当前位置:文档之家› 光谱标样在能谱定量分析中的应用_余其中

光谱标样在能谱定量分析中的应用_余其中

光谱标样在能谱定量分析中的应用_余其中
光谱标样在能谱定量分析中的应用_余其中

光谱标样在能谱定量分析中的应用

余其中 李霞 司志强

(杭州钢铁集团公司技术中心 杭州 310022)

摘 要:使用能谱仪对直读光谱标样进行分析,建立标样数据。选取较常见的7个钢种,分别运用能谱数据

库标样数据和自建的直读光谱标样数据进行定量分析,结果表明,采用后者进行的非归一化定量

分析结果偏差和总量偏差明显小于前者。

关键词:直读光谱标样;能谱仪;定量分析;非归一化

0 前言

能谱仪是通过采集特征x 射线并进行统计分析,得到被检测区域的化学成分的仪器。以前它一直被业内认为是半定量分析仪器,但近年来能谱仪的测量精度和测量极限已经有了很大的提高。在采用能谱数据库标样数据(即无标样)为参照,进行定量分析时,对一些重元素和含量较高的元素已达到精确定量分析。但元素含量偏低(小于1%)时,定量分析结果偏差较大。GB/T17359-98允许的相对误差<50%,定量分析总量偏差

样却很齐全,且均匀性较好,所以笔者尝试采用直读光谱仪标样作为能谱仪定量分析的标样。

1 试验方法

选取本公司较常见的45、40Cr 、U71Mn 、42CrMo 、

20C rMnTi 、55CrSi 、60Si2MnA 钢,制成金相样,用牛津INCA 350能谱仪对其进行分析;同时将这7个钢种的直读光谱标样进行磨制、抛光,在同一分析条件下,用能谱仪进行成分分析,将分析结果存储为自制标样数据。之后分别运用能谱数据库标样数据和直读光谱仪标样数据,对上述7个钢种中主要的几种元素进行定量分析,分析结果采用非归一化结果。

2 试验结果

7个钢种中主要的几种元素非归一化定量分析结果见图1~7

图1 45钢

2012年2月

第一期 29

图2

40Cr

图3

U71Mn

图4 42Cr

Mo

图5 20C rMnTi

30

2012年2月 第一期

图6

55CrSi

图7 60Si 2MnA

3 结果分析

1)以直读光谱分析的结果作为标准值,对上述7个钢种分别在能谱仪里进行无标样分析和使用光谱标样进行分析,并把这两个结果作为实测值,最后分别计算每个元素的相对误差和总量偏差,计算结果见表1。由计算结果可知,直读光谱标样定量分析结果的相对误差和总量偏差都明显低于无标

样定量分析结果的偏差。这主要是因为采用无标样进行定量分析时,能谱自动选择其数据库所带的标样数据进行定量分析,这些标样往往是单质元素和化合物,与所测样品的化学成分、组成结构差别很大。比如C 是以CaCo 3标样来进行标定的;Mn 是以金属Mn 的标样来进行标定的,这势必会影响最终的定量分析结果。而选用的直读光谱标样与所测样品的化学成分、组成结构都相近,比如45、40C r 就是用直读光谱的45、40Cr 标样,所以结果就

更接近标准值。

表1 检测数据

%

钢种

能谱自带标样定量分析

标准值实测值相对误差

直读光谱标样定量分析

实测值相对误差45

C

0.4513.4128800.6851Si 0.3 1.132770.2516.7Mn 0.62 2.3271

0.620Fe

98.38293.02197

95.83 2.6

总量

100309.87总量偏差+209.87

97.39总量偏差-2.39

40Cr

C 0.418.0418610.5944Si

0.30.881930.2226.7Mn 0.63 1.992150.61 3.1Cr 1.01 2.581550.8614.8Fe

97.44

298.5

206

100.27

2.9

2012年2月 第一期光谱标样在能谱定量分析中的应用31

钢种

能谱自带标样定量分析

标准值实测值相对误差

直读光谱标样定量分析

实测值相对误差

总量100312总量偏差+212.00102.55总量偏差+2.55

U71Mn

C0.7410.6813430.8616.2 Si0.20.963800.195 Mn 1.19 4.42271 1.5328.6 Fe97.67292.919995.79 1.9

总量100308.95总量偏差+208.9598.37总量偏差-1.63

42CrMo

C0.4111.3518610.42 2.4 Si0.3 1.011930.29 3.3 Mn0.63 2.012150.7519 Cr 1.01 2.931550.8614.8 Mo0.16 1.24675 1.24675 Fe97.44289.1220694.36 2.9

总量100307.66总量偏差+207.6697.92总量偏差-2.08

20CrMnTi

C0.27.4336150.195 Si0.290.57960.1645 Mn0.9 3.112450.85 5.6 Cr 1.13 3.53212 1.17 3.5 Fe97.25293.0320197.540.3

