当前位置:文档之家› 数论中埃米特恒等式证明

数论中埃米特恒等式证明

数论中埃米特恒等式证明
数论中埃米特恒等式证明

数论中埃米特恒等式证明

证明下列命题:

(1)*,N n R x ∈∈+,且1至x 之间的整数中,有][n x 个是n 的倍数。

(2)若,!||n p α则 +++==][][][)!(32p

n p n p n n p α。 (3)x 为实数,n 为正整数,求证:(埃米特恒等式)][]1[]2[]1[][nx n n x n x n x x =-++++++

+ 。 证明:(1)因为1][][+<≤n x n x n x ,即n n

x x n n x ?+<≤?)1]([][ 故*,N n R x ∈∈+,且1至x 之间的整数中,有][n

x 个是n 的倍数。 (2)由于p 是质数,因此!n 含p 的方次数)!(n p 一定是1,2,3,n n ,1,- 各数中含p 的方次数的总和。由(1)知1,2,3,n n ,1,- 中有][p n

个p 倍数,有][2p

n 个2p 的倍数,┈,所以 +++=][][][)!(32p

n p n p n n p (3)不妨设0>x ,①当][]1[x n

n x =-+时,即1}{011}{<

x n n x 时,设2,,2,1,0-=n k ,使得,1][]1[],[][+=++=+x n

k x x n k x , 则1}]{[}{1}{121}{11}{--=?-<≤--?-<≤--???

???<++≤<+k n x n k n x n k n n k n x n k n n k x n k x 所以1][)1])([1(])[1(]1[]2[]1[][--+=+--++=-+++++++k n x n x k n x k n n x n x n x x 1][}]{[][}]{][[][--+=+=+=k n x n x n x n x n x n nx 故][]1[]2[]1[][nx n

n x n x n x x =-+++++++ 。 综合①②得,x 为正实数时,n 为正整数, ][]1[]2[]1[][nx n n x n x n x x =-++++++

+ 成立。 同理可证得0

综合上述得,x 为实数时,n 为正整数, ][]1[]2[]1[][nx n n x n x n x x =-+++++++ 成立。

证明组合恒等式的方法与技巧

证明组合恒等式的方法与技巧 摘要本文是以高中二项式定理和排列组合知识为理论基础,对几个常见重要的例题作分析,总结组合恒等式常见的证明方法与技巧。对组合恒等式的证明方法本文主要讲了组合公式法,组合数性质法,二项式定理法,比较系数法,数列求和法,数学归纳法,组合分析法。 关键字组合,组合数,组合恒等式,二项式定理 Proof Methods and Skills of Combinatorial Identity ABSTRACT This thesis primarily analyses some common but significant examples on the basis of binomial theorem and permutation and combination knowledge of senior middle school to summarize the common demonstrating methods and technique of combinatorial identity. For combinatorial identity, here it mainly introduces the methods of combination formula, unitized construction, mathematical induction ,and so on . KEY WORDS combination,combinatorial identity,binomial theorem 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排 列组合、二项式定理为基础。组合恒等式的证明有一定的难度和特殊的

代数式恒等式的证明

初中数学竞赛专题选讲 代数恒等式的证明 一、内容提要 证明代数恒等式,在整式部分常用因式分解和乘法两种相反的恒等变形,要特别注意运用乘法公式和等式的运算法则、性质。 具体证法一般有如下几种 1.从左边证到右边或从右边证到左边,其原则是化繁为简。变形的过程中要不断注意结论的形式。 2.把左、右两边分别化简,使它们都等于第三个代数式。 3.证明:左边的代数式减去右边代数式的值等于零。即由左边-右边=0可得左边=右边。 4,由己知等式出发,经过恒等变形达到求证的结论。还可以把己知的条件代入求证的一边证它能达到另一边, 二、例题 例1求证:3 n+2-2n+2+2×5 n+2+3 n-2 n=10(5 n+1+3 n-2 n-1) 证明:左边=2×5×5 n+1+(3 n+2+3 n)+(-2 n+2-2 n) =10×5 n+1+3 n(32+1)-2 n-1(23+2) =10(5 n+1+3 n-2 n-1)=右边 又证:左边=2×5 n+2+3 n(32+1)-2 n(22+1) =2×5 n+2+10×3 n-5×2 n 右边=10×5 n+1+10×3 n-10×2 n-1 =2×5 n+2+10×3 n-5×2 n ∴左边=右边 例2 己知:a+b+c=0 求证:a3+b3+c3=3abc 证明:∵a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)(见19例1) ∵:a+b+c=0 ∴a3+b3+c3-3abc=0即a3+b3+c3=3abc 又证:∵:a+b+c=0∴a=-(b+c) 两边立方a3=-(b3+3b2c+3bc2+c3) 移项a3+b3+c3=-3bc(b+c)=3abc 再证:由己知a=-b-c 代入左边,得 (-b-c)3+ b3+c3=-(b3+3b2c+3bc2+c 3)+b3+c3 =-3bc(b+c)=-3bc(-a)=3abc

