闸时了解的情况综合判断,锅炉房和煤气发生站变频器跳闸的原因为电源电压波动引起的。因此对贵公司电源供电及配电情况进行了解和检查。 经检查,锅炉房和煤气发生站变频器电源均由锅炉房380V配电室供给,而该配电室电源由公司10KV高配室经变压器变为380后供给。公司10KV高配室电源由附近的110KV变电所变为10KV后供给;变电所10KV侧有多路出线,分别供给其他公

输电线路故障跳闸原因分析报告模板)

输电线路故障跳闸原因分析报告(模板) XX月XX日XXXkVXXX线路故障跳闸原因分析报告(模板) 1 线路概况 1.1 简介(电压等级、线路名称、线路变更情况、线路长度、杆塔数、海拔、地形、地质、建设日期、投运日期、资产单位、建设单位、设计单位、施工单位、运行单位) 1.2设计气象条件 1.3 故障点基本参数 1.3.1杆、塔型。 1.3.2导、地线型号。 1.3.3 绝缘子(生产厂家、生产日期、绝缘子型式、外绝缘配置) 。 1.3.4基础及接地。 1.3.5线路相序。 1.3.6线路通道内外部环境描述。 2 保护动作情况 保护动作描述、重合闸动作情况、保护测距情况、重合不成功强送电情况、抢修恢复时间。 3 故障情况 3.1 根据保护测距计算的故障点 3.2 现场实际发现的故障情况 3.3 现场测试情况 4 故障原因分析 4.1 近期运检情况 4.2 气象分析故障(当日天气情况) 4.3 故障点地形、地貌 4.4 测试分析(雷电定位、接地电阻测量、绝缘子检测、绝缘子盐密和灰密(绝缘子污秽程度) 、复合绝缘子憎水性、绝缘试验情况、在线监测等) 4.5设计校验(故障点基本参数、绝缘配置、防雷保护角、鸟刺加装、弧垂风偏校验) 4.6现场走访情况 (向故障点周边群众了解故障当时的天气、外部环境变化、异响、弧光等) 4.7其它故障排除情况(故障排除法) 5 故障分析结论 6 暴露的问题 7 防范措施 7.1 已采取措施 7.2 拟采取措施(具体措施、措施落实责任人、措施落实时限) 附件一:现场故障现象(故障周边环境、故障点受损部件、引发故障的外部物件)图片 附件二:现场故障测试图片 附件三:现场故障处理图片 附件四:相关资质单位的试验鉴定报告 附件五:保护动作及故障录波参数 附件六:参加故障分析人员名单 单位:日期:

LED显示屏频繁跳闸原因分析及解决方法v

漏电保护器布局不合理 由于LED显示屏安装现场所具有的特殊性,如接线错误、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱等原因,以及漏电保护器本身不可避免的误动和拒动,再加上没有按照实际用电情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸。 对于这种情况除了加强管理外,还需要从技术的角度,根据实际情况对漏电保护器进行合理布置。进线总电源上的漏电保护器,可主要做为防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可在200~500mA 之间选择,额定漏电动作时间可选择0.2~0.3s。这样,可极大地减少浪涌电压、浪涌电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。如果能使每个漏电保护范围内的二级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率。 在保护范围内没有形成有效的二级或三级漏电保护 开关箱内的末级漏电保护器是用电设备的主保护,如果末级漏电保护器不装、损坏或选型不当,将可能导致上级漏电保护器频繁跳闸。由于LED显示屏内金属导体很多,电线接头较多,如果导线绝缘不是很好,就会导致经常漏电的状况;有的还加了一些插座,在很多时候都不装漏电保护器,经常造成漏电。只有在每个保护范围内形成有效的二级或三级漏电保护模式,才能有效地减少漏电保护器的频繁跳闸。