总量100307.68总量偏差+207.6899.91总量偏差-0.09

55CrSi

C0.5612.242085178 Si 1.5 4.64209 1.397.3 Mn0.7 1.921740.814.28 Cr0.7 2.622740.768.57 Fe96.45292.9520394.63 1.88

总量100314.36总量偏差+214.3698.57总量偏差-1.43

60Si2MnA

C0.5915.592542 1.0883 Si 1.72 5.62226 1.569.3 Mn0.7 2.522600.657.1 Cr0.260.71690.223 Fe96.63291.2820194.03 2.69

总量100315.72总量偏差+215.7297.51总量偏差-2.49

2)从表1中45、40Cr、55CrSi、60Si2MnA检测数据发现,不管是采用无标样进行分析还是采用光谱标样进行分析,碳元素定量分析结果的相对误差都较大,这主要是因为碳元素属于轻元素,较易受到外界环境因素的干扰:如粘附在样品表面的粉尘、样品室内极少量的油气分子、导电胶等,都会影响碳元素的分析结果,增加分析结果的偏差值。

3)从42CrMo检测数据发现,两种方法下Mo元素的相对误差都很大,这主要是因为42Cr Mo钢中Mo元素含量较少(0.16%),已接近能谱仪分析精度的极限(0.1%),分析精度难于保证,导致定量分析结果出现大的偏差。

4结语

1)选用均匀性良好的直读光谱标样,并建立适用于本公司的钢铁材料的标样库,可有效提高能谱仪对钢铁材料的定量分析结果(非归一化)。

2)本次试验只是选用了7个钢种的光谱标样进行对比分析,依此类推,对于其它钢种也可根据需要尝试采用该方法进行分析和应用。

3)样品、标样表面平整、干燥、无污染可有效提高定量分析结果的准确性。

参考文献

[1]GB/T17359-98电子探针和扫描电镜X射线能谱定量

分析通则

收稿日期:20110822

审稿:龙尔梅

编辑:魏海青

32

2012年2月第一期

红外图谱分析方法大全

红外光谱图解析 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。 公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600、1580、1500、1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 3000-2850 cm-1C-H伸缩振动 1465-1340 cm-1C-H弯曲振动 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃 3100~3010 cm-1烯烃C-H伸缩 1675~1640 cm-1C=C伸缩 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 2250~2100 cm-1C≡C伸缩振动 3300 cm-1附近炔烃C-H伸缩振动 4.芳烃 3100~3000 cm-1芳环上C-H伸缩振动 1600~1450 cm-1C=C 骨架振动 880~680 cm-1C-H面外弯曲振动) 芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4

波谱解析4标准答案

波谱解析试题1 一、名词解释: 1.发色团 2. 化学位移 二、简答题: 1.红外光谱在结构研究中有何用途? 2.偏共振去偶碳谱在结构研究中具有什么样的意义? 三、化合物可能是A或B,它的紫外吸收λmax 为314nm (lgε=4.2),指出这个化合物是属于哪一种结构。 (A)(B) 四、下面为化合物A、B的红外光谱图,可根据哪些振动吸收峰推断化合物A、B中分别存在哪些官能团? A: B:

五、归属下列化合物碳谱中的碳信号。(15) 六、某化合物的分子式为C 14H 14 S,其氢谱如下图所示,试推断该化合物的结构式, 并写出推导过程。(15分)

七、某化合物分子式为C3H7ON, 结合下面给出的图谱,试推断其结构,并写出简单的推导过程。

波谱解析试题1答案 一、名词解释: 1.发色团:从广义上讲, 分子中能吸收紫外光和(或)可见光的结构系统叫做发色团。因常用的紫外光谱仪的测定范围是200~40Onm 的近紫外区, 故在紫外分析中,只有π-π* 和(或) n-π* 跃迁才有意义。故从狭义上讲,凡具有π键电子的基团称为发色团 2. 化学位移:不同类型氢核因所处化学环境不同, 共振峰将分别出现在磁 场的不同区域。实际工作中多将待测氢核共振峰所在位置 ( 以磁场强度或相 应的共振频率表示 ) 与某基准物氢核共振峰所在位置进行比较, 求其相对距离, 称之为化学位移。 二、简答题: 1.红外光谱在结构研究中有何用途? (1)鉴定是否为某已知成分 (2)鉴定未知结构的官能团 (3)其他方面的应用:几何构型的区别;立体构象的确定;分子互变异构与同分异构的确定。 2.偏共振去偶碳谱在结构研究中具有什么样的意义? 当照射1H 核用的电磁辐射偏离所有l H 核的共振频率一定距离时, 测得的13C-NMR(OFR) 谱中将不能完全消除直接相连的氢的偶合影响。此时,13C 的信号将分别表现为q (CH3), t (CH2),d(CH),s(C)。据此,可以判断谈的类型。 三、 A: 217(基值)+30(共轭双烯)+5×2(环外双键)+5×4(烷基)=277(nm)B: 217(基值)+30(共轭双烯)+36(同环二烯)+5×1(环外双键)+5×5 (烷基)=313(nm) 其中,化合物B的计算值与给出的紫外吸收λmax (314nm)接近,因此,该化合物为B。 四、 A:约3520 cm-1 为酚羟基(或酚OH)的伸缩振动,表明有酚羟基(或酚OH);约1600,1580,1500,1450 cm-1 为苯环的骨架振动,表明有苯环。 B:约1750 cm-1 为酯羰基的振动吸收峰,表明有酯羰基。 五、 δ39.6(C-1),δ110.8(C-2),δ124.8(C-3),δ131.5(C-4),δ154.0(C-5),δ189.5(C-6) 六、 解析:C14H14S Ω=14+1-(14/2) =8

