当前位置:文档之家› 2004年上海交通大学数学分析考研试题答案

2004年上海交通大学数学分析考研试题答案

2004年上海交通大学数学分析考研试题答案

云南大学2016年硕士研究生入学考试真题数学分析真题

一、填空题1.______3231 3lim 444=???? ??++++++∞→n n n n n n n n 2.已知()() ??=+=______,x f dx C C xe dx x f e x x 为常数,则3.由12,12 +=-=x y x y 所围成的图形的面积为______ 4.u e z y xy u x ,2+-=从点()2,0,1到()1,1,2-的方向导数是______ 5.______042 =?+∞ -dx e x 二、求极限()201ln lim x x xe x x +-→。三、证明:[]()112 1,1,0,11-p ≤-+≤∈>p p x x x p 则。四、证明:设()() ?????=+≠+++=,0,00,1cos ,22222 222y x y x y x y x y x f 则()y x f ,在()0,0点可微。五、判断级数()n n n n ln 111∑∞ =+-的敛散性(条件收敛还是绝对收敛)。六、证明()??? ??∞+=∑∞ =,在111n x x f 上连续。七、计算三重积分 ,222dxdydz y x x V +???V 是由所围成的区与2222y x z y x z +=+=域。 八、计算积分()()??? -+-AMO x x AMO dy y e dx y y e ,4cos 4sin 是从()0,2经过上半圆x y x 222=+到点()0,0O 的路程。 九、()x f T ,0>是[)+∞,0上周期为T 的连续函数,证明()()dt t f dt t f T x x ??=+∞→0011lim 。

2016上海交通大学期末 高数试卷(A类)

2016级第一学期《高等数学》期末考试试卷 (A 类) 一、单项选择题(本题共15分,每小题3分) 1. 若3222lim 12 x ax bx x →∞++=+(其中,a b 为常数),则 ( ) (A )0a =,b ∈R ; (B )0a =,1b =; (C )a ∈R ,1b =; (D )a ∈R ,b ∈R 。 2. 若函数()f x 的一个原函数是(2)e x x -,则'(1)f x += ( ) (A )e x x ; (B )1e x x +; (C )1(1)e x x ++; (D )(1)e x x +。 3. 反常积分1 0ln[(1)]d x x x -? ( ) (A )2=-; (B )1=-; (C )0=; (D )发散。 4. 设OA a =和OB b =是两个不共线的非零向量,AOB ∠是向量a 与b 的夹角, 则AOB ∠的角平分线上的单位向量为 ( ) (A )||||||||||||a b a b a a b b a a b b ---; (B )||||||||||||a b a b a a b b a a b b +++; (C )||||||||||||b a a b b a a b b a a b ---; (D )||||||||||||b a a b b a a b b a a b +++。 5. 设函数()f x 为连续函数,对于两个命题: (I )若()00()(()())d d x u F x f t f t t u =--??,则()F x 为奇函数; (II )若()f x 为奇函数,则()3 0()()d d x y x G x f t t y =??为奇函数, 下列选项正确的是 ( ) (A )(I )和(II )均正确; (B )(I )和(II )均错误。 (C )仅(I )正确; (D )仅(II )正确; 二、填空题(每小题3分,共15分) 6. 已知函数()y f x =由参数方程3cos 2sin x t y t =??=? (0t <<π)所确定,则 ''()f x =___________________。 7. 一平面通过y 轴,且点)2,4,4(-到该平面的距离等于点)2,4,4(-到平面0z =的距离,则该平面方程是:_________________________。 8. 已知321e e x x y x =-,22e e x x y x =-,23e x y x =-是某二阶常系数非齐次线性微

南开大学数学分析考研试卷答案

南开大学年数学分析考研试卷答案 一、 设),,(x y x y x f w -+= 其中),,(z y x f 有二阶连续偏导数,求xy w . 解:令u =x +y ,v =x -y ,z =x ,则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、 设数列}{n a 非负单增且a a n n =∞ →lim ,证明 a a a a n n n n n n =+++∞ →1 21][lim . 解:因为a n 非负单增,故有n n n n n n n n n na a a a a 11 21)(][≤+++≤ . 由a a n n =∞ →lim ;据两边夹定理有极限成立。 三、 设? ??≤>+=0 ,00),1ln()(2 x x x x x f α,试确定α的取值范围,使f (x )分别满足: (1) 极限)(lim 0x f x + →存在 (2) f (x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 2 0x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++- -→+ α极限存在,则 2+α0≥知α2-≥. (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α . (3)0)0(='- f 所以要使f(x)在0可导则1->α. 四、设f (x )在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关. 解;令U =22 y x +,则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f (x )在R 上连续,故存 在F (u )使d F (u )=f (u )du=ydy xdx y x f ++)(22. 所以积分与路径无关。