漏电保护器本身有一定的局限性 (1)目前的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设备主回路中的漏电流,三相或三相四线在磁环中不可能布置完全均衡。LED显示屏的三相用电负荷也不可能完全平衡,在大电流下或较高的过电压下,会在有很高导磁率的磁环中感应出一定的电动势,这个电动势大到一定程度,就会导致漏电保护器跳闸。由于额定电流越大的漏电保护器采用相对较大的磁环,产生的漏磁通也相对较大,且漏电流要克服磁环本身的磁化力,导致实际使用的漏电保护器额定电流越大,灵敏度越低,拒动率也越大。 (2)漏电保护器在额定漏电动作电流和额定漏电不动作电流之间有一段动作不确定区域,漏电保护器的漏电流在此区域内波动时,可能导致漏电保护器无规律跳闸。 漏电保护器选型不合理 (1)开关箱内使用的额定漏电动作电流超过了30mA或者是超过用电设备额定电流两倍以上的漏电保护器,或是选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,发生漏电故障时,末级漏电保护器没有动作,上级漏电保护器就可能动作 (2)给LED显示屏通电时的启动电流往往都比较大,此大电流可能会使漏电保护器跳闸。因此,应尽可能分批次地给显示屏的箱体上电。另外,一般应选用对浪涌过电压、过

漏电开关总是自动跳闸实教你一招解

英杰职业教育:漏电开关总是自动跳闸实在很烦恼电工师傅一招解决 家庭都装有漏电开关,时常发生跳闸现象,如果一天跳几次,找不到原因,就让人实在很烦恼!有的是属漏电引起的正常跳闸,有的并非是漏电引起的跳闸,但为了用电安全,我们通常都会安装漏电开关。漏电开关在电路出现故障的时候都会自己自动跳闸,但是漏电开关怎么跳闸的,人们都不了解,要怎样才能使得大家更好的使用漏电开关呢? 开关即跳大家都有没遇到过,所以三相四相制接漏电开关一定要接四极漏电开关,即零线必须经过漏电开关。三相漏电开关跳闸是因为安装不良,如果漏电保护器在安装时各接线柱未接牢固,时间一长,往往会导致接线柱发热氧化,使电线绝缘层被烧热连在一起,其实在一个铁芯上有两个组:一个输入电流绕组和一个输出电流绕组,当无漏电时,输入电流和输出电流相等,在铁芯上二磁通的矢量和为零,就不会在第三个绕组上感应出电势,否则第三绕组上就会感应电压形成,经放大去推动执行机构,使开关跳闸。 正常工作时电路中除了工作电流外没有漏电流通过漏电保护器,此时流过零序互感器(检测互感器)的电流大小相等,方向相反,总和为零,互感器铁芯中感应磁通也等于零,二次绕组无输出,自动开关保持在接通状态,漏电保护器处于正常运行。当被保护电器与线路发生漏电或有人触电时,就有一个接地故障电流,使流过检测互感器内电流量和不为零,互感器铁芯中感应出现磁通,其二次绕组有感应电流产生,经放大后输出,使漏电脱扣器动作推动自动开关跳闸达到漏电保护的目的。 漏电开关 对于老电路或布线时没有套管的电路是很难用上漏电保护器,即使你能用一到潮湿天气它就跳个不停,漏电的原因和位置是很难查的。一般有三种原因,第一种原因,所接负载或导线存在火线或零线对地漏电。第二种原因,负载或导线存在短路。 第三种原因,负载电流过大,造成过载跳闸,这时候要关闭开关,断开电源,把输出电线的相线全部解开,用万用表逐一测量相线对地是否电阻非常小或电阻为零,排除后继续检查短路线路的情况,更换或加装即可。

施工现场漏电保护器频繁跳闸原因分析标准范本

安全管理编号:LX-FS-A70052 施工现场漏电保护器频繁跳闸原因 分析标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

施工现场漏电保护器频繁跳闸原因 分析标准范本 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使

施工现场漏电保护器频繁跳闸原因分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 施工现场漏电保护器频繁跳闸原因分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4487-40 施工现场漏电保护器频繁跳闸原因 分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。通过在施工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。