危险源辨识评价半定量分析LEC评价法

危险源辨识、评价半定量分析LEC评价法 (L ikelihood E xposure C onsequence) 这是一种评价具有潜在危险性环境中作业时的危险性半定量评价方法。它是用 与系统风险率有关的3种因素指标值之积来评价系统人员伤亡风险大小,这3种因素是: L为发生事故的可能性大小; E为人体暴露在这种危险环境中的频繁程度; C为一旦发生事故会造成的损失后果。 取得这3种因素的科学准确的数据是相当繁琐的过程,为了简化评价过程,采取半定量计值法,给3种因素的不同等级分别确定不同的分值,再以3个分值的乘积D 来评价危险性的大小;即D=LEC。D值越大,说明该系统危险性大,需要增加安全措施,或改变发生事故的可能性,或减少人体暴露于危险环境中的频繁程度,或减 轻事故损失,直至调整到允许范围内。 表1 表 表3

D(D anger)——危险性分值。根据公式就可以计算作业的危险程度,但关键是如何 确定各个分值和总分的评价。根据经验,总分在20以下是被认为低危险的,这样的危险比日常生活中骑自行车去上班还要安全些;如果危险分值到达70~160之间,那就有显著的危险性,需要及时整改;如果危险分值在160~320之间,那么这是一种必须立即采取措施进行整改的高度危险环境;分值在320以上的高分值表示环境非常危险,应立即停止生产直到环境得到改善为止。危险等级的划分是凭经验判断,难免带有局限性,不能认为是普遍适用的,应用时需要根据实际情况予以修正。危 险等级划分如表4所示。 表4 评价实例:某涤纶化纤厂在生产短丝过程中有一道组件清洗工序,为了评价这一操作条件的危险度,确定每种因素的分数值为:事故发生的可能性(L):组件清洗所使用的三甘醇,属四级可燃液体,如加热至沸点时,其蒸气爆炸极限范围为0.9~9.2%,属一级可燃蒸气。而组件清洗时,需将三甘醇加热后使用,致使三甘醇蒸气容易扩散的空间,如室内通风设备不良,具有一定的潜在危险,属“可能,但不经常”,其分数值L=3。暴露于危险环境的频繁程度(E):清洗人员每天在此环境中工作,取E=6。发生事故产生的后果(C):如果发生燃烧爆炸事故,后果将是非常严重的,可能造成人员的伤亡,取C=15。则有:D=LEC=3×6×15 =270 评价结论:270分处于160~320之间。危险等级属“危险源等级为4级,高度危险、需立即整改”的范畴。

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

(完整版)仪器分析习题答案-光谱分析部分

仪器分析部分作业题参考答案 第一章绪论 1-2 1、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。 2、共同点:都是进行组分测量的手段,是分析化学的组成部分。 1-5 分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。 分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。仪器分析与分析仪器的发展相互促进。 1-7 因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。 第二章光谱分析法导论 2-1 光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。 各部件的主要作用为: 光源:提供能量使待测组分产生吸收包括激发到高能态; 单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器; 样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用; 检测器:将光信号转化为可量化输出的信号。

红外光谱的原理及应用

红外光谱的原理及应用 (一)红外吸收光谱的定义及产生 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱 红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱 (二)基本原理 1产生红外吸收的条件 (1)分子振动时,必须伴随有瞬时偶极矩的变化。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。 2分子的振动类型 伸缩振动:键长变动,包括对称与非对称伸缩振动 弯曲振动:键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动 3几个术语 基频峰:由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰; 倍频峰:由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰; 组频:如果分子吸收一个红外光子,同时激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频。 特征峰:凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率。 相关峰:相互可以依存而又相互可以佐证的吸收峰称为相关峰 4影响基团吸收频率的因素 (1 外部条件对吸收峰位置的影响:物态效应、溶剂效应 (2分子结构对基团吸收谱带的影响: 诱导效应:通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。 共轭效应:基团与吸电子基团共轭,使基团键力常数增加,因此基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此基团吸收频率降低。 当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。 (3)偶极场效应:互相靠近的基团之间通过空间起作用。 (4)张力效应:环外双键的伸缩振动波数随环减小其波数越高。 (5)氢键效应:氢键的形成使伸缩振动波数移向低波数,吸收强度增强 (6)位阻效应:共轭因位阻效应受限,基团吸收接近正常值。 (7)振动耦合,(8)互变异构的影响 (三)红外吸收光谱法的解析 红外光谱一般解析步骤 1. 检查光谱图是否符合要求; 2. 了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度; 3. 排除可能的―假谱带‖; 4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U

