当前位置:文档之家› 16-1场效应管放大电路的静态分析

16-1场效应管放大电路的静态分析

第3章 场效应管及其放大电路习题解

第3章场效应管及其基本放大电路 3.1 教学内容与要求 本章介绍了场效应管的结构、类型、主要参数、工作原理及其基本放大电路。教学内容与教学要求如表1.1所示。 表3.1 第3章教学内容与要求 3.2 内容提要 3.1.1场效应晶体管 1.场效应管的结构及分类 场效应管是利用输入电压产生的电场效应来控制输出电流的,是电压控制型器件。工作过程中起主要导电作用的只有一种载流子(多数载流子),故又称单极型晶体管。场效应管有两个PN结,向外引出三个电极:漏极D、栅极G和源极S。 场效应管的分类如下: 2.场效应管的工作原理 (1)栅源控制电压的极性 对JFET,为保证栅极电流小,输入电阻大的特点,栅源电压应使PN结反偏。N沟道JFET:U GS<0;P 沟道JFET:U GS>0。 对增强性MOS管,N沟道增强型MOS管,参加导电的是电子,栅源电压应吸引电子形成反型层构成导

电沟道,所以U GS >0;同理,P 沟道增强型MOS 管,U GS <0。 对耗尽型MOS 管,因二氧化硅绝缘层里已经掺入大量的正离子(或负离子:N 沟道掺入正离子;P 沟道掺入负离子),吸引衬底的电子(或空穴)形成反型层,即U GS =0时,已经存在导电沟道,所以,栅源电压U GS 可正可负。 (2) 夹断电压U GS(off)和开启电压U GS(th) 对JFET 和耗尽型MOS 管,当|U G S |增大到一定值时,导电沟道就消失(称为夹断),此时的栅源电压称为夹断电压U GS(off)。N 沟道场效应管U GS(off ) <0;P 沟道场效应管U GS(off ) >0。 对增强型MOS 管,当?U GS ?增加到一定值时,才会形成导电沟道,把开始形成反型层的栅源电压称为开启电压U GS(th)。N 沟道增强型MOS 管U GS(th ) >0;P 沟道增强型MOS 管U GS(th ) <0。 (3) 栅源电压u GS 对漏极电流i D 的控制作用 场效应管的导电沟道是一个可变电阻,栅源电压u GS 可以改变导电沟道的尺寸和电阻的大小。当u DS =0时,u GS 变化,导电沟道也变化但处处等宽,此时漏极电流i D =0;当u DS ≠0时,产生漏极电流,i D ≠0,沿沟道产生了电位梯度使导电沟道变得不等宽。 当u GS 一定,?u DS ?增大到一定大小时,在漏极一侧导电沟道被夹断,称为预夹断。 导电沟道预夹断前,?u DS ?增大,?i D ?增大,漏源间呈现电阻特性,但u GS 不同,对应的电阻不同。此时,场效应管可看成受u GS 控制的可变电阻。 导电沟道预夹断后,?u DS ?增大,i D 几乎不变。但是,随u GS 变化,i D 也变化,对应不同的u GS ,i D 的值不同。即i D 几乎仅仅决定于u GS ,而与u DS 无关。栅源电压u GS 的变化,将有效地控制漏极电流i D 的变化,即体现了栅源电压u GS 对漏极电流i D 的控制作用。 3.效应管的伏安特性 效应管的伏安特性有输出特性和转移特性。 (1) 输出特性:指当栅源电压u GS 为常量时,漏极电流i D 与漏源电压u DS 之间的关系,即 常数==GS )(DS D u u f i (3-1) 场效应管有四个工作区域: 可变电阻区:导电沟道预夹断前,此时场效应管是一个受u GS 控制的可变电阻。 恒流区:导电沟道预夹断后,此时漏极电流i D 仅决定于u GS ,场效应管相当于一个栅源电压控制的电流源。场效应管作为放大器件应用时,都工作在该区域。 截止区:导电沟道被全部夹断,i D ≈0。 击穿区:?u DS ?太大,靠近漏区的PN 结被击穿,i D 急剧增加,很快会烧毁管子。不允许场效应管工作在击穿区。 (2) 转移特性:指当漏源电压u DS 为常量时,漏极电流i D 与栅源电压u GS 之间的关系,即 常数 ==DS )(GS D u u f i (3-2) 转移特性表示栅源电压u GS 对漏极电流i D 的控制作用。 4.场效应管的主要参数 (1) 直流参数:夹断电压U GS (off );开启电压U GS(th);饱和漏极电流I DSS ;直流输入电阻R GS(DC)。 (2) 交流参数:低频跨导g m ;极间电容。 (3) 极限参数:最大漏极电流I DM ;最大漏源电压U (BR)DS ; 最大栅源电压U (BR)GS ;最大耗散功率P DM 。 3.1.2场效应管放大电路 1. 场效应管的低频小信号模型 场效应管的低频小信号模型,如图3-1(a)所示,简化的低频小信号模型,如图3-1(b)所示。