2 施工现场漏电保护器频繁跳闸的原因 2.1 漏电保护器布局不合理 根据《施工现场临时用电安全技术规范》JCJ46—88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。在一些住宅楼工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护

配电线路跳闸的原因分析及防范措施

配电线路跳闸的原因分析及防范措施 摘要:故障的情况下进行开关合闸,但常因过流保护动作跳闸而无法正常送电。现场情况表明,对这类存在开关异常跳闸状况的线路进行合闸送电瞬间,电流表指针往往大幅度偏转,然后又在较短的时间内返回到正常值。合闸冲击电流过大会导致过流保护动作跳闸,更为严重的是,有的线路只能将线路分段后逐段送电。 一跳闸原因: 1 管理原因: (1)外力破坏:电力线路受外力破坏易造成倒杆断线恶性事故,严重威胁电网安全运行。 (2)盗窃设施:电力线路多为金属材料,受价格上涨因素,犯罪分子偷盗电力设施,案发前必然先造成线路跳闸停电后实施犯罪。 (3)车辆撞杆:线路延公路两侧架设方案仍是目前普遍推行的首选方案,它便于施工与接火跳线,但随着车辆快速增长,违章行车直接撞击电杆事故也呈上升趋势。 (4)杆根取土:修路、建房、烧砖等取用土时,对架设在田间地头电杆地段进行取土,破坏了电杆基础,造成电杆倾斜倒塌。 (5)破坏拉线:组立在农村耕地上带有接线的电杆,因其不便于农机作业和农作物的收种,从而擅自拆除拉线,引起电杆倒塌。 (6)焚烧农作物秸秆:每年农作物收割之后,废弃在耕地中或堆积在田间地头、公路两侧的秸秆就地焚烧而引起线路跳闸。 (7 短路:人为因素较多,大都是缺乏电力保护常识而引发障碍。重点有:风筝、过街宣传横幅,彩带等绕线;金属丝抛挂,此类故障多集中在村庄附近和空旷地段;架空导线飞鸟短路,地下电缆出线裸露部分小动物短路。 (8线路巡查不到位:线路的安全管理重点在线路上,线路巡查工作必须要认真仔细,并要正确巡查所有设备,确保线路设备保持良好的运行状态。 (9 路薄弱点不清:没有标定危险部位与薄弱环节,遇到负荷高峰期,线路连接薄弱点放电发热烧断导线。 二原因:

对施工现场漏电保护频繁跳闸原因分析

对施工现场漏电保护频繁跳闸原因分析 对施工现场漏电保护频繁跳闸的原因分析 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。通过在施工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。 2 施工现场漏电保护器频繁跳闸的原因 2.1 漏电保护器布局不合理 根据《施工现场临时用电安全技术规范》JCJ46—88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。在一些住宅楼工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护范围,在每个保护范围内形成二级漏电保护,必要时形成三级漏电保护,这样可以提高每个保护范围内二或三级漏电保护的保护灵敏度,提高保护范围内故障漏电时的漏电保护器的动作率,减少总漏电保护器跳闸。合理的布置也可以促使各个施工队自主管理和方便项目部的统下管理。这样工地进线总电源上的漏电保护器,可主要做为施工现场防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可根据施工现场的大小在200~500mA之间选择,额定漏电动作时间可选择0.2—0.3s,可极大地减少浪涌电压、电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。如果能通过加强对工地漏电保护器的管理,使每个漏电保护范围内的二级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率。 2.2 在保护范围内没有形成有效的二或三级漏电保护 开关箱内的末级漏电保护器是用电设备的主保护,如果末级漏电保护器不装、损坏或选型不当,将可能导致上级漏电保护器频繁跳闸。如施工现场有的照明部分相当混乱,存在很多问题:工地照明线经常随施工部位的改变而重新敷设,乱拉乱挂现象比较多,导线绝缘不是很好,经常漏电;现场办公室照明线虽然比较固定,但是一般固定的比较低,人很容易触及,还带有一些插座回路,在很多时候都不装漏电保护器,特别是在天刚黑需要照明的时候,经常造成了总漏电保护器频繁跳闸。施工现场移动设备比较多,如振捣棒、手电钻、小型切割机、打夯机、小型电焊机等随机使用性比较强,有的时候使用这些设备时没有接入开关箱,这也增加了总漏电保护器频繁跳闸的几率。只有在每个保护范围内形成有效的二或三级漏电保护模式,才能有效地减少漏电保护器的频繁跳闸。 2.3 漏电保护器本身有一定的局限性 (1)目前的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设