红外光谱定量上的实际应用

红外光谱在实际中的应用 毛志强 化学与生命科学学院化学0802班学号:200823140211 摘要:本文介绍了红外光谱的最新发展,阐述中红外光谱法(MIR),近红外分析法(NIR)的基本原理,比较了二者红外光谱定性,定量分析的基本原理和方法,对新近发展的近红外光谱分析法中漫反射光谱法和透射光谱法做出了简介,列举其在日常生活和工业生产上的应用,对红外光谱分析法的发展前景做出展望。 关键词:中红外光谱法(MIR);近红外分析法(NIR);漫反射光谱法;透射光谱法;红外光谱定性;定量分析 前言 红外光谱是是由于分子在振动能级(包括转动能级)间跃迁产生的吸收光谱。红外光介于微波区和和可见光区之间,根据波长不同,分为三个区段:近红外区(13000 cm-1—4000cm-1 ),中红外区(4000cm-1—400cm-1),远红外区(400cm-1—10cm-1)。其中,中红外区是绝大多数有机化合物或药物的基频吸收区,是红外光谱研究的主要区段。近红外区是OH,NH和CH的倍频或组频吸收区,近年来其应用和发展异常迅猛,越来越受人们重视,有人认为这一发展“是一场分析技术的革命[1]”。 在过去近半个世纪里,因为该区域吸收信号弱,谱峰重叠,解析困难,几乎没有对该区域进行应用开发的研究。仪器的数字化和化学计量学的发展解决了光谱信息的提取和背景干扰,并且取得了巨大的成就。由于该区域的官能团OH,NH和CH几乎覆盖绝多数部分的化工产品,农牧业产品,所以红外分析技术可应用于石油化工,基本有机工业,精细有机化工,制药,生物体液分析,食品,饮料,烟草,纺织,造纸和化妆等行业。同时它也是政府质量监督部门,环境保护部门常规监控分析的有力手段。本文着重对应用比较广泛的傅里叶中红外光谱法(MIR),近红外光谱法(NIR)原理和应用及其优点和缺陷进行了介绍[2]。 正文

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理 1)红外光谱的产生 能量变化 ν νhc h= = E - E = ?E 1 2 ν ν h ?E = 对于线性谐振子 μ κ π ν c 2 1 = 2)偶极矩的变化 3)分子的振动模式 多原子分子振动 伸缩振动对称伸缩 不对称伸缩 变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆 AX3:对称变形、反对称变形 . 不同类型分子的振动 线型XY2: 对称伸缩不对称伸缩 弯曲

弯曲型XY2: 不对称伸缩对称伸缩面内弯曲(剪式) 面内摇摆面外摇摆卷曲 平面型XY3: 对称伸缩不对称伸缩面内弯曲 面外弯曲 角锥型XY3: 对称弯曲不对称弯曲

面内摇摆 4)聚合物红外光谱的特点 1、组成吸收带 2、构象吸收带 3、立构规整性吸收带 4、构象规整性吸收带 5、结晶吸收带 2 聚合物的红外谱图 1)聚乙烯 各种类型的聚乙烯红外光谱非常相似。在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜) 中压聚乙烯(热压薄膜) 高压聚乙烯(热压薄膜)

2.聚丙烯 无规聚丙烯

等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。 3.聚异丁烯 CH3 H2 C C n CH3

光谱标样

不管什么样的光谱分析仪都要建立适合用户的标准样品库,才能将光谱仪的效能发挥到极致,前期要做许多工作,例如收集样品,样品分析,标准样品制备等工作。建立好自己面向应用的标准样品库,可以让自己的检测做到事半功倍的效果。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下,希望可以帮助到您! 一、直读光谱仪样品: 直读光谱仪样品制备 进行直读光谱分析的样品,是块状。样品制备的情况对测定误差影响很大。样品表面一定要打磨平整。 二、直读光谱仪正确选择标样的重要性

我们知道标准样品应该和实际测试的样品尽可能相同。但实际上一般标准样品公司的标准样品为了保证其市场通用性,大都和实际检测材料偏离较多。而这大大影响了直读光光谱仪的使用,有时检测的值偏离几十甚至上百倍。直读光谱仪的用户大多是中小型企业,如何将一台数十万的设备发挥它的性能,这是其用户关心的问题。 面向应用的标样,实际上就是用户根据自己所需测试的材料,对应其主要组份的同一性进行分类,建立几组需要检测的有害物质含量不同的标准样品。由于这种标准样品和实际产品的组份基本一致,其偏析度很小。在进行样品测试时,可以很精确的测得偏差很小的数据。在一定程度上增加了检测的可确定度。保证用户检测的高效和准确。价格可以详询合肥卓越分析仪器有限责任公司。