2015年数学考研数学分析各名校考研真题及答案

2015年考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学

2014年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},min{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? - =?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2)(lim )(lim )() (lim )('lim 20 0020 00A x dt t f x x f x dt t f x x f x x x x x x x =-=-=?? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ? ?--+--= 1 1 11 )(2)(2])1[(])1[(!!21 )()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2 ) (2 ])1[(])1[(] )1[(])1[(=

(最新整理)上海交通大学年数学分析考研试题

(完整)上海交通大学2005年数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2005年数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2005年数学分析考研试题的全部内容。

上海交通大学2005年数学分析考研试题 一、 设函数)(x f 定义在R 上,满足R x ∈?,有2 )1()(2x x f x f -=-+,试求)(x f 的表达式; 二、 设}{n x 是收敛数列,}sup{},inf{n n x x ==βα,证明βα,中至少有一个属于}{n x 。 三、 设a>0,c 〉0,数列}{n a 定义如下: 2,1),(),(211211=+=+=+n a a a a n a c n n a c ,证明数列}{n a 收敛,并求其极限; 四、 设.0)0(,0,sin )(01=≠=?f x dt x f x t ,试求)0('f ; 五、 设)(x f 在),1[+∞上可导,1)1(=f ,且满足)(1)('22x f x x f += ,试证:A x f x =+∞→)(lim 存在,且41π +

上海交通大学2015-1末 高数试卷(医科类)

2015级第一学期《高等数学》期末考试试卷 (高数医科类) 一、选择题(本题共15分,每小题3分) 1. 设()f x 有二阶连续的导数,2sin ()()'+=x f x f x e ,且(0)1=f ,则 ( ) (A )(0)f 是极小值; (B )(0)f 是极大值; (C )(0)f 不是极值; (D )(0,(0))f 是曲线()=y f x 的拐点。 2. 积分1 111||I dx x x -=?,29 20sin I xdx π=?,13211x x xe I dx e -=+?和242 sin I x xdx π π- =?中,值为0的是 ( ) (A )2I 、3I 和4I ; (B )1I 、2I 和3I ; (C )1I 和2I ; (D )2I 和3I 。 3. 设0 ()x f x =? ,2345()g x ax bx cx dx =+++。若当0x →时()f x 与()g x 是同阶无 穷小,则 ( ) (A )0a ≠ ; (B )0a =,0b ≠; (C )0a b ==,0c ≠; (D )0a b c ===。 4. 设()f x 和()g x 在(,)-∞+∞上可导,且()()-f x g x ; (B )0 lim ()lim ()→→