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示:

图6-1 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N 沟道结 图6-2 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数U △U △I g DS GS D m == 表6-1列出了3DJ6F 的典型参数值及测试条件。

表6-1 2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量, S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

第二章放大电路分析基础

第二章放大电路分析基础 1、放大电路工作原理 2、 2、放大电路的直流工作状态2、 3、放大电路的动态分析2、 4、静态工作点的稳定及其偏置电路2、 5、多级放大电路本章要点: 1、放大电路直流状态的解析法和图解法 2、放大电路交流状态的图解法和微变等效电路法 3、三种基本组态放大电路的分析方法 4、多级放大电路的耦合方式及其分析方法电子课件二:放大电路分析基础课时授课教案一授课计划批准人:批准日期:课序:4 授课日期: 授课班次:课题: 第二章 第2、1节: 放大电路工作原理目的要求: 1、掌握基本放大电路的组成原则 2、掌握放大电路的直流通路和交流通路

3、理解放大电路的工作原理重点:放大电路的工作原理难点:放大电路的交流通路教学方法手段:结合电子课件讲解教具:电子课件、计算机、投影屏幕复习提问: 1、三极管的类型及外部工作条件? 2、三级管的特性曲线有何规律?课堂讨论: 1、如何画放大电路的直流通路和交流通路? 2、放大电路中三极管各极电流和极间电压如何变化?布置作业:课时分配:课堂教学环节复习提问新课讲解课堂讨论每课小结布置作业时间分配(分钟)8751052 二、授课内容引言放大电路的任务是不失真地把微小信号放大到所需要的程度。本节首先分析放大电路的组成原则及工作原理。2、 1、放大电路工作原理 2、2、 1、放大电路的组成 一、电路组成基本共发射极放大电路如图2一1所示。V──放大三级管VCC──主电源、能源VBB──发射结偏置电源RC──直流负载电阻,用来确定直流工作点RB──发射结偏置电阻 RL──负载电阻RS、us──信号源的电压和内阻C 1、C2──耦合电容 二、工作条件 1、三极管应处于放大状态。即发射结正偏,集电结反偏。 2、能够输入和输出信号。

利用场效应管实现放大电路

利用场效应管实现放大电路 一、设计题目 设计一个场效应管放大器,要求电压增益大于40,输出阻抗小与500欧姆,电源电压15V,输出信号峰峰值不小于8 V,非线性失真度小于10%。 二、技术参数要求 1, 要求电压增益大于40 2,输出阻抗小与500欧姆 3,电源电压15V 4,输出信号峰峰值不小于8 V 5,非线性失真度小于10% 三、所用设备、仪器及清单 示波器一个、信号发生器一个、直流稳压电源一个、数字万用表一个、3DJ6F场效应管三个、47μF电容五个、面包板一个、电阻若干。 四、电路图 五、原理介绍

(1)转移特性栅极电压对漏极电流的控制作用称为转移特性,若用曲线表示,该曲线就称为转移特性曲线。它的定义是:漏极电压UDS恒定时,漏极电流ID同栅极电压UGS的关系,即结型场效应管的转移特性曲线如图所示。图中的Up为夹断电压,此时源极与漏极间的电阻趋于无穷大,管子截止。在UP电压之后,若继续增大UGS就可能会出现反向击穿现象而损坏管子。 (2)输出特性UDS与ID的关系称为输出特性,若用曲线表示,该曲线就称为输出特性曲线。它的定义是:当栅极电压UGS恒定时,ID随UDS的变化关系,即结型场效应管的输出特性曲线如图所示。结型场效应管的输出特性曲线分为三个区,即可变电阻区、饱和区及击穿区。当UDS较小时,是曲线的上升部分,它基本上是通过原点的一条直线,这时可以把管子看成是一个可变电阻。当UDS增加到一定程度后,就会产生预夹断,因此尽管UDS再增加,但IS基本不变。因此预夹断点的轨迹就是两种工作状态的分界线。把曲线上UDS=UGS-UP的点连接起来,便可得到预夹断时的轨迹。轨迹左边对应不同UGS值的各条直线,通称为可变电阻区;

