当前位置:文档之家› 行波型超声波电机及其速度控制特性的研究[1]

行波型超声波电机及其速度控制特性的研究[1]

行波型超声波电机及其速度控制特性的研究[1]
行波型超声波电机及其速度控制特性的研究[1]

PID调节控制做电机速度控制

PID调节控制做电机速度控制 V1.1 – Jan 23, 2006 中文版 19, Innovation First Road ? Science Park ? Hsin-Chu ? Taiwan 300 ? R.O.C. Tel: 886-3-578-6005 Fax: 886-3-578-4418 E-mail: mcu@https://www.doczj.com/doc/4c4543759.html,

版权声明 凌阳科技股份有限公司保留对此文件修改之权利且不另行通知。凌阳科技股份有限公司所提供之信息相信为正确且可靠之信息,但并不保证本文件中绝无错误。请于向凌阳科技股份有限公司提出订单前,自行确定所使用之相关技术文件及规格为最新之版本。若因贵公司使用本公司之文件或产品,而涉及第三人之专利或著作权等智能财产权之应用及配合时,则应由贵公司负责取得同意及授权,本公司仅单纯贩售产品,上述关于同意及授权,非属本公司应为保证之责任。又未经凌阳科技股份有限公司之正式书面许可,本公司之所有产品不得使用于医疗器材,维持生命系统及飞航等相关设备。

目录 页 1模拟PID控制 (1) 1.1 模拟PID控制原理 (1) 2数字PID控制 (3) 2.1 位置式PID算法 (3) 2.2 增量式PID算法 (4) 2.3 控制器参数整定 (4) 2.3.1 凑试法 (5) 2.3.2 临界比例法 (5) 2.3.3 经验法 (5) 2.3.4 采样周期的选择 (6) 2.4 参数调整规则的探索 (6) 2.5 自校正PID控制器 (7) 3软件说明 (8) 3.1 软件说明 (8) 3.2 档案构成 (8) 3.3 DMC界面 (8) 3.4 子程序说明 (9) 4程序范例 (16) 4.1 DEMO程序 (16) 4.2 程序流程与说明 (19) 4.3 中断子流程与说明 (20) 5MCU使用资源 (21) 5.1 MCU硬件使用资源说明 (21) 6实验测试 (22) 6.1 响应曲线 (22) 7参考文献 (26)

直流电机转速控制

直流电机转速控制公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 设计要求 (2) 设计框图 (2) 2.直流电机转速控制硬件设计 (3) 主要器件功能 (3) 硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 硬件测试 (8) 软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 设计框图 本课题中测量控制电路组成框图如下所示:

图1 2.直流电机转速控制硬件设计 主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、功

直流电机控制系统

直流电机控制系统

摘要:本文利用MCS-51系列单片机产生PWM信号,采用了自己设计的电机驱动电路,实现对直流电机的转速和控制方向的控制,并着重对电机驱动电路的设计进行叙述。主要模块包括单片机控制模块、电机驱动模块、电机接口模块、电源模块、键盘控制模块。 关键词:PWM信号,直流电机,电机驱动,单片机

引言 随着科学技术的迅猛发展,电气设备发展日新月异.尤其以计算机,信息技术为代表的高新技术的发展,使制造技术的内涵和外延发生了革命性的变化,传统的电气设备设计,制造技术不断吸收信息控制,材料,能量及管理等领域的现代成果,综合应用于产品设计,制造,检测,生产管理和售后服务.在生产技术和生产模式等方面,许多新的思想和概念不断涌现,而且,不同科学之间相互渗透,交叉融合,迅速改变着传统电气设备制造业的面貌,从而使得产品频繁的更新换代,这就使得电机成为社会生产和生活中必不可少的工具.随着科学技术的不断发展,人类社会的不断进步,人们对生活产品的需求要不断趋向多样化,这就要求生产设备必须具有良好的动态性能,在不同的时候进行不同的操作,完成不同的任务.为了使系统具有良好的动态性能必须对系统进行设计.特别是大型的钢铁行业和材料生产行业,为达到很高的控制精度,速度的稳定性,调速范围等国产直流电机简介为了满足各行业按不同运行条件对电动机提出的要求,将直流电机制造成不同型号的系列.所谓系列就是指结构形状基本相似,而容量按一定比例递增的一系列电机.它们的电压,转速,机座型号和铁心长度都是一定的等级.现将我国目前生产的几个主要系列直流电机简要的介绍如下。Z2系列为普通用途的中,小型电机.它的容量从400W到200KW,电动机的额定电压有200V和110V两种,额定转速有3000,1500,1000,750及600r/min五个等级.Z2系列普通用