第五讲 罗尔定理的应用

第五讲 罗尔定理的应用 一、利用罗尔定理、费马定理、零点定理证明方程的根 例1 设01,,,n a a a "为,为满足1200231 n a a a a n + +++=+"的实数,证明方程 20120n n a a x a x a x ++++=" 在(0,1)内至少有一个实根。 例2 设()f x 在[,]a b 上连续,(,)a b 内可导,0b a >>,证明方程 222[()()]()()x f b f a b a f x ′?=? 在(,)a b 内至少存在一个实根。 例3 设,,a b c 为实数,求证方程2x ax bx c e ++=至多有三个实根。 例 4 证明方程2210x x ??=有且仅有三个不同的实根。 二、利用罗尔定理证明含有“中值点”的等式 例5 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:至少存在一点 (,)a b ξ∈,使得()()0f f ξξ′+= 例6 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:对任意的λ,至少存在一点(,)a b ξ∈,使得()()f f ξλξ′= 例7设()f x 、()g x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,证明:至少存在一点(,)a b ξ∈,使得()()()0f f g ξξξ′′+= 例8设()f x 、()g x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ==,()0g x ′≠,证明:至少存在一点(,)a b ξ∈,使得()()()()f g f g ξξξξ′′= 例9设()f x 在[0,1]上连续,(0,1)内可导,且(0)0f =,而当(0,1)x ∈时,()0f x ≠,证明:对任意正整数n ,至少存在一点(0,1)ξ∈,使得 ()(1) ()(1) nf f f f ξξξξ′′?=? 例10 设()f x 在[,]a b 上连续,(,)a b 内可导,且()()0f a f b ?>,()02a b f a f +?? ?

恒等式的证明

恒等式的证明

————————————————————————————————作者:————————————————————————————————日期:

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明: x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz =4xyz=右边. 说明本例的证明思路就是“由繁到简”.

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左:

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2 α+cos 2 α=sec 2 α-tan 2 α=csc 2 α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α,1=tan450 =sin900 =cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。 5.化参数 用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。 例5 已知acos 2 α+bsin 2 α=mcos 2 β,asin 2 α+bcos 2 α=nsin 2 β,mtan 2 α=ntan 2 β(β≠n π) 求证:(a+b)(m+n)=2mn 6.化比 一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。 例6 已知(1+ cos α)(1- cos β)=1- 2 ( ≠0,1)。求证:tan 2 2α= -+11tan 22 β 思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中 -+11为向导,应用合比定理即可达到论证之目的。

(完整版)排列组合公式及恒等式推导、证明(word版)

排列组合公式及恒等式推导、证明(word 版) 说明:因公式编辑需特定的公式编辑插件,不管是word 还是pps 附带公式编辑经常是出错用不了。下载此word 版的,记得下载MathType 公式编辑器哦,否则乱码一堆。如果想偷懒可下截同名的截图版。另外,还有PPt 课件(包含了排列组合的精典解题方法和精典试题)供学友们下载。 一、排列数公式: !(1)(2)(1)()!m n n A n n n n m n m =---+= -L (1)(1)321n n A n n n =--创 L 推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数原理分步进行: 第一步,排第一位: 有 n 种选法; 第二步,排第二位: 有(n-1) 种选法; 第三步,排第三位: 有(n-2) 种选法; ┋ 第m 步,排第m 位: 有(n-m+1)种选法; ┋ 最后一步,排最后一位:有 1 种选法。 根据分步乘法原理,得出上述公式。 二、组合数公式: (1)(2)(1)! !!()!m m n n m m A n n n n m n C A m m n m ---+=== -L 1n n C =