场效应管及其放大电路例题解析

第3章 场效应管及其放大电路例题解析 例3.1 试将场效应管栅极和漏极电压对电流的控制机理,与双极型晶体管基极和集电极电压对电流的控制机理作一比较。 场效应管栅极电压是通过改变场效应管导电沟道的几何尺寸来控制电流。漏极电压则改变导电沟道几何尺寸和加速载流子运动。双极型三极管基极电压是通过改变发射结势垒高度来控制电流,集电极电压(在放大区)是通过改变基区宽度,从而改变基区少子密度梯度来控制电流。 例3.2 N 沟道JFET 的转移特性如图3.1所示。试确定其饱和漏电流I DSS 和夹断电压V P 。 解 由图3.1可至知,此JFET 的饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V 。 例3.3 N 沟道JFET 的输出特性如图3.2所示。漏源电压的V DS =15V ,试确定其饱和漏电流I DSS 和夹断电压V P 。并计算V GS =-2V 时的跨导g m 。 解 由图3.2可得:饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V ,V GS =-2V 时,用作图法求得跨导近似为:ms g m 2.1) 2(14.16.2=----≈ 例3.4 在图3.3所示的放大电路中,已知V DD =20V ,R D =10k Ω,R S =10k Ω,R 1=200k Ω,R 2=51k Ω,R G =1M Ω,并将其输出端接一负载电阻R L =10 k Ω。所用的场效应管为N 沟道耗尽型,其参数I DSS =0.9mA ,V P =—4V ,g m =1.5mA /V 。试求:(1)静态值; (2)电压放大倍数。 解 (1) 画出其微变等效电路,如图3.4所示。其中考虑到rGS很大,可认为rGS开路,由电路图可知, V V V R R R V DD G 42010 )51200(105133 212=??+?=+= 并可列出 D D S G G S I I R V V 310104?-=-= 图3.1 图3. 2

第四章 场效应管(FET)及基本放大电路要点

第四章 场效应管(FET )及基本放大电路 §4.1 知识点归纳 一、场效应管(FET )原理 ·FET 分别为JFET 和MOSFET 两大类。每类都有两种沟道类型,而MOSFET 又分为增强型和耗尽型(JFET 属耗尽型),故共有6种类型FET (图4-1)。 ·JFET 和MOSFET 内部结构有较大差别,但内部的沟道电流都是多子漂移电流。一般情况下,该电流与GS v 、DS v 都有关。 ·沟道未夹断时,FET 的D-S 口等效为一个压控电阻(GS v 控制电阻的大小),沟道全夹断时,沟道电流D i 为零;沟道在靠近漏端局部断时称部分夹断,此时D i 主要受控于GS v ,而DS v 影响较小。这就是FET 放大偏置状态;部分夹断与未夹断的临界点为预夹断。 ·在预夹断点,GS v 与DS v 满足预夹断方程: 耗尽型FET 的预夹断方程:P GS DS V v v -=(P V ——夹断电压) 增强型FET 的预夹断方程:T GS DS V v v -=(T V ——开启电压) ·各种类型的FET ,偏置在放大区(沟道部分夹断)的条件由表4-4总结。 表4-4 FET 放大偏置时GS v 与DS v 应满足的关系 ·偏置在放大区的FET ,GS v ~D i 满足平方律关系: 耗尽型: 2 ) 1(P GS DSS D V v I i - =(DSS I ——零偏饱和漏电流) 增强型:2 )(T GS D V v k i -=*

· FET 输出特性曲线反映关系 参变量 G S V DS D v f i )(=,该曲线将伏安平面分为可变电阻区 (沟道未夹断),放大区(沟道部分夹断)和截止区(沟道全夹断);FET 转移特性曲线反映在放大区的关系)(GS D v f i =(此时参变量DS V 影响很小),图4-17画出以漏极流向源极的沟道电流为参考方向的6种FET 的转移特性曲线,这组曲线对表4-4是一个很好映证。 二、FET 放大偏置电路 ·源极自给偏压电路(图4-18)。该电路仅适用于耗尽型FET 。有一定稳Q 的能力,求解该电路工作点的方法是解方程组: 22() [FET ()]GS D DSS d GS T P GS S D v i I v i k v V V v R i ? =-=-?? ?=-?对于增强型,用关系式 ·混合偏压电路(图4-20)。该电路能用于任何FET ,在兼顾较大的工作电流时,稳Q 的效果更好。求解该电路工作点的方法是解方程组: ??? ??-+=D s CC GS i R R R R V v 212平方律关系式 以上两个偏置电路都不可能使FET 全夹断,故应舍去方程解中使沟道全夹断的根。 三、FET 小信号参数及模型 ·迭加在放大偏置工作点上的小信号间关系满足一个近似的线性模型(图4-22低频模 型,图4-23高频模型)。 ·小信号模型中的跨导 Q GS D m v i g ??= m g 反映信号gs v 对信号电流d i 的控制。m g 等于FET 转移特性曲线上Q 点的斜率。 m g 的估算:耗尽管 D DSS P m I I V g ||2 = 增强管D m kI g 2= ·小信号模型中的漏极内阻 Ds ds D Q v r i ?= ? ds r 是FET “沟道长度调效应”的反映,ds r 等于FET 输出特性曲线Q 点处的斜率的倒 数。 四、基本组态FET 小信号放大器指标 1.基本知识 ·FET 有共源(CS )共漏(CD )和共栅(CG )三组放大组态。 ·CS 和CD 组态从栅极输入信号,其输入电阻i R 由外电路偏置电阻决定,i R 可以很大。 ·CS 放大器在其工作点电流和负载电阻与一个CE 放大器相同时,因其m g 较小,|| V A