基于单片机对直流电机的控制

基于单片机对直流电机的控制 第十五组 姓名:吴代露20131325010 张鹏飞20131325012 金静丽20131325014 周敏20131325015 胡会华20131325017 顾蓉20131325018 专业:2013级信息工程(系统工程方向) 指导老师:周旺平 2014.12.22

基于单片机对直流电机的控制 内容摘要 电动机作为最主要的动力源,在生产和生活中占有重要地位。电动机的调速控制过去多用模拟法,随着计算机的产生和发展以及新型电力电子功率器件的不断涌现,电动机的控制也发生了深刻的变化。 关键字:电动机飞思卡尔 PWM控制 一、引言 (一)直流电机的定义 直流电机(direct current machine):是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 (二)直流电机的基本结构 由直流电动机和发电机工作原理示意图可以看到,直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。 (三)直流电机工作原理

直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 (四)直流电机的分类 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。(1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 (2)有刷直流电动机:又可分为永磁直流电动机和电磁直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等;铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域;铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 (1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,直流串励电

三相异步电动机的机械特性习题

10.3 节 一、填空题 1、异步电动机的电磁转矩是由和共同作用产生的。 2、三相异步电动机最大电磁转矩的大小与转子电阻r2 值关,起动转矩的大小与转子电阻r2 关。 (填有无关系) 3、一台线式异步电动机带恒转矩负载运行,若电源电压下降,则电动机的旋转磁场转速,转差率,转速,最大电磁转矩,过载能力,电磁转矩。 4、若三相异步电动机的电源电压降为额定电压的0.8 倍,则该电动机的起动转矩T st =?T stN 。 5、一台频率为f1= 60Hz 的三相异步电动机,接在频率为50Hz 的电源上(电压不变),电动机的最大转矩为原来的,起动转矩变为原来的。 6、若异步电动机的漏抗增大,则其起动转矩,其最大转矩。 7、绕线式异步电动机转子串入适当的电阻,会使起动电流,起动转矩。 二、选择题 1、设计在f1= 50Hz 电源上运行的三相异步电动机现改为在电压相同频率为60Hz 的电网上,其电动机的()。 (A)T st 减小,T max 减小,I st 增大(B)T st 减小,T max 增大,I st 减小 (C)T st 减小,T max 减小,I st 减小(D)T st 增大,T max 增大,I st 增大 2、适当增加三相绕线式异步电动机转子电阻r2时,电动机的()。 (A)I st 减少, T st 增加, T max 不变, s m 增加(B)I st 增加, T st 增加, T max 不变, s m 增加 (C)I st 减少, T st 增加, T max 增大, s m 增加(D)I st 增加, T st 减少, T max 不变, s m 增加 3、一台运行于额定负载的三相异步电动机,当电源电压下降10%,稳定运行后,电机的电磁转矩()。(A)T em =T N (B)T em = 0.8T N (C)T em = 0.9T N (D)T em >T N 4、一台绕线式异步电动机,在恒定负载下,以转差率s 运行,当转子边串入电阻r = 2r2',测得转差率将为 ()(r 已折算到定子边)。 (A)等于原先的转差率s (B)三倍于原先的转差率s (C)两倍于原先的转差率s (D)无法确定 5、异步电动机的电磁转矩与( )。 (A)定子线电压的平方成正比;(B)定子线电压成正比; (C)定子相电压平方成反比;(D)定子相电压平方成正比。 6、一般电动机的最大转矩与额定转矩的比值叫过载系数,一般此值应( )。 (A)等于1 (B)小于1 (C)大于1 (D)等于0 三、问答题