线路跳闸原因分析报告

线路跳闸原因分析报告 线路跳闸原因分析报告随着科技的发展迅猛,无线网络也进入家家户户,不管城市还是农村,居民生活对用电质量的要求提高,根据国家要求,现在每年计划的停电次数在逐渐减少,同时在发生故障之后能够及时处理设备,恢复用户用电。 1 配网线路跳闸原因分析 1.1 外力的破坏 配网线路一般放置于比较复杂的环境中,不可避免的要面对来自大自然的外力干扰,经调查外力的损坏占总比例高达30.2%,例如:狂风的破坏、暴雨的洗刷、雾霾的覆盖、寒冬暴雪的侵蚀,种种外力因素都可使线路的绝缘层遭到破坏导致绝缘层老化、变质,从而发生绝缘层断裂保护力下降等现象,最终导致跳闸。由此可见,外力的破坏也成为配网线路跳闸的一大因素[1]。 1.2 用户的原因 用户对于设备的监督检查管理力度不够,也可导致线路的绝缘能力下降,供电管理部门的检查力度不夠也可引发故障,各项监管工作做不到位,使各种问题和存在的隐患都可导致配网线路的损坏。一些用户存在对知识的匮乏,缺乏对配网线路规定的额定电压等级的认知,随意使用设备,从而导致设备故障。用户自身原因或者监管不够的原因占发生故

障总比例的17%,这些都是不可忽视的重要因素。 1.3 设备的缺陷 工作人员对于线路检查不够认真,态度随意,不能及时发现、处理问题,且发现问题不及时处理,都为设备造成缺陷致使引发跳闸。检修人员不按照规定的周期检查,也没有对设备进行清扫和处理,导致设备运行老化、卡涩、变形等异常。一旦发生异常,都可引发设备故障,导致跳闸。 1.4 绝缘子串闪络放电引发的原因 导致绝缘子串闪络的因素之一就是过电压,例如:配网系统自身的暂态过电压、供电的高峰期瞬间过电压等,四面八方的过电压叠加都可使电压值迅速上升,一旦超过系统的额定电压值,就会导致绝缘子串闪络问题,引发对地方电及短路等故障。如果绝缘子的绝缘度不达标质量不合格时,都可引发短路、跳闸。 2 配网线路跳闸治理措施 2.1 防范外力的破坏 外力损坏是引发配网线路跳闸的外部因素最重要的原因,因此就需要加大力度排除这种干扰因素,保护好配网线路及设备的安全。例如:预防恶劣天气带来的损坏,在经常发生冰雪覆盖的区域做调查,收集冰雪覆盖情况、冰凌的性质、结冻的高度、冰凌出现的月份和次数等。这些都可作为在改造线路时候的参考因素,且加强对积雪的处理,可避免