第二章_放大电路分析基础

第二章放大电路分析基础 XD Univ. @ 诚夏 SincereXIA 放大电路工作原理 放大的基本概念 输出电压或电流在幅度上得到了放大,在能量上得到了加强,能量由直流电源提供放大电路的组成原则 1. 要有直流通路保证发射结正偏,集电结反偏,使晶体管工作在放大区 2. 要有交流通路待放大的输入信号能加到发射结上,放大了的信号能从电路中取出 3. 确保合适的工作点信号始终处于放大区 放大原理 放大电路的信号及常用符号 1. (小写字母,大写下标)——瞬时值,实际的物理信号 2. (大写字母,大写下标) ——实际信号的直流成分 3. (小写字母,小写下标) ——实际信号的交流成分 4. (大写字母,小写下标) ——交流信号的有效值 5. ——交流信号的最大值 放大电路的直流工作状态 确定直流工作状态,就是确定 Q 点

Q点 基极直流电源IB 集电极直流电流IC 集电极与发射极间的直流电压UCE 其中:在三极管输入曲线上确定Q点,在三极管输出曲线上确定 Q 点放大电路的基本分析方法 解析法确定静态工作点 必须已知三极管的值,静态工作点在直流通路求得,直流通路:将电容视为开路 所需要使用的公式 1. 硅 2. 3. 图解法确定静态工作点

1. 在输入特性曲线上,作出直线-,两线的交点即是Q点,得到。 2. 在输出特性曲线上,作出直流负载线-,与IBQ曲线的交点即为Q点,从而得 到和。 电路参数对静态工作点的影响 1. 增加,降低,工作点沿直流负载线下移 2. 减小,减小,斜率绝对值增加,工作点沿特性曲线右移 3. 增加,增大,直流负载线平行右上移,工作点向右上方移动 放大器的动态范围 失真输出电压的峰峰值:。 1. 当--时,受截止失真限制,。 2. 当--时,受饱和失真限制, -。 3. 当--,放大器将有最大的不失真输出电压。 放大电路的动态分析 动态分析的对象是交流通路,分析的关键是做交流负载线 交流通路:电容视为短路,理想直流电压源视为短路(接地) 图解法分析动态特性 三极管工作点的移动不再沿直流负载线,而是按交流负载线移动。 放大电路的非线性失真 1. Q 点过低,信号进入截止区—— 截止失真

实验十三基于Multisim的场效应管放大器电路设计

南昌大学实验报告 学生姓名:学号:专业班级:生医091 实验类型:□验证□综合□设计□创新实验日期:20110615 实验成绩:实验十三基于Multisim的场效应管放大器电路设计 一、实验目的: 1、场效应管电路模型、工作点、参数调整、行为特征观察方法 2、研究场效应放大电路的放大特性及元件参数的计算 3、进一步熟悉放大器性能指标的测量方法 二、实验原理: 1.场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 和双极型晶体管相比场效应管的不足之处是共源跨导gm。值较低(只有ms级),MOS管的绝缘层很薄,极容易被感应电荷所击穿。因此,在用仪器测量其参数或用烙铁进行焊接时,都必须使仪器、烙铁或电路本身具有良好的接地。焊接时,一般先焊S极,再焊其他极。不用时应将所有电极短接。 2.偏置电路和静态工作点的确定 与双极型晶体管放大器一样,为使场效应管放大器正常工作,也需选择恰当的直流偏置电路以建立合适的静态工作点。 场效应管放大器的偏置电路形式主要有自偏压电路和分压器式自偏压电路(增强型MOS管不能采用自偏压电路)两种。 三、实验内容及步骤 1.场效应管共源放大器的调试 (1)连接电路。按图2.4.1在模拟电路实验板上插接好电路,场效应管选用N沟道结型管