直流电机速度控制

目录 摘要.................................................. II 第1章绪论. (1) 第2章系统论述 (3) 2.1 总体方案 (3) 2.2 基本原理 (3) 2.3 原理框图 (3) 第3章系统的硬件设计 (5) 3.1 单片机最小系统的设计 (5) 3.2 电源电路设计 (6) 3.3 直流电机驱动电路设计 (7) 3.4 显示模块设计 (8) 3.5 按钮电路设计 (8) 3.6 元件参数选择 (9) 第4章系统的软件设计 (11) 4.1 总体方案 (11) 4.2 相关软件介绍 (12) 4.3 应用软件的编制、调试 (13) 第5章仿真结果与分析 (14) 5.1仿真电路图 (14) 5.2 仿真结果 (14) 第6章总结 (17) 参考文献 (18) 附录A:系统整体硬件电路图 (19) 附录B:程序代码 (20)

摘要 当今,计算机控制系统已经在各行各业中得到了广泛的应用和发展,而直流驱动控制作为电器传动的主流在现代化生产中起着主导作用。由于生产过程的不同要求,需要电动机进行不同转速的运转。为此,研究并制造高性能、高可靠性的直流电动机控制系统有着十分重要的显示意义。 本设计主要运用AT89C51单片机为核心硬件,对直流电动机进行速度控制。并且辅助以硬件部分的驱动、复位、LED显示等电路,软件部分对AT89C51进行模块化程序的输入,通过按钮控制,实现对直流电动机的正转、反转、加速、减速和停止等控制功能。同时,由LED与电动机转速显示控制效果。利用AT89C51芯片进行低成本直流电动机控制系统设计,简化系统构成、提高系统性能,满足了生产要求。 关键词:计算机控制 AT89C51单片机直流电动机

多电机速度同步控制

多电机速度同步控制 在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。 薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。 在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。 牵引电机和印刷电机采用变频调速,其控制框图如图1所示。在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。利用旋转编码器1和旋转编码器2分别采集上述两个电机的脉冲信号(编码器位置参见图3),并送到PLC的高速计数口或接在CPU的IR00000~IR00003。以这两个速度信号数据为输入量,进行比例积分(PI)控制算法,运算结果作为输出信号送PLC的模拟量模块,以控制印刷电机的变频器。这样,就可以保证印刷速度跟踪牵引速度的变化而发生变化,使两个速度保持同步。

直流电机控制电路集锦

直流电机控制电路集锦 直流电机的类型 按:直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。直流电机控制电路集锦,将使读者“得来全不费功夫”! 在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。所以直流电机的控制是一门很实用的技术。本文将详细介绍各种直流电机的控制技术。 站长的几句说明:本文内容比较详实完整,但遗憾的是原稿的印刷质量和绘图的确很差,尽管采取了很多措施,有些图仍可能看不太清楚。 直流电机,大体上可分为四类: 第一类为有几相绕组的步进电机。这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。 步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。例如常用的SAAl027或SAAl024专用步进电机控制电路。 步进电机广泛用于需要角度转动精确计量的地方。例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。 第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。 第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。 唱机或激光唱机的转盘常用伺服电机。天线转动系统,遥控模型飞机和舰船也都要用到伺服电机。 最后一类为两相低电压交流电机。这类电机通常是直流电源供给一个低频振荡器,然后再用低频低压的交流去驱动电机。这类电机偶尔也用在转盘驱动机构中。 步进电机的基本工作原理