云南大学历年考研分类真题

《宪法》 《2011年》1 政治协商制度的主要内涵。2 特别行政区有哪些自治权。3 简论迁徙自由。 4 论述宪法对宪政秩序建立的功能。 5 新中国宪法保障公民财产权利的历史变迁。《2010年》一、简答题(共2题,每题10分,共20分) 1、民族文化平等的内涵是什么? 二、论述题(共2题,第1题30分,第2题25分,共55分) 1、论述我国国家权力与公民权利的关系。 2、试述平等权中的“合理的差别”。 《2009年》一、简答题(共2题,每题10分,共20分)1.简述八二宪法的基本特点。2.简述《魏玛宪法》及其影响。二、论述题(共2题,第1题30分,第2题25分,共55分)1.结合中外实践论述宪法的发展趋势。2.如何理解人格尊严不受侵犯? 《2008年》一、简答题(共3题,每题10分,共30分) 1、简述现代各国宪法对公民基本权利扩大的表现。 2、简述英国的分权原则的特点与内容。 3、为什么说我国的1954年宪法在内容上充分反映了社会主义原则和人民民主原则? 二、论述题(共2题,第1题20分,第2题25分,共45分) 1、怎样理解公民是宪法关系中最活跃的主题因素? 2、试述宪法与宪政的关系。 《2007年》一、简答题(共3题,每题10分,共20分) 1、结合宪法和《监督法》的规定,谈谈地方各级人大常委会行使监督权的主要内容。 2、英国学者J.浦莱士(J.Bryce)对宪法的分类有哪些? 二、论述题(共2题,第1题25分,第2题30分,共55分) 1、论民族区域自治制度的特点。 2、论权力制约原则在宪法中的体现。 《2006年》一、简答题(共3题,每题10分,共20分) 1、简述制宪权的基本特征。 2、简述各国为保障宪法规范的最高性地位而采取的具体措施。 3、简述违宪责任的特征。 二、论述题(共1题,每题25分,共25分) 试述宪法关系的基本内核是权利与权力关系。 三、材料分析(共1题,每题20分,共20分) 某大学学生杨某某因超过35岁,没通过2006年中央国家机关公务员录用考试报名。其诉拒绝受理其报名的具体行政行为违法。 结合案件,谈谈你对宪法确立的“平等权”的理解 《法理》 《2011年》1 什么是法律关系的客体,主要具体形态有哪些?2 简述法律责任的归责原则。 3 法与国家权力的关系。 4 法律解释的原则。 5 结合公民守法的理由和根据及主客观条件,谈谈如何提高公民守法意识。 《2010年》一、简答题(共2题,每小题8分,共16分) 1、简论法的效力范围。 2、简述中国现行立法权限划分体制。 二、论述题(共2题,第1小题34分,第2小题25分,共59分) 1、什么是法律发展?并运用法理学的有关理论分析法律移植对当代中国法律发展的必要性及其局限性。 2、试述司法权独立行使原则。 《2009年》一、简答题(共2题,每小题8分,共16分) 1.简述法律行为的概念及特征。 2.法律责任的构成包括那几个方面?请运用相关知识简要说

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

上海交大高等代数+数学分析历届考研真题.

上海交通大学 1999年硕士研究生入学考试试题 试卷名称:高等代数 1.(10分)设P 为数域。()()[]x P x g x f ∈,令()()()() ()x g x x x f x X F 1122++++=;()()()()x g x x xf x G 1++=。证明:若()x f 与()x g 互素,则()x F 与()x G 也必互素。 2.(10分)设J 为元素全为1的阶方阵。 (1) 求J 的特征多项式与最小多项式; (2) 设()x f 为复数域上多项式。证明()J f 必相似于对角阵。 3.(10分) (1) 设n 阶实对称矩阵() ij x A =,其中1+=j i ij a a x 且0...21=+++n a a a ,求 A 的n 个特征值。 (2) 设A 为复数域上n 阶方阵。若A 的特征根全为零,证明:1=+E A 。此处 E 为n 阶单位阵。 4(10分)设()x f 是数域F 上的二次多项式,在F 内有互异的根21,x x ,设A 是F 上线性空间L 的一个线性变换且I x A 1≠,I x A 2≠(I 为单位变换)且满足()0=A f ,证明21,x x 为A 的特征值;且L 可以分解为A 的属于21,x x 的特征子空间的直和。 5(10分)用正交线性变换将下列二次型化为标准形,并给出所施行的正交变换: 32312123222184422x x x x x x x x x ++--- 6(10分)对的不同取值,讨论下面方程组的可解性并求解: 7(10分)假设A 为n m ?实矩阵,B 为1?n 实矩阵,T A 表示A 的转置矩阵。证明: (1) AB=0的充要条件是0=A B A T ; (2) 矩阵A A T 与矩阵A 有相同的秩。 8(10分)设p A A A ,...,,21均为n 阶矩阵且0...21=p A A A 。证明这p 个矩阵的秩之和小于等于()n p 1-,并举例说明等式可以达到。 9(10分)证明任一可逆实矩阵可分解为一个正定阵和一个正交阵之积。 10(10分)设W 为欧氏空间V 的一个子空间。W a V b ∈∈,证明若对任意W a ∈,