3DJ6D,静态工作点的设置方式为自偏压式。直流稳压电源调至18V并接好(注意:共地) (2)测量静态工作点 调节电阻R使V D为2.43V左右,并测量此时的Vg、Vs ,填入表2.4.1,并计算。 表2.4.1静态工作点 将函数发生器的输出端接到电路的输入端。使函数发生器输出正弦波并调=2mV,f=lkHz。用示波器观察输出波形,(若有失真,应重调静态工作点,使波形不失真),并用示波器测量输出电压Vo,计算Av (4)测量输入及输出阻抗 用换算法测量放大器的输入电阻,在输入回路串接已知阻值的电阻R,但必须注意,由于场效应管放大器的输入阻抗很高,若仍用直接测量电阻R两端对地电Vs 和Vi进行换算的方法,将会产生两个问题: (1)由于场效应管放大器Ri高,测量时会引人干扰; (2)测量所用的电压表的内阻必须远大于放大器的输入电阻Ri,否则将会产生较大的测量误差。为了消除上述干扰和误差,可以利用被测放大器的隔离作用,通过测量放大器输出电压来进行换算得到Ri。图为测量高输入阻抗的原理图。方法是:先闭合开关S(R=0),输入信号电压Vs,测出相应的输出电压V01,然后断开S,测出相应的输出电压V02,因为两次测量中和是基本不变的,所以 R i=V O2/(V O1-V O2)R 输出电阻测量:在放大器输入端加入一个固定信号电压Vs ,分别测量当已知负载R L断开和接上的输出电压V0和V0L。则 R0=(V0 / V0L -1)R L

场效应管放大电路

第四章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 4.1 结型场效应管 4.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对应关系: 栅极g—基极b;源极s—发射极e;漏极d—集电极c夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的

结构示意图和它在电路中的代表符号

如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N 区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS-V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。 (b)若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。 (c)上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。 v DS对i D的影响 设v GS值固定,且V P

场效应管放大电路设计

* 课程设计报告 题目:场效应管放大电路设计 学生姓名: *** 学生学号: ******** 系别:电气信息工程院 专业:通信工程 届别: 2014届 指导教师: ** 电气信息工程学院制 2013年3月

场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 场效应管电路模型、工作点、参数调整、行为特征观察方法 1.2 研究场效应放大电路的放大特性及元件参数的计算 1.3 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1 场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET 是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P 沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体MOS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015 之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。它属于电压控制型

第4讲基本共射极放大电路的静态分析

课题:基本共射极放大电路的静态分析 课型:讲练结合 教学目的: 知识目标: 1. 熟悉基本共射极放大电路的组成、特点、工作原理 2. 掌握基本共射极放大电路的静态分析。 技能目标: 学会基本共发射极放大电路静态工作点的调试方法。 教学重点、难点: 重点:基本共发射极放大电路的静态分析 难点:基本共发射极放大电路的静态分析 复习与提问: 1、三极管有哪几种工作状态? (在黑板上画出三极管的输出特性图并提问让学生指出相应的区域) 2、在模拟电子电路中三极管通常工作在什么区? 教学过程: ,也就引子:我们知道在模拟电路中,三极管通常都工作在放大区,那么如何保证三极管始终工作在放大区 是让发射结正偏、集电结反偏?这节课我们主要来解决这个问题. (在黑板上画出基本共射放大电路,进行讲解)我们来看下这个电路. 、基本共射极放大电路 1、电路图

° 十Ucc 2、电路组成元件及作用 (1)三极管V :具有电流放大作用,是放大器的核 心元件。不同的三极管有不同的放大倍数。 产生放大作用的外部条件是:发射结为正向电压偏置,集电结为反向电压偏置。 (2) 集电极直流电源 U cC 确保三极管工作在放大状态。 (3) 集电极负载电阻RC:将三极管集电极电流的变化转变为电压变化,以实现电压放大。 (4) 基极偏置电阻RB:为放大电路提供基极偏置电压。 (5) 耦合电容C i 和C 2:隔直流通交流。 电容C i 和C 2具有通交流的作用,交流信号在放大器之间的传递叫耦合, C i 和C 2正是起到这种作用,所 以叫作耦合电容。C i 为输入耦合电容,C 2为输出耦合电容。 电容C i 和C 2还具有隔直流的作用,因为有 C 和C 2,放大器的直流电压和直流电流才不会受到信号源和 输出负载的影响。 3?放大器的工作原理(这部分知识先在这里讲解,具体的实际操作能力在动态分析的测试中再进行) (1) ui 直接加在三极管 V 的基极和发射极之间,引起基极电流 i B 作相应的变化。 (2) 通过V 的电流放大作用,V 的集电极电流i C 也将变化。 (3) i C 的变化引起V 的集电极和发射极之间的电压 U CE 变化。 (4) u CE 中的交流分量u ce 经过C 2畅通地传送给负载 R L ,成为输出交流电压 uo,,实现了电压放大作用。 二、基本共射放大电路的静态分析(先理论后实践的方法来实现) 我们看到在这个放大电路中,即有交流信号也有直流信号,为了便于分析和理解,我们将分别对这两个 信号在放大电路中的作用进行分析。我们先来学习只有直流信号作用时的放大电路。我们将这种状态叫 静态。 Rc O- + R B C I ■ C 2 K EV R L U o