施工现场漏电保护器频繁跳闸原因分析

施工现场漏电保护器频繁跳 闸原因分析 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

施工现场漏电保护器频繁跳闸原因分析 中电四公司 廖显红 2014年4月15日

现场施工用电一级配电箱漏电开关跳闸的原因分析 摘要:通过对现场施工用电的管理并及时总结经验教训,针对施工现场漏电保护器频 繁跳闸原因进行分析,了解各种漏电保护器的基本常识,掌控各级配电系统的有效配置,合理的对下场线路的架设,希望能对解决施工现场漏电保护器的频繁跳闸问题有所帮助。 关键字:一级配电箱、漏电保护器频繁跳闸、原因、采取措施 前言:现场的施工单位较多,施工作业环境一般比较差,临时用电所使用的设备、 线路本身安全隐患比较多,而且流动性、重复性、临时性较强,一闸多机现象严重,参加施工的作业人员甚至管理人员以及电工的素质参差不齐,经常造成一级配电箱漏电开关跳闸。因此我们在施工现场中,强制推行三级配电二级漏电保护和采用TN—S 三相五线式供电方式,确保用电设备达到“一机、一闸、一漏、一箱”的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成一级漏电保护器的频繁跳闸。不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全得不到有效的保障。通过近几年来在施工现场对施工临时用电方案的编制、临时用电的管理、总结体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。 施工现场漏电保护器频繁跳闸的原因分析 1、漏电保护器选型不合理 ①开关箱内使用漏电开关其额定漏电动作电流超过了正常值(30mA)或者是超过用电设备额定电流两倍以上的漏电保护器,甚至选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,依次在发生漏电故障时,三级箱漏电保护器还没有动作,一级箱漏电保护器却先行动作。 ②有些随机使用性的用电设备或小容量负荷的设备没有专用的开关箱,如I、Ⅱ类电锤、电钻、小型切割机等手持电动工具,在接入有较大额定电流的漏电保护器后,在发生漏电或故障时,三级漏电保护器就可能拒动,或者和一级漏电保护器同时跳闸。 ③施工现场电焊机比较多,电焊机的漏电保护器按电焊机的额定电流选用,在电焊机起焊时的大电流可能会使漏电保护器跳闸,这是部分电焊机漏电保护器跳闸的原因。对于这类用电设备一般应选用对浪涌过电压、过电流不太敏感的电磁型漏电保护器;或选用比电焊机额定电流大倍的电子式漏电保护器,但作为末级漏电保护,额定漏电动作电流不应大于30mA,这样才不至于使一级箱漏电保护器跳闸。 ④塔吊是施工现场较大的施工设备,有多台电动机,虽然起动过程采用了Y-Δ起动和转子回路串入电阻起动,降低了起动电流,但仍然会有较大的起动电流。Y-Δ起动和电动机换速时会随机产生一定的过电压,塔吊配电箱和配电线路处于高空中,长年日晒雨淋,绝缘难免有一定的损伤,导致漏电流相应增大,这些因素都可能造成塔吊的漏电保护器频繁跳闸。在考虑采用电子式漏电保护器时应适当将它的额定电流放大倍,以降低漏电保护器本身的灵敏度,减少频繁跳闸的几率,但是其漏电动作电流还是必须小于上级漏电保护开关的漏电动作电流。 ⑤三级箱漏电保护器上的漏电保护额定漏电动作电流和额定漏电不动作电流选择过小,没有考虑到漏电保护器下口的配电线路上可能有相对较大的正常漏电流。一般

漏电保护器经常跳闸原因和处理方法

漏电保护器经常跳闸原因和处理方法 漏电保护器跳闸是生活中比较常见的一件事,很多人对漏电保护器跳闸的原因都不了解这也是大家很想知道的。本文中就详细的告诉了大家漏电保护器跳闸的原因。 漏电断路器的工作原理 漏电保护器的主要部件是个磁环感应器,火线和零线采用并列绕法在磁环上缠绕几圈,在磁环上还有个次级线圈。当同一相的火线和零线在正常工作时,电流产生的磁通正好抵销,在次级线圈不会感应出电压。如果某一线有漏电,或未接零线,在磁环中通过的火线和零线的电流就会不平衡,而产生穿过磁环的磁通,在次级线圈中感应出电压,通过电磁铁使脱扣器动作跳闸。 下面是单相线路的示意图,三相或三相四线线路的原理相同。 漏电保护器经常跳闸原因和处理方法 1、安装不良 如果漏电保护器在安装时各接线柱未接牢固,时间一长,往往会导致接线柱发热、氧化,使电线绝缘层被烧焦,并伴有打火和橡胶、塑料燃烧的气味,造成线路欠压使漏电保护器跳闸。