推导:把n 个不同的元素任选m 个不排序,按计数原理分步进行: 第一步,取第一个: 有 n 种取法; 第二步,取第二个: 有(n-1) 种取法; 第三步,取第三个: 有(n-2) 种取法; ┋ 第m 步,取第m 个: 有(n-m+1)种取法; ┋ 最后一步,取最后一个:有 1 种取法。 上述各步的取法相乘是排序的方法数,由于选m 个,就有m!种排排法,选n 个就有n!种排法。故取m 个的取法应当除以m!,取n 个的取法应当除以n!。遂得出上述公式。 证明:利用排列和组合之间的关系以及排列的公式来推导证明。 将部分排列问题m n A 分解为两个步骤: 第一步,就是从n 个球中抽m 个出来,先不排序,此即定义的组合数问题m n C ; 第二步,则是把这m 个被抽出来的球全部排序,即全排列m m A 。 根据乘法原理,m m m n n m A C A = 即: (1)(2)(1)!!!()!m m n n m m A n n n n m n C A m m n m ---+=== -L

三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , ,

…… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2 (2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2

组合恒等式

第十讲组合恒等式 、知识概要 数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础, 并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。同时,此类问题的解决也有着自身特殊的解题技巧。因此,在各类数学竞赛中经常被采用。 1,基本的组合恒等式 简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。事实上, 许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。课本中的组合恒等式有: ①c n 丄 ② cn i=c F +cn ③ kC: = nC n;; zTx m m r __m ④ C n C r —C n C n_m ; ⑤ c;?+cn+c2+iii+C n n=2n; ⑥ C -cn +Cn2+|H+(-1)n Cn n =0. 2, 解题中常用方法 运用基本组合恒等式进行变换; 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; 运用数学归纳法; 变换求和指标; 运用赋值法进行证明; 建立递推公式,由初始条件及递推关系进行计算和证明; 构造合理的模型。

二、运用举例 例 1,求证:C : +2C 2 +3C 3+i|| + nc n = n 左边=nC ;丄+ nC :丄+ nC ;」中川中nC ;: " n 例2,求和式2 k 2 C n k 的值。 k 1 基本思路:将k 2 c nk 改写为k kCn ,先将kCn 用恒等式3提取公因式n ,然后再将kC ::变形 k 1 k 1 k 1 成为(k -1 )C n 4 +C n 4,而(k -1 )C n 4又可以继续运用上述恒等变形,这样就使得各项系数 中均不含有变动指标 k 了。 n n n k nC :;=迄 k c n ;; =n E (k -1 +1)C :; k 经 k 壬 k=t n =n S [(k -1)C :; +c n :;r n ^ [(n -1 心 km = n (n -1 严 + n2n4 = n (n +1)2:/ 2004 例 3,求艺(—1^2005 kz0 2004 解:s( -1) k C 2005 = 1 -c 爲5 + C 爲5 -川 + (-1 )2004 C 誥 kzQ R-(C 2004 +C 2004 +C 2004)-川+(T )(c 2003 +c 200: n -1 例 4,设 m, n 忘 N 十,求证:送(m +k )(m +k +1 ) = - (3m 2 + 3m n + n 2 T 卜 心 3 证明:根据前面提到的基本的组合恒等式第三条, 可得: n 解:S k 'c nk kA n -Z k kC n ; k i = (n —1)C L k =2 n T n 鳥+送H 卜-1正C 鳥+:送C k=1 」 k=2 n nJ k=i 的值。