场效应管放大电路设计

* 课程设计报告题目:场效应管放大电路设计 学生姓名:学生学号: *** ******** 系专届别: 业: 别: 电气信息工程院 通信工程 2014届 指导教师:** 电气信息工程学院制 2013年3月

**师范学院电气信息工程学院2014届通信工程专业课程设计报告 场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 1.2 1.3场效应管电路模型、工作点、参数调整、行为特征观察方法研究场效应放大电路的放大特性及元件参数的计算 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免P N结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可 分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体M OS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入 阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模 集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。

场效应管放大电路.(DOC)

第三章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 (一)主要内容: ?结型场效应管的结构及工作原理 ?金属-氧化物-半导体场效应管的结构及工作原理 ?场效应管放大电路的静态及动态性能分析 (二)教学要点: ?了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 ?掌握用公式法和小信号模型分析法分析其放大电路的静态及动态性能 ?了解三极管及场效应管放大电路的特点 (三)基本要求: 介绍结型场效应管和MOS管的工作原理、特性曲线,重点介绍用公式法和小信号模型分析法分析其放大电路静态及动态性能。

3.1 结型场效应管 3.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对 应关系: 栅极g—基极b;源极s—发射极e;漏极d —集电极c 夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的 结构示意图和它在电路中的代表符号 如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS -V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。

共射极基本放大电路分析报告

共射极基本放大电路分析 参评组别:B 组 专业分类:电工电子 课程名称:电子技术基础 2009年全国技工教育和职业培训 优秀教研成果评选活动参评教案

教学内容分析:§2-2共发射极低频电压放大电路的分析中的“近似估算法”: 近似估算静态工作点、电压放大倍数。 教学对象及分析:1、基础知识:学生已基本掌握了共发射极低频电压放大电路 组成及工作原理。 2、分析与理解能力:由于放大电路的工作原理比较抽象,学生对此理解不够深刻,并且动手调试电子电路的能力有待提高。所以本次课堂将结合共发射极低频电压放大电路演示测试方式调动学生的主动性和积极性。 教学目的: 1、了解、掌握放大电路的分析方法:近似估算法; 2、培养学生分析问题的能力。 3、培养学生耐心调试的科学精神。 教学方法:演示法、启发法、讲练结合法 教具准备:分压式偏置放大电路实验板、示波器、万用表。 教学重点: 1、共射极放大电路的静态工作点的估算; 2、放大器的电压放大倍数的估算。 教学难点:静态工作点的估算。 教学过程: 一、复习及新课引入: 1、复习旧知识:(1)放大电路的工作原理。 (提问:简述共发射极放大电路的工作原理。) (2)基本放大电路的工作状态分:静态和动态。 (3)静态工作点的设置。 (提问:设置静态工作点的目的是什么?) 2、启发、提出问题:(1)放大电路设置静态工作点的目的是为了避免产生非线 性失真,那么如何设置静态工作点才能避免非线性失真呢? (2)放大器的主要功能是放大信号,那怎样计算放大器的放 大能力呢? 引入新课题:必须学习如何分析放大电路。

板书设计: §2—2 共发射极放大电路的分析

第3章 场效应管放大电路习题答案

第3章场效应管放大电路 3-1判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R GS 大的特点。(?) (2)若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。(?) 3-2选择正确答案填入空内。 (1)U GS=0V时,不能够工作在恒流区的场效应管有B 。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 (2)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将 A 。 A.增大 B.不变 C.减小 3-3改正图P3-3所示各电路中的错误,使它们有可能放大正弦波电压。要求保留电路的共源接法。 图P3-3 解:(a)源极加电阻R S。 (b)漏极加电阻R D。 (c)输入端加耦合电容。 (d)在R g支路加-V G G,+V D D改为-V D D 改正电路如解图P3-3所示。

解图P3-3 3-4已知图P3-4(a)所示电路中场效应管的转移特性和输出特性分别如图(b)(c)所示。 A 、R i和R o。(1)利用图解法求解Q点;(2)利用等效电路法求解 u 图P3-4

解:(1)在转移特性中作直线u G S =-i D R S ,与转移特性的交点即为Q 点;读出坐标值,得出I D Q =1mA ,U G S Q =-2V 。如解图P3-4(a )所示。 解图P 3-4 在输出特性中作直流负载线u D S =V D D -i D (R D +R S ),与U G S Q =-2V 的那条输出特性曲线的交点为Q 点,U D S Q ≈3V 。如解图P3-4(b )所示。 (2)首先画出交流等效电路(图略),然后进行动态分析。 mA/V 12DQ DSS GS(off) GS D m DS =-= ??= I I U u i g U Ω ==Ω==-=-=k 5 M 1 5D o i D m R R R R R g A g u 3-5 已知图P3-5(a )所示电路中场效应管的转移特性如图(b )所示。求解 电路的Q 点和u A 。 图P 3-5 解:(1)求Q 点: 根据电路图可知, U G S Q =V G G =3V 。 从转移特性查得,当U G S Q =3V 时的漏极电流 I D Q =1mA