合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行分析方案。公司产品遍布全国各省市地区,出口俄罗斯、蒙古国、吉尔吉斯斯坦、巴基斯坦、缅甸、越南、南非等数十个国家。 公司以三耐材料(耐磨,耐热,耐蚀)分析,矿山分析高中低合金铸造分析见长,为客户实现精确,快速分析提供最佳方案,特别针对原材料:锰铁、硅铁、镍铁等铁合金分析有独到之处。 公司承建的大中型及小型理化中心或化学实验室,从设计开始,设备及器材配置,专业人才培训满足不同层次客户的实际要求,深受海内外用户青睐。欢迎来电咨询合作。

红外光谱的定量分析

红外光谱的定量分析 红外光谱法在分析和另一应用是对混合物中各组分进行定量分析。红外光谱定量分析是借助于对比吸收峰强度来进行的,只要混合物中的各组分能有一个持征的,不受其他组分干扰的吸收峰存在即可。原则上液体、圆体和气体样品都对应用红外光谱法作定量分析:1.定量分析原理 红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳-朗勃特(Beer-Lambert)定律。 Beer定律可写成:A=abc 式和A为吸光度(absorbance),也可称光密度(optical density),它没有单位。系数a称作吸收系数(absorptivity),也称作消光系数(extinction coeffieient),是物质在单位浓度和单位厚度下的吸光度,不同物质有不同的吸收系数a值。且同一物质的不同谱带其a值也不相同,即a值是与被测物质及所选波数相关的一个系数。因此在测定或描述吸收系数时,一定要注意它的波数位置。当浓度c选用mol·L-1为单位,槽厚b以厘米为单位时,则a值的单位为:L·cn-1·mol-1,称为摩尔吸收系数,并常用ε表示。吸收系数是物质具有的特定数值,文献中的数值理应可以通用。但是,由于所用仪器的精度和操作条件的不同,所得数值常有差别,因此在实际工作中,为保证分析的准确度,所用吸收系数还得借助纯物质重新测定。 在定量分析中须注意下面两点: 1)吸光度和透过率是不同的两个概念、透过率和样品浓度没有正比关系,但吸光度与浓度成正比。 2)吸光度的另一可贵性使它具有加和性。若二元和多元混合物的各组分在某波数处都有吸收,则在该波数处的总吸光度等于各级分吸光度的算术和:但是样品在该波数处的总透过率并不等于各组分透过率的和; 2.定量分析方法的介绍 红外光谱定量方法主要有测定谱带强度和测量谱带面积购两种。此外也有采用谱带的一阶导数和二阶导数的计算方法,这种方法能准确地测量重叠的谱带,甚至包括强峰斜坡上的肩峰。 红外光谱定量分忻可以采用的方沦很多,下面我们介绍几种常用的测定方法。 (1)直接计算法 这种方法适用于组分简单、特征吸收带不重叠、且浓度与吸收度呈线性关系的样品。 应用(4-35)式,从谱图上读取透过率数值,按A=ln(I0/I)(I0为入射光强度,I为透射光强度)的关系计算出A值,再按(4-35)式算出组分含量c,从而推算出质量分数。这一方法的前提是需用标准样品测得a值。分析精度要求不高时,可用文献报导的a值。 (2)工作曲线法 这种方法适用于组分简单.特征吸收谱带重叠较少,而浓度与吸收度不完全呈线性关系的样品。 将一系列浓度的标准样品的湾液.在同一吸收池内测出需要的谱带,计算出吸收度值作为纵坐标,再以浓度为横坐标,作出徊应的工作曲线。由于是在同一吸收池内测量,故可获得A~c的实际变化曲线。

红外分析实例

图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为- CH2- 的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。

从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2- 的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2- 的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。

由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。

由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。 每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。由于掺入的SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯和聚丁二烯并没有发生化学变化,所以SBS改性沥青的红外光谱只是在基质沥青的红外光谱上简单叠加了聚苯乙烯与聚丁二烯的红外光谱,而相应的吸收峰位置和强度基本保持不变,是基质沥青和SBS改性剂的红外光谱的简单合成图。与基质沥青比较,SBS改性沥青的红外光谱在698cm-1和

光谱标样在能谱定量分析中的应用_余其中

光谱标样在能谱定量分析中的应用 余其中 李霞 司志强 (杭州钢铁集团公司技术中心 杭州 310022) 摘 要:使用能谱仪对直读光谱标样进行分析,建立标样数据。选取较常见的7个钢种,分别运用能谱数据 库标样数据和自建的直读光谱标样数据进行定量分析,结果表明,采用后者进行的非归一化定量 分析结果偏差和总量偏差明显小于前者。 关键词:直读光谱标样;能谱仪;定量分析;非归一化 0 前言 能谱仪是通过采集特征x 射线并进行统计分析,得到被检测区域的化学成分的仪器。以前它一直被业内认为是半定量分析仪器,但近年来能谱仪的测量精度和测量极限已经有了很大的提高。在采用能谱数据库标样数据(即无标样)为参照,进行定量分析时,对一些重元素和含量较高的元素已达到精确定量分析。但元素含量偏低(小于1%)时,定量分析结果偏差较大。GB/T17359-98允许的相对误差<50%,定量分析总量偏差