直流电机控制

直流电机控制电路 永磁式换向器直流电机,是应用很广泛的一种。只要在它上面加适当电压。电机就转动。图9是这种电机的符号和简化等效电路。 工作原理 这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。转于是在定子磁场作用下,得到转矩而旋转起来。换向器及时改变了电流方向,使转子能连续旋转下去。也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。图9(b)给出了等效电路。Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。 永磁式换流器电机的特点 ·当电机负载固定时,电机转速正比于所加的电源电压。 ·当电机直流电源固定时,电机的工作电流正比于转予负载的大小。 ·加于电机的有效电压,等于外加直流电压减去反电动势。因此当用固定电压驱动电机时,电机的速度趋向于自稳定。因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。 ·当转子静止时,反电动势为零,电机电流最大。其最大值等于V/Rw(这儿V是电源电压)。最大·电流出现在刚起动的条件。 ·转子转动的方向,可由电机上所加电压的极性来控制。 ·体积小,重量轻。起动转矩大。 由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。 对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。 1、电机的起/停控制 电机的起/停控制,最简单最原始的方法是在电机与电源之间,加一机械开关。或者用继电器的触点控制。大家都比较熟悉,故不举例。 现在比较流行的方法,是用开关晶体管来代替机械开关,无触点、无火花干扰,速度快。电路如图10(a)所示。当输入端为低电平时,开关晶体管Q1截止,电机无电流而处于停止状态。如果输入端为高电平时,Q1饱和导通,电机中有电流,因此电机起动运转。图中二极管D1和D2是保护二极管,防止反电动势损

直流电机速度控制

直流电机速度控制 调节系统 调节系统是一类通常能提供稳定输出功率的系统。 例如,电机速度调节器要能在负载转矩变化时仍能保持电机速度为恒定值。即使负载转矩为零,电机也必须提供足够的转矩来克服轴承的粘滞摩檫影响。其它类型的调节器也提供输出功率,温度调节器必须保持炉内的温度恒定,也就是说,即使炉内的热量散失也必须保持炉温不变。一个电压调节器必须也保持负载电流值变化时输出电压恒定。对于任何一个提供一个输出,例如速度、温度、电压等的系统,在稳态下必定存在一个误差信号。 电气制动 在许多速度揑制系统中,例如轧钢机,矿坑卷扬机等这些负载要求频繁地停顿和反向运动的系统。随着减速要求,速度减小的比率取决于存储的能量和所使用的制动系统。一个小型速度控制系统(例如所知的伺服积分器)可以釆取机械制动,但这对大型速度控制器并不可行,因为散热很难并且很昂贵。 可行的各种电气制动方法有: 1.回馈制动。 2.涡流制动。 3.能耗制动。 4.反向(接)制动。 回馈制动虽然并不一定是最经济的方式,但却是做好的方式。负载中存储的能量通过工作电机(暂时以发电机模式运行)被转化成电能并被返回到电源系统中。这样电源就充当了一个收容不想要的能量的角色。假如电源系统具有足够的容量,在短时回馈过程中最终引起的端电压升高会很少。在直流电机速度控制沃特-勒奧那多法中,回馈制动是固有的,但可控硅传动装置必须被排布的可以反馈。如果轴转速快于旋转磁场的速度,感应电机传动装置可以反馈。有晶闸管换流器而来的廉价变频电源的出现在变速装置感应电机应用中引起了巨大的变化。 涡流制动可用于任何机器,只要在轴上安装一个铜条或铝盘并在磁场中旋转它即可。在大型系统中,散热问题很重要的,因为如果长时间制动,轴、轴承和电机的温度就会升高。 在能耗制动中,存储的能量消粍在回路电阻器上。用在小型直流电机上时,电枢供电被断开,接入一个电阻器(通常是一个继电器、接触器或晶闸管)。保持磁场电压,施加制动降到最低速。感应电机要求稍微复杂一点的排布,定子绕组被从交流电源上断开,接到直流电源上。产生的电能继而消粍在转子回路中。能耗制动应用在许多大型交流升降系统中,制动的职责是反向和延长。