场效应管及其放大电路

第3章 场效应管及其放大电路 场效应晶体管(简称场效应管)是一种利用电场效应来控制电流的半导体器件。这种器件不仅具有体积小、重量轻、耗电省、寿命长等特点,而且还具有输入电阻高、噪声低、热稳定性好、抗辐射能力强和制造工艺简单等优点,因而大大扩展了其应用范围,特别是在大规模和超大规模集成电路中得到了广泛的应用。 根据结构的不同,场效应管可以分为两大类:结型场效应管(JFET )和金属-氧化物-半导体场效应管(MOSFET )。 本章首先介绍场效应管的结构、工作原理、特性曲线及主要参数,然后介绍场效应管放大电路的电路组成及其工作原理。 3.1 结型场效应管 3.1.1 结型场效应管的结构和工作原理 1.结构结型场效应管的结构示意图如图3-1(a )所示。从图中可以看出,在N 型半导体两侧是两个高掺杂的P 区,从而形成两个PN 结。两侧P 区从内部相连后引出一个电极称为栅极,用G 表图3-1 N 沟道结型场效应管 (a )结构 (b )符号示;从N 型半导体两端分别引出的两个电极称为源极和漏极,用S 和D 表示;两个PN 结中间的 · 94·

N 型区域称为导电沟道,这种结构称为N 沟道场效应管,图3-1(b )是它的代表符号。场效应管分N 沟道和P 沟道两种,图3-2所示为P 沟道场效应管。从场效应管代表符号中的箭头方向可以区分是N 沟道还是P 沟道。 2.工作原理下面以N 沟道结型场效应管为例,讨论场效应管的工作原理。图3-3表示的是N 沟道结 型场效应管加入偏置电压后的接线图。 图3-2 P 沟道结型场效应管 (a )结构 (b )符号图3-3 N 沟道结型场效应管 的工作原理 图3-4 u G S 对导电沟道的影响 正常工作时,场效应管中的PN 结必须外加反向电压。对于N 沟道场效应管,当u G S <0,栅极电流几乎为0,场效应管呈现高达几十兆欧以上的输入电阻。如果在漏极(D )和源极(S )之间加一正极性电压u D S ,N 沟道中的多数载流子(电子)将在电场作用下从源极向漏极流动,形成漏极电流i D 。i D 的大小受u G S 的控制,当栅源电压u G S 改变时,由于PN 结的反向电压改变,两个PN 结的耗尽层将改变,导致导电沟道的宽度改变,也即沟道电阻的大小随之改变,从而使电流i D 发 生改变。 为了进一步说明u G S 对i D 的控制作用,先假设u D S =0的情况。从图3-4中可以看出,当u G S · 05·

放大电路的静态分析教案

《放大电路的静态分析》教案 教学内容:放大电路的静态分析方法 授课者:谢自能 授课对象: 教学目的: (1) 认知目标 ①掌握放大器的直流通路的画法要领; ②熟悉用估算法分析放大电路的基本方法。 (2)技能目标 ①会画放大器的直流通路; ②能用估算法分析放大电路。 (3)情感目标 通过本堂课的学习,让学生明白各学科知识之间的连贯性,从而增强学生对其它学科知识的学习意识和兴趣 ,端正学习态度,提高学习效率。 教学重点: 画直流通路的方法以及估算分析法的方法。 理解直流通路的画法以及估算分析法的方法是非常有必要的,可以使学生对这些方法有清楚的认识。 教学难点: 如何将画直流通路的方法和估算分析法运用

到实际电路中 教学方法:引导法、启发式、练习法 教学课时:1课时 课前准备工作: 为了能顺利的完成本堂课的教学任务,达到教与学双收的目的,课前准备工作也是必不可少的,准备有小黑板一块,将课堂上需要的例 题分析以及电路图画在小黑板上如 下图一所示。 教学过程: 1、组织教学 2、新课导入 导入:什么是静态?是指没有交流信号输入时电路的状态。 以提问的方式,引起学生的思考,从而进入新课内容-----静态工作点的估算分析。 3、新课讲解 在导入的基础上,进行新课的讲解 (1)画直流通路的方法(5分钟) 电容开路,其余元件不变。 同时根据方法画出直流通路图,如图二所示。