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

恒等证明-第4讲恒等式证明竞赛班教师版

第四讲 利用恒等式解题 代数式的恒等变形可以认为是解决数学问题必不可少的一种变形(运算)的方式。将已知、求证的式子进行适当、巧妙的变形,使问题得到解决,也是衡量一个同学数学能力的标准之一。因此,国内外各级数学竞赛试题中,都有大量涉及恒等变形的试题。 一、 基础知识 1. 恒等变形的意义 如果一个等式中的字母取允许范围内的任意一个值,等式总能成立,那么这个等式叫做恒等式;把一个式子变形为与原式恒等的另一种不同形式的式子,这种变形叫做恒等变形。 2. 恒等变形的分类 恒等变形主要分为无条件限制等式和有条件限制等式变形两大类; 恒等变形主要形式可概括为整式变形、分式变形和根式变形。 3. 三种数学方法在恒等变形中的体现 初中同学接触到的数学方法在恒等变形中的体现主要有:换元法、配方法、待定系数法。 二、 例题部分-分式部分 例1.(★,1999年北京市)不等于0的三个正数a 、b 、c 满足1111 a b c a b c ++= ++,求证:a 、b 、c 中至少有两个互为相反数。 《初中数学竞赛同步辅导》,华中师范大学出版社,P113,例5 例2.(★)不等于0的三个正数a 、b 、c 满足 1111 a b c a b c ++= ++,求证:对任意整数n , 21 21 21 212121 1 111 n n n n n n a b c a b c ------++= ++; 《初中数学竞赛同步辅导》,华中师范大学出版社,P116,4 《奥数教程》初二年级,华东师范大学出版社,P90,例3 例3.(★)设a 、b 、c 都不为0,2a b c ++=,1111 2 a b c ++=;求证:a ,b ,c 中至少有一个等于2; 【证明】:由 11112a b c ++=,得2abc ab bc ca =++,故()()0a b c ab bc ca abc ++++-= 从而()()()0a b b c c a +++=,若a +b =0,则c =2,其余类似; 例4.(★★)若x 、y 、z 不全相等,且111 x y z p y z x + =+=+=,求所有可能得p ,并且证明:0xyz p += 【证明】:由x 、y 、z 不全相等,则x 、y 、z 必互不相等;∵1 p z x =+ ,及1x p y =-,得1y p z yp =+-,

代数恒等式的证明练习

1. 求证: ①(a+b+c)2+(a+b-c)2-(a-b-c)2-(a-b-c)2=8ab ②(x+y )4+x 4+y 4=2(x 2+xy+y 2)2 ③(x-2y)x 3-(y-2x)y 3=(x+y)(x-y)3 ④3 n+2+5 n+2―3 n ―5 n =24(5 n +3 n-1) ⑤a 5n +a n +1=(a 3 n -a 2 n +1)(a 2 n +a n +1) 2.己知:a 2+b 2=2ab 求证:a=b 3.己知:a+b+c=0 求证:①a 3+a 2c+b 2c+b 3=abc ②a 4+b 4+c 4=2a 2b 2+2b 2c 2+2c 2a 2 4.己知:a 2=a+1 求证:a 5=5a+3 5.己知:x +y -z=0 求证: x 3+8y 3=z 3-6xyz 6.己知:a 2+b 2+c 2=ab+ac+bc 求证:a=b=c 7.己知:a ∶b=b ∶c 求证:(a+b+c )2+a 2+b 2+c 2=2(a+b+c)(a+c) 8.己知:abc ≠0,ab+bc=2ac 求证: c b b a 1111-=- 9.己知:a c z c b y b a x -=-=- 求证:x+y+z=0 10.求证:(2x -3)(2x+1)(x 2-1)+1是一个完全平方式 11己知:ax 3+bx 2+cx+d 能被x 2+p 整除 求证:ad=bc

练习20 1.④左边=5 n(5 2-1)+3 n-1(33-3)= 24(5 n+3 n-1)注意右边有3n-1 2.左边-右边=(a-b)2 3.②左边-右边=(a2+b2-c2)2-4a2b2=…… 4.∵a5=a2a2a,用a2=a+1代入 5.用z=x+2y代入右边 6.用已知的(左-右)×2 7.用b2=ac分别代入左边,右边化为同一个代数式 8.在已知的等式两边都除以abc 9.设三个比的比值为k, 10.(2x2-x-2)2 11. 用待定系数法