上海交大数学系高等数学教学团队-上海交通大学人力资源处

上海交大数学系高等数学教学团队 《高等数学》,被很多学生称为“霸王课”,因为它“很高深”。然而上海交通大学乐经良教授和高等数学教学团队的其他老师们,却能让“霸王课”褪下“可怕的外衣”,变得妙趣横生。 要说有什么神奇之道,乐经良一定摇摇头,然后微笑着告诉你十二个字:认真负责、潜心思索、投入感情。“用心教学”就是乐经良和他的团队的“数学魔法”,看似简单,却别显一番博大精深。 传业有道唯纯厚,处世无奇却率真,这就是乐经良的座右铭。而“让学生受益”更是这个团队的座右铭。高校数学应该怎么教,乐经良和他的同事的心里,有一本清晰的帐。上海交通大学高等数学教学团队的故事,就这样慢慢清晰起来。 问渠那得清如许 怎样让学生爱上数学? 在思考这个“艰深命题”时,团队带头人乐经良的脑海里,老是浮现出数学大师陈省身的一句题词,那题词只有四个字—— “数学好玩”。 乐经良和他的团队始终坚信,教数学不是把那些公式定理、条条框框“搬”进学生的脑子里,而是要提高学生的数学素质、塑造合格的人才。因此,培养学生对数学的兴趣特别重要。兴趣从哪儿来?一方面,是学习过程中解决问题的喜悦,而另一方面,就是老师的引导。 答案就很明确了:数学老师的工作,就是让数学好玩起来。 于是乎,走进乐经良的课堂,你会看见一位年近花甲的“老先生”,正在滔滔不绝地描述电影《侏罗纪公园》的情节,故事讲完,数学中的混沌现象也就一清二楚;有时,他会跟你一起推敲福尔摩斯怎么探案,把数学理论、数学方法和密码知识巧妙结合,学生们听得津津有味。兴之所至,“老先生”便发给学生一段密文,让学生自己去破译。还真有不少学生,为了破译这密码,长假都不歇。“是很苦,但是苦得心甘情愿,苦得快乐。”学生乐呵呵地说。 延续好的教学传统不难,难的是改革,是创新。“基础厚、要求严、重实践、求创新”,在这样的要求下,乐经良团队注重基础,强调质量,进行了多层次、多模式的数学课程教学改革研究和实践。为了适应不同层次学生的水平,符合不同类型专业的需求,让学生可以寻找最适合自己的途径,真正感受数学的魅力,乐经良团队把分流教学深化和细化,除了高等数学、线性代数和概率统计课程的建设,还开设了“工科数学分析”和“数学实验”课程。针对近年来理工、经管、医农和人文等不同专业对高等数学课程的认识和要求上的明显变化,团队在调研和教学实践的基础上依据专业的特点和需求进一步实行分类教学。文科数学怎么教,向来众说纷纭。把理工科数学“简化”了来教是通行的办法,乐经良团队却“另辟蹊径”,采取全新角度,深入浅出,自成体系。 种种改革、俱有成效,随之而来的,是一轮又一轮崭新的探索。在这方面,乐经良和他的团队,从来都是走在前面。 早在二十世纪九十年代初,乐经良团队就开始在数学基础课程中采用原版教材、试点英语教学,在那时可谓“独树一帜”,效果好,也就一直延续至今。用英语教授的微积分和线

上海交通大学2010级数学分析第1学期第2次测验解答

上海交通大学 数学分析测验解答2010.12.19 一、填空题(每题4分,共16分) 1. 函数3()24f x x x =+-的零点个数为1. 2. 写出e x y x =在1x =处的四阶带Peano 型余项的Taylor 展开式 2344345 e e(12(1)(1)(1)(1)(1))2!3!4! x x x x x x o x =+-+ -+-+-+-. 3. 函数2()e x f x x -=([1,3]x ∈) 的最大值为 2 4 e ,最小值为1e . 4. 曲线2y = 的渐近线为1,x y x =±=±. 二、选择题(每题4分,共16分) 1. 设()f x 和()g x 均为R 上的凸函数, 则下列函数中必为凸函数的是 ( C ) (A )|()()|f x g x +. (B )()()f x g x ?. (C )max{(),()}f x g x . (D )[()]f g x . 2. 设函数()()f x C ∈R , 其导函数'()f x 的图形如右图所示, 则()f x 在R 上有 ( A ) (A) 两个极小值点, 两个极大值点. (B) 两个极小值点, 一个极大值点. (C) 三个极小值点, 一个极大值点. (D) 一个极小值点, 两个极大值点 3. 设函数()x f 在0=x 连续, 0>α为常数, 且() lim 0|| x f x A x α →=>, 则以下四条叙述中正确的是 ( A ) (A ) ()x f 在0=x 取极值. (B ) 存在0δ>使得对()δ,0U x ∈?有()0>x f . (C ) ()x f 在0=x 可导. (D ) ()x f 在0=x 不可导 .