(2)静态工作点的公式推导(25分钟) 提问:回顾电工基础里的基尔霍夫回路电压定律:∑U= 0,这里我们就是运用此公式来进行推导公式的。得到以下公式: I BQ =(V CC- V BEQ)/ R b≈V CC/ R b I CQ= βI BQ V CE = V CC- I CQ R C 4、例题分析(8分钟) 5、总结本节课的内容 (3分钟) 6、布置作业 课后作业:书本P60 3 7、板书设计: 板书分为两部分,左面做为正本,右面做为草纸,左面板书内容如下: 1、画直流通路的方法 电容开路,其余元件不变。(画在小黑板上)2、静态工作点的公式推导 基尔霍夫回路电压定律:∑U= 0 I BQ =(V CC- V BEQ)/ R b≈V CC/ R b I CQ= βI BQ V CE = V CC- I CQ R C 注:表达式的推导过程在草稿上进行。

场效应管及其放大电路

3. 场效应管及其放大电路 (文字材料) 本章概要 本章首先介绍结型场效应管和绝缘栅型场效应管的结构、放大原理、伏安特性以及主要电参数,然后讨论了场效应管的微变等效电路,分析了场效应管和晶体管的特点,并讨论了场效应管组成的共源极、共漏极和共栅极三种基本放大电路的工作原理、特性分析及参数计算。 本章内容的组成及结构 结型场效应管 绝缘栅型场效应管 结构、类型(N 沟道、P 沟道)、符号 结型 工作原理 伏安特性、主要参数 按工作方式:增强型、耗尽型 按导电沟道:N 沟道、P 沟道 工作原理 伏安特性、主要参数 场效应管的小信号模型(微变等效电路) 场效应管与晶体管的比较 场效应管的偏置及静态分析 共源极放大电路 三种基本放大电路的动态分析 共漏极放大电路 共栅极放大电路 学习目标 (1)熟练掌握场效应管的伏安特性; (2)熟练掌握场效应管的微变等效电路; (3)熟练掌握场效应管组成的三种基本放大电路的组成、工作原理及静态和动态分析; (4)了解三种放大电路的各自特点及应用场合; (5)了解场效应管与双极型三极管的异同点。 重难点指导 重点: (1)结型及MOS 型场效应管的工作原理及伏安特性; 场效应管 及 其放 大 电路 类型 绝缘栅型 结构、类型 场效应管基本放大电路 场效应管 (FET )

(2)共源极和共漏极放大电路的静态及动态参数计算; 难点: (1)场效应管跨导的概念以及微变等效电路; (2)场效应管放大电路的静态与动态主要指标计算。 本章导学 1. 场效应管 1.场效应管(FET)有结型场效应管(JFET)和绝缘栅型场效应管(IGFET)两大类型。它们都有N沟道和P沟道两类。IGFET又分为增强型和耗尽型;JFET只有耗尽型。IGFET大多制成金属—氧化物—半导体结构,简称为MOSFET。 2.场效应管与半导体三极管的区别 1.半导体三极管(晶体管)是一种电流控制器件,有两种载流子参与导电,属于双极型器件,因此又常称半导体三极管为双极型晶体管;场效应管只靠一种载流子(多数载流子)导电,属于单极型器件,因此又常称场效应管为单极型晶体管,它是一种电压控制器件,i G≈0,具有输入电阻高的特点。 3.场效应管的工作原理 a.控制漏极电流的基本原理:通过控制电压的变化改变场效应管导电沟道的宽度,以改变其电阻的大小来控制漏极电流。 b.JFET和MOSFET在控制漏极电流方式上的区别:JFET通过控制电压的变化改变耗尽层的宽度来控制漏极电流;MOSFET利用半导体表面的电场效应,直接改变作为导电沟道的反型层宽度,以达到控制漏极电流的目的。 4.场效应管的伏安特性 由于FET的i G≈0,所以只给出输出特性和由它派生的转移特性。各类FET的输出特性曲线如表3.1中所示。 a.输出特性i D = f (u DS) | u GS一定由输出特性曲线可见,FET有三个工作区: 可变电阻区——沟道尚未出现予夹断,管子可看作是一个由电压控制的可变电阻。在不同的u GS下,曲线上升的斜率不同,电阻值也不同。 恒流区——沟道出现予夹断,i D只受u GS控制,几乎不随u DS的改变而变化,输出特性曲线几乎成为水平的直线。恒流区又称饱和区或放大区。 夹断区——管子处于沟道完全夹断的情况,i D≈0,夹断区也称为截止区。 b.转移特性:i D = f (u GS) | u DS一定它描述了场效应管的u GS对i D的控制能力。 5.场效应管的主要参数 a.直流参数:开启电压U GS(th)(适用于增强型MOSFET);夹断电压U GS(off)、零偏漏极电流I DSS(适用于耗尽型FET)。 b.交流参数:极间电容C gs、C ds、C gd;跨导g m(也称互导),它是管子在保持U DS一定时,漏极电流微变量d i D与栅源极间电压微变量d u GS的比值,即:

相关主题
文本预览
相关文档 最新文档