半定量

半定量又叫半定量PCR 半定量是RT-PCR做基因表达分析的一种方法,其操作的方法是在野生型和突变体中用一个看家基因(通常是actin)做参照标准来观察目标基因在各自的表达情况(上调还是下调),所谓半定量的“半”是通俗的说法,即在看电泳图估计参照亮度一致(可看作是表达的细胞数一致)情况下,确定目标基因的表达;这是与更加精确的Q-PCR的相对定量和绝对的量区分。 半定量解释 (semi-quantitative interpretation)是介于定性和定量之间的解释。尽管使用了数学方法对地质目标的空间位置或物性进行了数值计算,也获得了量值,但由于这些方法的使用是有非常严格的前提条件的,而在实际情况下这些条件是不满足的,所以这些定量计算的结果只能从趋势上为解释人员提供参考。 半定量分析 定性分析是能区分出是个什么东西。举个例子来说,你能辨认出这是苹果,但你不能确定是几个苹果。 定量分析是在定性的基础上给出清晰的数量关系。比如,你确定了这是5个苹果。 而半定量分析是通常实现定量分析非常困难时采取的一种则中办法。还是举例说明。这里有一堆苹果,你不知道具体的数量。但是你能知道的是这一堆苹果能装5麻袋。这5麻袋的数量估计就是半定量分析。 定量PCR是PCR的一种。PCR仪目的为了基因扩增。在基因扩增中最重要的就是升降温过程,最早的PCR就是三个水浴锅,一个机械臂,定时抓出反应槽转换水浴锅。PCR的结果需要借助其他手段来检测。后来随着定量技术的发展,将PCR和检测做成一体,就形成了定量PCR仪。还可以与荧光技术结合,同时在每个扩增过程都能实施监控。 定量PCR(PolymeraseChainReaction)技术有广义概念和狭义概念。广义概念的定量PCR技术是指以外参或内参为标准,通过对PCR终产物的分析或PCR过程的监测,进行PCR 起始模板量的定量。 广义概念下的定量PCR技术可以分为五种类型: (1)外参法+终产物分析。所谓“外参法”是指样本与阳性参照在两个反应容器内反应。这种类型没有对样本进行质控监测,易出现假阴假阳结果,没有监测扩增效率,定量不准。 (2)内参法+终产物分析。所谓“内参法”是指样本与阳性参照在一个反应容器内反应。这种类型对样本进行质控监测,排除假阴结果,但是定量不准。 (3)外标法+过程监测。这种类型监测扩增效率,阳性样本定量准,但是无法排除假阴结果。

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或

激光拉曼光谱分析.doc

第 11 章激光拉曼光谱分析 第十一章激光拉曼光谱分析 (L aser Raman Spectroscopy, LRS) 教学要求 1.理解拉曼散射的基本原理 2.理解拉曼光谱和红外光谱与分子结构关系的主要差别 3.了解拉曼光谱仪器结构 4.了解激光拉曼光谱的应用 重点:拉曼光谱原理;拉曼光谱与红外光谱的关系 难点:拉曼光谱与红外光谱的关系 课时安排: 1.5 学时 §11-1 拉曼光谱原理 一、拉曼光谱 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。 在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。 由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分 子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 拉曼光谱和红外光谱一样同属于分子振动光谱 ,可以反映分子的特征结构。但是拉曼散射效应是个非常弱的过程 ,一般其光强仅约为入射光强的 10-10。 1、瑞利散射 虚拟态 当光子与物质的分子发生弹性碰撞时, hυ0hυ0 没有能量交换,光子仅改变运动方向,这种散射称瑞利散射。入射光与散射光的频率相同,如图中 2、3 两种情况。 2、斯托克斯 (Stokes)散射 hυ0h(υ0-υ1) hυ0hυ0hυ0h(υ0+υ1) υ=1 υ=0 图 11-1 瑞利散射、斯托克斯和反斯托克斯散射示意图 当光子与物质的分子发生非弹性碰撞时,可以得到或失去能量,当受激分子