2、漏电保护器本身有问题 用户在购买漏电保护器时,应尽量到信誉好的定点厂家或商店购买,千万不要图一时便宜向一些个体户购买“三无”漏电保护器,这样往往得不偿失。 3、漏电保护器与负载不匹配 随着家用电器得不断普及,许多家庭的负载电流已远远超过线路上漏电保护器的额定电流,造成漏电保护器跳闸。这种情况一般多发生在空调、电水壶等大功率家电的使用,一般只要重新换一只匹配的漏电保护器,问题便可迎刃而解了。 4、负载或线路漏电、短路 如果是家电等负载漏电或短路而使漏电保护器跳闸,只要拔掉有故障的家电插头,便可以重新送电;如果是线路漏电或短路,相对来说比较棘手,可先解决一些简单故障,让部分线路暂时恢复送电。具体做法为:当漏电保护器跳闸后,首先把各分路断开,再把漏电保护器送上,当送上某分路时漏电保护器即跳闸,则可以断定此分路有故障。只要断开此分路,其他各分路就可以恢复用电。此时,如果发现某房间的插座或灯具没电,故障往往就在这一带。 5、电源进线电压过高 这种情况虽不多见,但十分危险,一般发生在三相四线制供电的住宅楼(现在的住宅楼普遍这样供电)。由于三相不平衡或老鼠等小动物的捣乱,使电源总零线断路发生电压漂

断路器频繁误跳闸的原因

1. 断路器频繁误跳闸的原因 为了找出造成故障的原因,我们用电流钳表对设备电流进行测量,然而发现几个钳表所测电流值相差非常大,例如下图的现场测试图所示。那么哪个值才是正确的呢?图2是该电流的波形。 图 1 左边电流为5.92A,右边电流为4.05A 图2 对应的电流波形

从电流波形可以看出,该负载是一个非线性负载,波形不是标准的正弦波,图1中左边的电流表是真有效值测量仪,右边的是按有效值校准的平均值测量仪。那么为什么这两种电流表测出来的电流值会相差那么大呢?在很好的理解它们差异所在之前必须首先了解有效值的确切含义。 交流电流的有效值(RMS)等于在同一电阻性负载回路中,与其产生等热量的直流电流的大小。使用交流电时,电阻产生的热量与一个周波内的平均电流的平方成正比。换而言之,产生的热量和电流平方的平均值成正比,也就是说电流值和这个平方的平均值开方后的值也就是有效值成正比。(由于平方后总是正数,所以不用考虑极性问题)对于如图 2 所示的纯正弦波,有效值是峰值的0.707 倍(或者说峰值是有效值的即1.414 倍)。换句话说,有效值为1 安培的纯正弦波电流的峰值电流为1.414 安培。如果波形值仅仅被简单的平均(对半个负波形取反),平均值就是峰值的0.636 倍,或是有效值的0.9 倍。图3 所示为这两个重要的比例关系。 波顶因数=峰值/有效值=1.414 波形因数=有效值/平均值=1.111 图3 纯正弦波 在测量一个纯正弦波(仅限于纯正弦波)时,简单的测出平均值(0.636 倍峰值),再乘以波形因数1.111(即0.707 倍峰值)所得到的数值是完全正确的,这个数值也被称为有效值。这种方法被广泛用于所有的模拟测量仪(此时平均值是靠线圈运动的惯性和阻尼作用来实现的)和所有旧式、仪表和大多数电流表数字万用表上。这种技术被称为“平均读数,按有效值校准”的测量方法。问题是这种测量方法只适用于纯正弦波,而在现实的电气装置中根本不存在纯正弦波。图 4 所示的波形图是一个接入个人电脑后所产生的典型电流波形图。方均根值仍然是 1 安培,但是峰值要明显高于纯正弦波时的峰值,为2.6 安培。 同时平均值则小得多,为0.55 安培。