直流电机转速控制

. 直流电机转速控制 课程设计

姓名: 学号: 班级: 目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6)

3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11 1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。

1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电

基于Matlab的直流电机速度控制

系统仿真 课程设计报告 设计题目:基于Matlab的直流电机速度控制 专业:自动化 学生姓名: 班级学号: 指导教师: 开课日期2013年 7 月 1 日至2013年 7 月 13 日南京邮电大学自动化学院

一、课程设计题目 控制系统的执行机构常用直流电机来驱动,电路和原理示意图如下所示 其开环传递函数为 ()()0001 .0)15.0)(1.001.0(01 .02 +++=+++= s s K R Ls b Js K V θ ,请用时域分析方法设计PID 控制器,使系统满足下列性能指标要求:当仿真输入是单位阶跃信号时,电机输出转速调整时间小于2秒,超调小于5%,稳态误差小于1%。 要求给出详细的设计步骤,matlab 源码及仿真曲线。 二、实验原理 本报告首先介绍了直流电动机的物理模型,并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。借助MATLAB 设计simulink 模块调整PID 模块的各项系数,使系统的阶跃响应达到了设计指标。 1、建立该系统的时域数学模型 由克希霍夫定律得:

V=R*i+L+e 直流电机转矩和电枢电流关系为 T=Kt*I 电枢旋转产生反电动势与旋转运动角速度的关系为 e= 由牛顿定律,转子力矩平衡关系为 其中,T:负载转矩, :负载电流 V(s)=R*I(s)+L*sI(s)+E(s) 拉式变换:E=Ke(s) 划去中间变量得: 开环传递函数为: 2、PID控制器的功能 比例环节:Kp增大等价于系统的开环增益增加,会引起系统响应速度加快,稳态误差减少,超调量增加。当Kp过大时,会使闭环系统不稳定; 积分环节:相当于增加系统积分环节个数,主要作用是消除系统的稳

直流电机转速控制(DOC)

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、

直流无刷电机的控制原理

直流无刷电机的控制原理 直流电机是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流无刷电机的控制原理: 要让电机转动起来,首先控制部就必须根据 hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。 当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下:AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组 →CH、AL一组→CH、BL一组,但绝不能开成AH、

AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。 当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(Command)与hall-sensor信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL或AH、CL或BH、CL或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由PWM 来完成。PWM是决定电机转速快或慢的方式,如何产生这样的PWM才是要达到较精准速度控制的核心。 高转速的速度控制必须考虑到系统的CLOCK 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor 信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性。 至于低转速的速度控制尤其是低速起动则因为回传的hall-sensor信号变化变得更慢,怎样撷取信号方式、处理时机以及根据电机特性适当配置控制参数值就显得非常重要。或者速度回传改变以encoder变化为参考,使信号分辨率增加以期得到更佳的控制。电机能够运转顺畅而且响应良好,P.I.D.控制的恰当与否也无法忽视。之前提到直流无

直流电机速度控制-

组员: 班级:研1308 授课教师:徐洪泽 电子信息工程学院 日期:2013-11-24

目录 1、整体设计 (1) 2、硬件搭建过程 (3) 一、单片机最小系统 (3) 二、RS232串口模块 (3) 一、电机驱动模块 (4) 四、测速模块 (5) 五、上位机显示与控制 (7) 3、闭环系统的PID控制实现 (8) 一、控制算法 (8) 二、PID参数的整合 (8) 4、问题探讨与实验总结 (9) 一、问题探讨 (9) 二、实验总结 (9) 5、附录:总体程序 (10) 一、程序流程说明 (10) 二、源代码 (10) 三、实物图 (20)