光谱分析法导论题库

光谱分析法导论 1.在下列激发光源中,何种光源要求试样制成溶液?( 1 ) (1)火焰(2)交流电弧(3)激光微探针(4)辉光放电 2.发射光谱法用的摄谱仪与原子荧光分光光度计相同的部件是( 3 ) (1)光源(2)原子化器(3)单色器(4)检测器 3.在光学分析法中, 采用钨灯作光源的是( 3 ) (1)原子光谱(2)分子光谱(3)可见分子光谱(4)红外光谱 可见光源通常使用钨灯 5. 原子光谱(发射、吸收与荧光)三种分析方法中均很严重的干扰因素是( 2 ) (1)谱线干扰(2)背景干扰(3)杂散干扰(4)化学干扰 6. 三种原子光谱(发射、吸收与荧光)分析法在应用方面的主要共同点为( 2 ) (1)精密度高,检出限低(2)用于测定无机元素(3)线性范围宽(4)多元素同时测定7. __紫外__和__可见_辐射可使原子外层电子发生跃迁. 原子发射光谱法 1. 几种常用光源中,产生自吸现象最小的是( 2 ) (1) 交流电弧(2) 等离子体光源(即为ICP)(3) 直流电弧(4) 火花光源 2. 闪耀光栅的特点之一是要使入射角α、衍射角β和闪耀角θ之间满足下列条件( 4 ) (1) α=β(2) α=θ(3) β=θ(4) α=β=θ 3. 当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是( 4 ) (1) K (2) Ca (3) Zn (4) Fe 所以选择铁谱作为标准 4. 矿物中微量Ag、Cu的发射光谱定性分析应采用的光源是 (1) I CP光源(2) 直流电弧光源(3) 低压交流电弧光源(4) 高压火花光源直流电弧光源用于矿石难溶物中低含量组分的定量测定 5. 下列哪种仪器可用于合金的定性、半定量全分析测定 (1)极谱仪(2)折光仪(3)原子发射光谱仪(4)红外光谱仪(5)电子显微镜6. 发射光谱摄谱仪的检测器是( ) (1) 暗箱(2) 感光板(3) 硒光电池(4) 光电倍增管 7. 对原子发射光谱法比对原子荧光光谱法影响更严重的因素是( ) (1) 粒子的浓度(2) 杂散光(3) 化学干扰(4) 光谱线干扰 8. 原子发射光谱激发源的作用是提供足够的能量使试样____蒸发________ 和__激发__。 9. 影响谱线强度的内因是______各元素的激发电位统计权重____________ ,外因是__被测元素浓度和弧焰温度________________ 。 10. 自吸:原子在高温下被激发而发射某一波长的辐射, 但周围温度较低的同种原子(包括低能级原子或基态原子)会吸收这一波长的辐射 11. (1)海水中的重金属元素定量分析___高频电感耦合等离子体____________ (2)矿物中微量Ag、Cu的直接定性分析_____直流电弧_________ (3)金属锑中Sn、Bi的直接定性分析______电火花________

拉曼光谱实验报告

拉曼光谱实验 姓名学号 何婷 李玉环 宋丹 [实验目的] 1、了解Raman光谱的原理和特点; 2、掌握Raman光谱的定性和定量分析方法; 3、了解Raman光谱的谱带指认。 4、了解显微成像Raman光谱。 [仪器和装置] 1、显光谱系统一套,拉曼光谱仪的型号为SPL-RAMAN-785 USB2000+的拉曼光谱仪,自带785nm激光; 2、带二维步进电机平移台一台(有控制器一台); 3、PT纳米线样品; 4、光谱仪软件SpectraSuite; 5、步进电机驱动软件; 6、摄像头(已与显微镜集成在一起)。 [实验内容] 1、使用显系统及海洋光谱软件对单根或多根纳米线进行显光谱测量,对测量的图和标准图 进行比较,并通过文献阅读对PT纳米线Raman(测量和标准)的谱峰进行指认。 2、使用显微拉曼扫描系统进行二维样品表面拉曼信号收集,并生成样品表面特定波长处的 拉曼信号强度三维图,模拟样品表面拉曼表征。选择多个拉曼波长对样品形状进行观察。[实验结果及分析]

观察PbTiO3的拉曼散射谱并比对具体的拉曼散射光谱数据进行分析,可以找到以上10个拉曼散射峰,分别位于, nm, nm, nm, nm, nm, nm, nm, nm,附近,对应的Raman Shift分别是 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1。(通过Raman Shift=1/λ入射-1/λ散射计算得到) PT纳米线Raman测量的谱峰指认: 分析可知, cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1附近的9个振动模,分别对应于PbTiO3的A1(1TO),E(1LO),E(2TO),B1+E, A1(2TO), E(2LO)+A1(2LO),E(3TO) A1(3TO), A1(3LO)声子模。 位于 cm-1附近的模对应PbTiO3纳米线表面的TiO6八面体相对于Pb的振动;位于 cm-1附近的模分别对应于表面Ti-O或Pb-O键的振动;位于 cm-1附近的模对应于TiO6八面体中Ti-O键的振动。而位于 cm-1的振动模为静模。此外,在 cm-1处PbTiO3还具有额外的Raman 振动模,可能与该相中含有大量且复杂的晶胞结构有关。据报道,复杂钙钛矿结构中氧八面体的畸变或八面体内 B位离子的移动在某种程度上会破坏平移对称性,引起相邻晶胞不再具有相似的局部电场和极化率。 位于 cm-1处的拉曼峰强度增强,相比标准PbTiO3纳米线,其余拉曼峰强度均减弱。798nm处样品表面拉曼信号三维强度图:

直读光谱需用到的四类样品

光电光谱分析中的四类“标样 1、标准样品(Standard Sample):光谱定量分析是一种相对分析方法,必须使用含量经过精确标定的样品来制作校准曲线(Calibration Curve)或工作曲线(Work Curve),以确定分析样品(Unknown Sample)的含量,这种含量经过精确标定的样品一直被光谱分析工作者称为“标准样品”,简称为“标样”(或“标钢”),其正规名称是“标准(参考)物质”(Conference Materials),又简称为“标物”。光谱定量分析的标准样品都是成套的,用于金属样品光电光谱分析的标准样品一般是块状或棒状,其基本要求是:分析元素分布均匀,化学成份可靠;组织结构、尺寸、加工方法等要与分析样品基本一致,不能有偏析、裂纹、夹杂等缺陷,并经过均匀度检查符合要求;一套标准样品分析元素含量要有一定梯度,含量范围比要求分析的含量范围稍宽。各国的“标准物质”的研制都是严格管理的,获得国家权威部门认可的标准物质一般是公开销售的。标准物质的详细知识和行情可到“中国标准物质网”咨询。为了同下面要讲的几类标样相区别,分析工作者常把建立校准曲线的标准样品常称为“校准标样”(Calibration Standards or Calibration Samples)或“工作曲线标样”。 2、标准化样品(Standardization Sample):用“持久曲线法”进行光谱定量分析,仪器参数漂移不可避免要引起工作曲线漂移,需要通过“标准化”(Standardization)来调整。标准化样品就是标准化操作中所用的特殊样品,有的资料里又有“校正标样”(Setting-up Sampl es)、再校准标样(Recalibration Samples)等名称。其基本要求是:组成和结构均匀稳定,目标元素的含量有特定要求,但不必有准确的标定值。用于低端的标准化样品的光强值尽可能接近相应元素校准曲线的低端值,用于高端的标准化样品的光强值尽可能在相应元素校准曲线的中高端范围。标准样品可以用作标准化样品,但要为尽可能多的元素选取数目尽可能少的标准化样品是个难题。标准化样品应该在作校准曲线的同时测光以确定初始数值,若要使用仪器“随机”所带的校准曲线,必然需要仪器商提供相应的标准化样品。标准化样品是可以更换的,但必须在旧的标准化样品用完之前试验确定新的标准化样品的测光值。

红外光谱仪在定量分析中的应用

红外光谱仪在定量分析中的应用 红外光谱仪用红外光谱法进行药物分析时具有多样性,可根据被测物质的性质灵活应用,而且无论是固态、液态或是气体,红外光谱法都可利用自身的技术进行分析,因此拓宽了红外光谱仪的定量分析。同时,红外光谱法不需要对样品进行繁琐的前处理过程,对样品可达到无损伤、非破坏,也大大的突出了它较其他定量方法的优越性。另外,红外光谱中的特征光谱较多,可供选择的吸收峰多,所以能方便对单一组分或是混合物进行分析。目前,随着红外自身技术和化学计量的发展,红外的定量分析方法越来越多,包括峰高法、峰面积法、谱带比值法、内标法、因子分析法、漫反射光谱法、导数光谱法、最小二乘法、偏最小二乘法、人工神经网络等。基于这些优点,红外光谱法在许多领域得到广泛应用,该文主要概述了近几年来红外光谱法气体、共聚物中定量分析的应用进展。 1 红外光谱法在气体定量分析中的应用 由于气体在中红外波段(4000——400cm -1)内有明显的吸收,且分析手段不需要采样、分离,因此中红外光谱法[1]对检测气体,尤其是多组分混合气体来说是一种简便、易行的测量方法。如周泽义[2],郭世菊等[3]采用红外光谱技术确定了苯系物(包括甲苯、二甲苯、苯乙烯、硝基苯)中各组分的特征红外波长,采用美国热电子O M N IC Q uantPad 分析软件建立了低浓度(0——0.5×10-6)苯系物的定量分析方法和校准曲线数据库。 通过粒子群优化技术及BP 神经网络技术相结合,建立三种烃烷(甲烷、乙烷、丙烷)混合气体的红外光谱定量分析模型。该法比单纯采用BP 神经网络进行遍历优化建模所用时间降低5倍以上,模型预测精度水平相当。朱军等[5]通过红外光谱仪测量CO 和CO 2 的红外透过率光谱,采用非线性最小二乘拟合算法对测量光谱进行拟合,得出待测气体的浓度。结果表明CO 测量的相对误差小于5% ,CO 2 的测量分析相对误差小于1% 。 针对5 种(甲烷、乙烷、丙烷、正丁烷、异丁烷)主次吸收峰严重交叠的红外混合气体定量分析问题,提出一种基于高阶累积量的特征提取方法,该方法将重叠的吸收谱线映射到彼此相互分开的四阶累积量谱空间,利用提取的特征向量,提出一种基于正则化统计学习理论的支持向量机的多维数据建模,在小样本下有效地提高了

相关主题
文本预览
相关文档 最新文档