10kV线路故障跳闸的原因分析及应采取的防范措施

10kV线路故障跳闸的原因分析及应采取的防范措施 摘要:本文就2003年库尔勒供电公司10kv配电线路事故跳闸的案例,对10kv跳闸的常见故障及原因进行了分析,并讨论了如何加强配电网系统可靠性。 关键词:线路故障;跳闸;原因;防范措施 2003年库尔勒供电公司10kV配电线路事故跳闸率较高,累计跳闸455次,其中133次重合不成功。城网跳闸202次,69次重合不成功。农网跳闸253次,64次重合不成功。由于用户供电系统可靠性作为考核供电企业“安全生产文明双达标、创一流”的必备条件,如何预见城市配电系统常见的故障、分析原因,减少对用户的停电时间来提高可靠性是每一个供电职工应该正确对待的问题。我们对跳闸原因进行了认真分析,将各种原因引起的跳闸分门别类的罗列出来,以便于配网管理部门更好的开展工作。 一、造成10kV跳闸的常见故障及原因分析 对于任何事故都应该从管理和技术两个方面进行分析,只有找出问题的原因,才能拿出解决的办法。 (一)我们从技术方面分析,变电站出线断路器跳闸有四种原因,即线路故障、变电设备故障、不可抗拒的外力破坏、人为因素。2003年线路跳闸455次,查出原因的有391次,线路故障造成10kV跳闸220次,占跳闸原因56%;变电设备故障造成10kV跳闸36次,占跳闸原因9%;不可抗拒的外力破坏造成10kV 跳闸83次,占跳闸原因21%;人为因素造成10kV跳闸41次,占跳闸原因10%;还有4%是同杆架设对侧线路故障时由于弧光造成的跳闸。 1、线路故障的分析 瓷瓶(瓷瓶包括针瓶、悬瓶、避雷器、跌落保险的瓷体)闪络放电造成50次跳闸,占线路故障原因23%;倒杆造成5次跳闸,占线路故障原因2%。断线造成43次跳闸,占线路故障原因20%。短路造成25次跳闸,占线路故障原因11%。树害造成93次跳闸,占线路故障原因42%。 同时在133次重合不成功的跳闸原因分析过程中,我们发现有66次是在主干线的永久型故障,有44次是分支线路故障,由于分支跌落保险配置不当或柱上断路器拒分造成的越级跳闸。有11次是虽然线路是瞬间故障但是线路未投重合闸或设备没有重合闸装置。 2、变电设备故障的分析 断路器故障造成的跳闸3次,用户设备故障越级造成的跳闸21次,电缆头击穿短路10次。