算两次在证明组合恒等式中的应用

“算两次”思想在证明组合恒等式中的应用 1.m n m n n C C -=,取走和剩下的一一对应; 2. 2n k n n k C ==∑ 我们可令等式122(1)1n n n n n n x C x C x C x +=++++ 中的x 等于1,得到该式。 另外,我们可考察集合1{,,}n b b 的子集的个数: 一方面,采取加法原理,根据子集中元素个数分类: n k n k C =∑; 另一方面,采取乘法原理,设其子集为S ,我们逐一考察,1,2,,i b i n = 是否在S 内,每个元素都有两种可能,考察完毕,子集S 确定,或者我没把子集看成一个排列,如 0,0,,0n ?? ;{}11 1,0,0,,0n b -? 。共2n 。 所以得证。 3.11m m m n n n C C C -+=+,从1{,,,}n a b b 取m 个有1m n C +种:一类含a :1 m n C -,一类不含a :m n C 。 推广①: 11m m m n n n A A mA -+=+ 从1{,,,}n a b b 取m 个排成一排1m n A +:一类含a :1m n mA -,一类不含a :m n A 。 推广②:11121n n n n n n n m m n m n m n n n C C C C C C +++++-+-+=+++++ 解释:有m+n+1不同小球,其中黑球m+1个,白球n 个。从中选取n+1个小球, 选法共:11n n m C +++种, 考虑另外一种算法:若有黑1则在剩余小球中选n 个,即n n m C +,若无黑1,则考虑是否有黑2,若有则从剩余n+m-1个小球中取n 个,即1n n m C +-,依次考虑下去,到考虑是否有黑m ,若有,则在剩余n 个小球取n 个,即1n n C +,若无黑m 。则必有黑m+1,最后剩下的m 个白球全取。总共121n n n n n m n m n m n n n C C C C C ++-+-++++++ 。所以得证。

三角函数恒等式证明的基本方法

三角函数恒等式证明的基本方法 三角函数恒等式是指对定义域内的任何一个自变量x 都成立的等式;三角函数恒等式的证明问题是指证明给定的三角函数等式对定义域内的任何一个自变量x 都成立的数学问题。这类问题主要包括:①三角函数等式一边较繁杂,一边较简单;②三角函数等式的两边都较繁杂两种类型。那么在实际解答三角函数恒等式的证明问题时,到底应该怎样展开思路,它的基本方法如何呢?下面通过典型例题的解析来回答这个问题。 【典例1】解答下列问题: 1、证明下列三角函数恒等式: (1)4222sin sin cos cos 1αααα++=; (2) 22(cos 1)sin 22cos ααα-+=-; (3)若sin α.cos α<0,sin α.tan α<0, =±2tan 2 α 。 【解析】 【知识点】①同角三角函数的基本关系;②二次根式的定义与性质;③分式的定义与性质。 【解题思路】(1)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(2)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(3)对左边运用分式的性质,同角三角函数的基本关系和二次根式的性质,通过运算就

可得到右边,从而证明恒等式。 【详细解答】(1)Q 左边=sin 2α( sin 2α+ cos 2α)+ cos 2α= sin 2α+ cos 2α=1 =右边,∴4222sin sin cos cos 1αααα++=;(2)Q 左边= cos 2α-2 cos α+1+ sin 2α =2-2 cos α=右边,∴22(cos 1)sin 22cos ααα-+=-;(3) Q sin α.cos α<0,sin α.tan α<0,∴α是第二象限的角,?2 α 是第一象限或第三象限的角,①当 2 α 是第一象限的角时,左边 |1sin |2|cos | 2α α+- |1sin |2|cos | 2 α α-=1sin 1sin 2 2cos 2 α α α +-+=2tan 2α;②当2 α是第一象限的角时,左边 |1sin |2|cos |2α α+-|1sin | 2|cos | 2α α- = 1sin 1sin 2 2cos 2 α α α --+-=-2tan 2α;?左边=±2tan 2 α=右边,∴若若 sin α.cos α<0,sin α.tan α<0 ±2tan 2α。 2、求证:22sin()sin() sin cos αβαβαβ+-=1-22tan tan βα ; 【解析】