(最新整理)上海交通大学2003年数学分析考研试题

(完整)上海交通大学2003年数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2003年数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2003年数学分析考研试题的全部内容。

上海交通大学2003年数学分析考研试题 一 判断以下各题,正确的给出证明,错误的举反例并说明理由。(每小题6分,共24分) 1. 若()x f 在R 上有定义,且在所有无理点处连续,则()x f 在R 上处处连续。 2. 若()x f ,()x g 连续,则()()()()x g x f x ,m in =?连续。 3. 任意两个周期函数之和仍为周期函数。 4. 若函数()y x f ,在区域D 内关于x ,y 的偏导数均存在,则()y x f ,在D 内必连续。 二(12分)设()x f 在[]b a ,上无界,试证对任意0 δ,在[]b a ,上至少有一点x ,使得()x f 在0x 的 δ邻域上无界。 三(12分)设()x f 对任意R x ∈有()()2x f x f =且()x f 在0=x 和1=x 处连续。试证明()x f 在R 上为常数。 四(12分)已知0,...,,21 n a a a ,()2≥n 且()x x n x x n a a a x f 12 1 ...??? ? ? ?+++=,试求()n n x a a a x f ...lim 210=→ 五(12分)若实系数多项式()n n n n n a x a x a x a x P +++=--1110,00≠a 的一切根均为实数。试证明导函数()x P n '也仅有实根。 六(12分)设{}n na 收敛,级数()∑∞ =--2 1n n n a a n 收敛。试证级数∑∞ =1 n n a 收敛。 七(12分)设()x y ?=,0≥x 是严格单调增加的连续函数,()00=?是它的反函数.试证明对 0,0 b a 有()()ab dy y dx x b a ≥+??0 ψ? 八 计算题(每小题12分,共24分) 1. 求函数()4 4 4 ,,z y x z y x f ++=在条件1=xyz 下的极值。 2. 计算积分()dz arctgzdxdy z y I V ??? -= ,其中V 为由曲面()222 2 1R z y x =-+,0=z 和h z =所围成的区域。 九(10分)设()x g 在[)+∞,a 上一致连续,且对任意的a x ≥有()A n x g n =++∞ →lim ,是试证()A x g x =+∞ →lim

南开大学数学分析考研试题

南开大学2008年数学分析考研试题 一.计算题 1.求极限2 1lim[ln(1)]x x x x →∞ -+ 。 2.求和()() ∑∞ =-+-1121n n n n 。 3.已知()()() 1f x x f x ''-=-,求()x f ? 4 .设 2ln 2 6 x π = ? ,则x =? 5.设区域()[][]{} 1,1,2,0,-∈∈=y x y x D ,求D 。 二.设61-≥x 61+= +n n x x ,(1,2,)n =,证明数列{}n x 收敛,并求其极限。 三.设()[]b a C x f ,∈,并且[]b a x ,∈?,[]b a y ,∈?,使()()x f y f 2 1 ≤, 证明[]b a ,∈?ξ,使得()0=ξf . 四.设()x f 在[)+∞,a 一致连续,且广义积分 ()a f x dx +∞ ? 收敛,求证()0lim =+∞ →x f x 。 五.设()x f 在(,)-∞+∞上可微,对任意(,)x ∈-∞+∞,()0f x >, ()()f x mf x '≤, 其中10<