施工现场漏电保护器频繁跳闸原因分析

施工现场漏电保护器频繁跳闸原因分析 中电四公司 廖显红 2014年4月15日

现场施工用电一级配电箱漏电开关跳闸的原因分析摘要:通过对现场施工用电的管理并及时总结经验教训,针对施工现场漏电保护器频繁跳闸原因进行分析,了解各种漏电保护器的基本常识,掌控各级配电系统的有效配置,合理的对下场线路的架设,希望能对解决施工现场漏电保护器的频繁跳闸问题有所帮助。 关键字:一级配电箱、漏电保护器频繁跳闸、原因、采取措施 前言:现场的施工单位较多,施工作业环境一般比较差,临时用电所使用的设备、线路本身安全隐患比较多,而且流动性、重复性、临时性较强,一闸多机现象严重,参加施工的作业人员甚至管理人员以及电工的素质参差不齐,经常造成一级配电箱漏电开关跳闸。因此我们在施工现场中,强制推行三级配电二级漏电保护和采用TN—S 三相五线式供电方式,确保用电设备达到“一机、一闸、一漏、一箱”的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成一级漏电保护器的频繁跳闸。不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全得不到有效的保障。通过近几年来在施工现场对施工临时用电方案的编制、临时用电的管理、总结体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。 施工现场漏电保护器频繁跳闸的原因分析 1、漏电保护器选型不合理 ①开关箱内使用漏电开关其额定漏电动作电流超过了正常值(30mA)或者是超过用电设备额定电流两倍以上的漏电保护器,甚至选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,依次在发生漏电故障时,三级箱漏电保护器还没有动作,一级箱漏电保护器却先行动作。 ②有些随机使用性的用电设备或小容量负荷的设备没有专用的开关箱,如I、Ⅱ类电锤、电钻、小型切割机等手持电动工具,在接入有较大额定电流的漏电保护器后,在发生漏电或故障时,三级漏电保护器就可能拒动,或者和一级漏电保护器同时跳闸。 ③施工现场电焊机比较多,电焊机的漏电保护器按电焊机的额定电流选用,在电焊机起焊时的大电流可能会使漏电保护器跳闸,这是部分电焊机漏电保护器跳闸的原因。对于这类用电设备一般应选用对浪涌过电压、过电流不太敏感的电磁型漏电保护

至 配网跳闸分析报告

2014年1至11月份配网跳闸分析报告 一、总体情况分析 截止2014年年11月底, 10kV公用配电线路共计65条,10kV配电线路累计故障跳闸238条次,平均跳闸次数为次/条;与去年302条次相比减少66条次,同比降低%。其中:设备跳闸80条次,占全部故障的%;去年同期设备跳闸123条次,占全部故障的%,同比下降了%。 树障跳闸44条次,占全部故障的%;去年同期树障跳闸50条次,占全部故障的%,同比下降了%。 外力跳闸25条次,占全部故障的%;去年同期外力跳闸29条次,占全部故障的%,同比下降了%。 其它类跳闸89条次,占全部故障的%;去年同期其它类跳闸95条次,占全部故障的%同,比上升了%。10kV配网主干线故障停电的主要原因依次为设备原因、树障因素、外力因素、其它类因素。(见饼状图) 其它类原因 37% 外力原因 11%树障原因 18% 设备原因 34% 二、配网线路跳闸情况

截止11月底,10千伏主干线故障238条次,比去年同期减少64条次(见柱状图4)123 50299680 442589 20 40 60 80 100 120 140 设备原因树障原因外力原因其它类原因2013年2014年 三、暴露问题 (一)配网主干及分支线路故障238条次。 1、其中因设备影响引起的故障为80条次,占配网故障的%,具体分类(见柱状图)。232212119210 5 10 15 20 251导线原因变压器原因避雷器原因绝缘子原因开关原因计量装置原因变电站内原因 经过对设备影响引起的故障原因分析发现:占前三位的依次为导线原因23次、变压器原因22次、避雷器原因12次。主要原因:一是我局10千伏配网设备大部分是农网一期以前的线路,当时建设标准低、线径细。二是近几年负荷增长迅速,配电设备长期在大负荷、重过负荷运行,老化严重,故障较多。三是设备

施工现场漏电保护器频繁跳闸原因分析详细版

文件编号:GD/FS-9278 (安全管理范本系列) 施工现场漏电保护器频繁跳闸原因分析详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

施工现场漏电保护器频繁跳闸原因 分析详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。通过在施

工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。 2 施工现场漏电保护器频繁跳闸的原因 2.1 漏电保护器布局不合理 根据《施工现场临时用电安全技术规范》 JCJ46—88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处

相关主题
文本预览
相关文档 最新文档