恒等式的证明

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来. 1. 利用组合公式证明 组合公式:m n C = n! !n m m (-)! 例1. 求证:m m n C =n 1 1m n C -- 分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式 代入,经过简化比较,等号两边相等即可. 证:∵ m m n C = m n! !n m m (-)! … 1 1m n C --= n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n! !n m m (-)! ∴ m m n C =n --1 1m n C . 技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取. 2. 利用组合数性质证明 组合数的基本性质:(1)m n C =n m n C - (2)1m n C +=m n C +1 m n C - (3)k k n C =n k 11n C -- (4)++...+=012n 2n n n n n C C C C ?

恒等式证明

初一数学竞赛系列讲座(7) 有关恒等式的证明 一、知识要点 恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。 二、例题精讲 例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n-1)a n =1-(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 分析:要证等式成立,只要证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 证明:1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)[ 1- a 2- (1-a 2)a 3- (1-a 2)(1-a 3)a 4 -…- (1-a 2)(1-a 3)…(1-a n-1)a n ] =(1-a 1) (1-a 2)[ 1- a 3- (1-a 3)a 4- (1-a 3)(1-a 4)a 5 -…- (1-a 3)(1-a 4)…(1-a n-1)a n ] =(1-a 1) (1-a 2) (1-a 3)[ 1- a 4- (1-a 4)a 5- (1-a 4)(1-a 5)a 6 -…- (1-a 4)(1-a 5)…(1-a n-1)a n ] =…… =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) ∴ 原等式成立 例2 证明恒等式 ()()()()()() 11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ (第二十届全俄数学奥林匹克九年级试题) 证明 评注:裂项是恒等变形中常用的一种方法 ()()()()()()11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=???? ??+-++???? ??+-+???? ??+-=???? ??+-++???? ??+-+???? ??+-=++++++

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来. 1. 利用组合公式证明 组合公式:m n C = n ! !n m m (-)! 例1. 求证:m m n C =n 11 m n C -- 分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可. 证:∵ m m n C = m n ! !n m m ?(-)! 11 m n C --= n n ! 1!n m m ?(-1)(-)(-)!= n n !m 1!n m m m ???(-1)(-)(-)!= m n ! !n m m ?(-)! ∴ m m n C =n --11 m n C . 技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取. 2. 利用组合数性质证明 组合数的基本性质:(1)m n C =n m n C - (2)1 m n C +=m n C +1 m n C - (3)k ?k n C =n ?k 1 1n C -- (4)++...+=0 1 2 n 2n n n n n C C C C -+-+...+(-1)=00 1 2 3 n n n n n n n C C C C C (5)

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

初中数学重点梳理:恒等式证明

恒等式证明 知识定位 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 知识梳理 知识梳理1:由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 知识梳理2:比较法 比较法利用的是:若0,则(作差法);或若1,则(作商法)。a a b a b a b b -==== 这也是证明恒等式的重要思路之一。 知识梳理3:分析法与综合法 根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推

导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论. 知识梳理4:其他解题方法及技巧 除了上述方法,设k 、换元等方法也可以在恒等式证明中发挥效力. 例题精讲 【试题来源】 【题目】已知x+y+z=xyz ,证明:x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz . 【答案】因为x+y+z=xyz ,所以 左边=x(1-z 2-y 2-y 2z 2)+y(1-z 2-x 2+x 2z 2)+(1-y 2-x 2+x 2y 2) =(x+y+z)-xz 2-xy 2+xy 2z 2-yz 2+yx 2+yx 2z 2-zy 2-zx 2+zx 2y 2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz =4xyz=右边. 【解析】将左边展开,利用条件x+y+z=xyz ,将等式左边化简成右边. 【知识点】恒等式证明 【适用场合】当堂例题 【难度系数】3 【试题来源】 【题目】已知1989x 2=1991y 2=1993z 2,x >0,y >0,z >0,且 111 1x y z ++=198919911993198919911993x y z ++=++ 【答案】 令1989x 2=1991y 2=1993z 2=k(k >0),则

相关主题
文本预览
相关文档 最新文档