上海交通大学高等数学复习提纲

上海交通大学高等数学复习提纲 第一章函数 1.会证明一般难度的不等式,并运用一些证明不等式的方法 2.函数的界与数列的界的联系和区别(联系第二章) 3.复合函数的函数值计算、单调性等 4.单射和满射的定义与性质 5.奇函数、偶函数的图像与性质,周期函数的定义与性质 6.反三角函数的图像与性质 7.双纽线、心脏线等的画法,图像性质,为积分应用求面积体积打好基础 第二章极限与连续(这一章最为琐碎,多耐心) 1.数列的有界无界的定义,怎么证数列的单调性,怎么证明数列的有界无界 2.数列极限的定义(这同样也是证明一个数是数列的极限的根据;注意数列极限的几何意义) 3.证明一个数是数列的极限的方法 4.无穷大与无穷小的含义 5.会求以下类型数列的极限 1)分子、分母为多项式 2)分子、分母含根式(很重要) 3)分子、分母含指数式 4)能够转化为(1+1/n)n的极限 5)会用夹逼定理求极限(很重要) 6)单调有界数列求极限的方法甚至是综合题,可参考习题集(较重要,有难度) 7)用定积分的定义来求极限的方法(考得比较多,方法比较死,但不容易想到) 6.为了达到会求极限的目标,要注意以下求和公式 并且掌握常见的求数列前n项和的方法 7.函数在一点和无穷远处极限的定义和相应的证明方法 8.了解一下Heine定理,如果有问题请回看子数列与数列的关系与性质 9.函数极限的几个常见性质,尤其是定性性质要有个感觉 10.重要函数极限及其转化应用 lim(sinx/x)=1; lim(1+1/x)x=e;

x→0x→? 11.无穷小、三类无穷小、正反求阶数、标准无穷小等概念和方法(重要) 12.等价无穷小,会用它求函数极限(很重要,包括简单变形、平移和本质相同的式子的等价无穷小),等价无穷小的替换原则和规律要认真体会,要耐心 13.函数极限的运算法则,会求函数极限(这一句话意味着要做大量的题和总结,类型要全) 14.函数连续性的定义,函数连续与函数极限的关系,几类间断点及特征,罕见的类型记住典型案例 15.连续函数求某点极限与该函数在该点函数值的关系,极限号可穿函数号等性质 16.从定义和几何特征上体会一下有界性定理、最值定理、介值定理,看一下典型应用方法,适当操练操练,注意构造辅助函数的方法的出现 第二章的内容一定要耐心,细节比较多,理解比较多 第三章导数与微分 1.导数的定义,可导的条件,可导与连续的关系 2.微分、线性主部的定义(不妨从几何上看看,以直代曲P108),可导与可微的关系 3.理解增量公式,会用增量公式求近似值,会用它估计误差(二者考得少,但是要会) 4.背住导数表和微分表 5.会求导数、会求微分(这两者比较简单),会准确地求复合函数的导数与微分; 理解复合函数求导法则的来源;掌握一些求导类型与方法;反函数求导方法的推导与理解,会求反函数的导数。(重要) 6.会求隐函数和参数方程的导数。(重要) 备注5&6:一定要理解为什么要那样求,然后就是大量地做题总结,类型要全 7.导数应用理论上可以忽略 8.掌握Leibniz高阶导数求导公式 9.隐函数与参数方程的高阶导数(二阶很重要),隐二者必须至少掌握到二阶,更高阶需要看一看 第四章微分中值定理与导数应用 1.把Fermat定理、Darboux定理、Rolle定理、Lagrange定理Cauchy定理挨着个儿看一遍;重点关注Rolle定理和Lagrange定理; 2.会用L'hospital法则与等价无穷小替换等方法结合来求极限(重要,练习) 3.理解Taylor展开的原理,背住Taylor公式带Peano余项的展开公式,Lagrange余项根据自己的情况 4.背住e x、sinx、ln(1+x)的Maclaurin公式,其它常见的至少要能够推导; 能够用Taylor展开求极限和解决无穷小的问题(重要) 5.会研究函数性态(重要) 1)明确函数性态包含的方面 2)掌握凸性与拐点与二阶导数值的关系 3)会求水平、垂直渐近线,背住斜渐近线的求法公式,而且会求 4)会全面的画性态示意图 6.从定义和几何上理解曲率和曲率半径,尽量记住公式,记不住要会推导(考得少,不过考得简单,所以记住公式,志在必得) 7.求近似解理论上可以忽略