1、 整体设计 本系统旨在实现直流电机的速度闭环控制。微控制器接受上位机和测速机构的速度信号,以其偏差作为PID 控制算法的输入,同时用微控制器产生H 桥所需的PWM 控制信号,PWM 的占空比为微控制器PID 控制算法的输出。通过控制PWM 的占空比来控制电机电枢电压,从而达到控制电机转速的目的。 图1.直流电机速度控制系统框图 图中:r —期望转速; b —转速测量值; e —期望转速与实际转速偏差; n —转速输出值。 直流电机转速为: U IR n K U -= Φ -Φ-其中: 电枢端电压电枢电流电枢电路总电阻;电机结构参数;每极磁通量。 ;I-;R-K- 本系统采用对电枢电压进行控制的电枢控制法,而电枢电压的控制采用开关驱动方式,即使驱动电机的半导体功率器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。

在Altium Designer summer 09中画出直流电机速度控制系统的详细设计原理如下图所示。 微控制器采用STC89C52RC单片机,单片机和上位PC机通过RS232进行通信,通过单片机的外部中断对编码器输出脉冲进行计数、单片机的P0.0和P0.1口输出PWM波形信号。外部中断INT1对光电编码器脉冲计数,单片机在一定时间间隔内即可计算出电机的转速。 当电机的实际速度小于目标速度时,LED0指示电机加速;当大于目标速度时,LED1指示电机减速。 图2.直流电机速度控制系统详细设计图

电动机的机械特性教案

第一章电力拖动系统的动力学基础 【引入】用电动机作原动机的拖动方式,称为电力拖动。现代化矿井使用着大量的生产机械,几乎全部是采用电力拖动的。 第一节机械特性 一、电力拖动装置的组成 通常,一套电力拖动装置由工作机构(生产机械)、电动机、传动机构和控制设备四部分组成。如图1.1.1所示。 图 1.1.1电力拖动系统示意图 1、工作机构 工作机构是生产机械执行工作的机械部分,如提升机的卷筒、钢丝绳及提升容器,采煤机的滚筒与截齿等。电力拖动过程中,负荷的变化往往来自工作机构。 2、电动机 电动机是电力拖动装置的原动机,它的作用是把电源提供的电能转变为机械能用以拖动生产机械运转。 电动机分交流电动机和直流电动机两大类。 3、传动机构 大多数情况下,电动机与工作机构并不直接连接,而是中间还有一套传动机构用来变速或改变运行方式,如联轴器、皮带、链条及减速器等。 4、控制设备 控制设备是控制电动机运转的设备,由各种控制电器和控制电机组成,用以控制电动机的起动、调速、制动和反转等。

除了上述四部分外,还有电源装置,如各种开关柜,上面配有继电保护装置和指示仪表,用以向电动机和控制设备供电。 二、拖动系统的类型 单轴系统:电动机的转轴直接与工作机构的转轴相连接的拖动系统; 多轴系统:电动机和工作机构之间通过若干传动机构相连接的拖动系统。 1、电动运行状态(第一三象限) 其特点是电动机转矩M的方向与 旋转方向(转速n的方向)相同,M为拖 动转矩。电动机从电网取得电能并变为 机械能带动负载运转。 2、制动运转状态(第二四象限) 电动机的转矩M与转速的方向相反,M为制动转矩。此时生产机械带动电动机旋转,电动机吸收机械能并变成电能送回电网或消耗在电阻上。关于制动运转状态的分析将在后面有关章节中讨论。 三、机械特性 1、生产机械的负载特性 生产机械在运转中受到阻转矩的作用。此转矩叫负载转矩M?L反映到电动机轴上即为M L。生产机械的负载特性指其转速n L与负载转矩M L'的关系反映到电动机轴上便是 n=?(M L) 大多数生产机械的负载特性可归纳为以下三种类型: 1) 恒转矩特性 恒转矩特性的特点是负载转矩与转速无关,如图1.1.3所示。矿井提升机、带式输送机等机械具有这种特性。