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学 一、,,0N ?>?ε当N n >时,ε<>?m a N m , 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('

又2))((''2 1 ))((')()(a x f a x a f a f x f -+ -+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 ,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -=?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--=1 111) (2)(2])1[(])1[(!!21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2)(2])1[(])1[(])1[(])1[(= 0])1][()1[()1(])1[(])1[(11 )(221 1 )1(2)1(2=---==---??-+-+-dx x x dx x x k m m k k m m k k Λ 当k m =时, ?? ----= 1 11 1 )(2)(22 2])1[(])1[(!21)()(dx x x m dx x P x P m m m m m k m ?? -+---------=--1 1 )1(21211 1 221 1 )(2)(2])1[(])1[(])1[(])1[(])1[(])1[(dx x x x x dx x x m m m m m m m m m m m m =?-+----1 1)1(212])1[(])1[(dx x x m m m m =?----=1 1 )2(22])1][()1[()1(dx x x m m m m Λ= ? ---1 1 2])1[()!2()1(dx x m m m =?--1 2])1[()!2()1(2dx x m m m 六、J 是实数,,0,0>?>?δε当δs 时,该积分收敛。 七、∑=-n k k 1 )1(有界,2 1 x n +在),(+∞-∞上单调一致趋于零,由狄利克雷判别法知,∑∞ =+-12)1(n n x n 在),(+∞-∞上一致收敛,∑∞ =+12 1n x n 与∑∞ =11 n n 同敛散,所以发散; 当0=x 时,∑∞ =+122)1(n n x x 绝对收敛,当0≠x 时,∑∞ =+122 ) 1(n n x x 绝对收敛;

南开大学2003年数学分析考研试题及解答

南开大学2003年数学分析考研试题及解答 一.设(),,w f x y x y x =+-,其中(),,f u v s 有二阶连续偏导数,求xy w . 解:令u x y =+,v x y =-,s x =, 则x u v s w f f f =++; ()()()111xy uu uv vu vv su sv w f f f f f f =+-++-++-. 二.设数列{}n a 非负单增,且lim n n a a →∞ =,证明:() 1 12lim n n n n n n a a a a →∞+++=L . 证明:因为 {}n a 非负单增, 所以有()() 1111 2 n n n n n n n n n n n a a a a na n a ≤+++≤=L , 由lim n n a a →∞ =,1lim n n n n a a →∞ =, 根据夹逼定理,得() 11 2 lim n n n n n n a a a a →∞ +++=L . 三.设 ()()2ln 1,00, 0x x x f x x α?+>?=?≤??,试确定α的取值范围,使()f x 分别满足: (1)极限()0 lim x f x + →存在; (2)()f x 在0x =处连续; (3) ()f x 在0x =处可导. 解(1)因为()()2 lim lim ln 1x x f x x x α+ + →→=+ ()2 2 2 ln 1lim x x x x α+ +→+=, ()22 0ln 1lim 1x x x + →+=, 极限存在的条件为20α+≥,即2α≥-,

所以当2α ≥-时,极限()0 lim x f x + →存在; (2)因为()()0 lim 00x f x f -→==, 所以要使()f x 在0x =处连续, 需要求20α+>,2α>-, 所以当2α >-时,()f x 在0x =处连续; (3)显然 ()00f -'=, ()()()12 000lim lim ln 1x x f x f x x x α++ -→→-=+ ()2 1 2 ln 1lim x x x x α+ +→+=, 要使其存在且为0,必须10α+>,1α>-, 所以当1α>-时,()f x 在0x =处可导. 四.设 ()f x 在(),-∞+∞上连续, 证明积分()()22 L f x y xdx ydy ++?与积分路径无关. 证明:设()()22 01,2 x y U x y f t dt +=?, 则有()()()22,dU x y f x y xdx ydy = ++, 即存在势函数, 所以 ()()22L L f x y xdx ydy dU ++=? ?与积分路径无关. 五.设 ()f x 在[],a b 上可导,02a b f +?? = ??? ,且()f x M '≤, 证明: ()()2 4 b a M f x dx b a ≤ -? . 证明:因为 ()f x 在[],a b 上可导, 则由拉格朗日中值定理,存在ξ在x 与2 a b +之间,使得

相关主题
文本预览
相关文档 最新文档