电机调速控制

一、直流电机调速方法 (1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢 电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内 无级平滑调速的系统来说,这种方法最好。I a 变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 (2)改变电动机主磁通Φ。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。 I f 变化时间遇到的时间常数同I a 变化遇到的相比要大得多,响应速度较慢, 但所需电源容景小。 (3)改变电枢回路电阻R。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大暈电能。 二、异步电机调速方法 三相异步电动机转速公式为:n60f p1s。 从上式可见,改变供电频率f、电动机的极对数P及转差率s均可达到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种: (1)高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。 (2)有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中; (3)电磁离合器的调速方法,能量损耗在离合器线圈中;

直流电机控制设计

河南科技大学 课程设计说明书 课程名称现代电子系统课程设计题目直流电机控制设计 学院电子信息工程学院 班级电子信息科学与技术062班学生姓名**** 指导教师齐晶晶,张雷鸣 日期___2010年1月10号____

摘要 使用直流电源的电机叫做直流电机。只要把直流电机的端子接到直流电源上就可以简单使其运转。直流电机是一种具有优良控制特性的电机。因此,在角位移控制和速度控制的伺服系统中有着广泛的应用。为了调整直流电机的转速和输出转矩,可以采用改变电枢直流电压的方法来实现,主要的控制方法有线性控制方式和PWM(脉宽调制)控制方式。一般小功率电机平滑转速控制常采用线性控制方式,而大功率电机高效控制时,则常使用PWM控制方式。本文介绍的是利用FPGA实现PWM脉宽调制信号的产生和相应的用数字电路的方法实现的换档、正反向控制等。直流电机的转动速度调节则归结于对驱动脉宽的占空比的调节上,通过调节占空比而改变单位时间内直流电机的通电时间长短,即改变了电机的转速。转动方向可用功率放大电路和H 桥组成的正反向功率驱动电路来实现 直流电机控制电路主要由五部分组成: ●PWM脉宽调制信号产生电路:主要功能是产生pwm信号,并控制转速。 ●FPGA中正/反转方向控制:用2选1数据选择器控制电机的pwm信号的输入端,从而实现正反转。 ●由功率放大电路和H桥组成的正反转功率驱动电路: ●分频和去抖电路模块:通过两个维持阻塞D触发器实现消抖。 ●测量转速模块:通过红外线测量电机每转一周产生的脉冲实现转速测量。 关键词:速度调节、旋转方向控制、去抖动电路、数字显示转速、PWM、占空比、FPGA

直流电机原理与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定

三相异步电动机的机械特性

三相异步电动机的机械特性 (一)机械特性方程 1)物理表达式:T=CTФmI2’ cosф2 (T是电磁作用的结果) 2)参数表达式: 3) 工程表达式: ——外施电源电压; ——电源频率; ——电机定子绕组参数; ——电机转子绕组参数。 (二)固有机械特性曲线 1.形状(根据工程表达式来说明) AB段(s较大):为双曲线,T与S成反比。 BO段(s很小):为直线,T与S 成正比。

2.起动点A,n=0,S=1, 起动转矩倍数KT=TS/TN 一般取0.8~1.8 3.临界点B 临界转差率只与转子电阻有关. 取0.1~0.2 最大转矩与电源电压UI2有关。 过载能力λ=Tm/TN 取1.6~2.2 4.同步点O n=n1 T=0 (理想的空载转速,旋转磁场的转速 ) 5.额定点C 0< SN

2、转子串电阻的人为机械特性——“变软” 当转子回路串电阻时,同步点不变,Sm与转子电阻成正比,转速随电阻增加而减小,最大转矩Tm保持不变,在一定范围内起动转矩有所增加,其特性曲线(红色)所示 3、降低定子电压频率的人为机械特性——“变小” 降低定子电压频率时,同步转速随之下降,从而使得电机转速下降,但特性的硬度基本保持不变。 电动机在工作时要求主磁通保持不变,因此在降低频率的同时,定子电压也要随之降低。

相关主题
文本预览
相关文档 最新文档