当前位置:文档之家› 电力系统光纤通信若干问题

电力系统光纤通信若干问题

电力系统光纤通信若干问题
电力系统光纤通信若干问题

电力系统光纤通信若干问题分析

李 玮

(广东省电力设计研究院 广东 广州 510000)

摘 要: 随着光纤通信在电力系统内应用水平的进一步提高,光纤通信取代微波、电力载波已成为必然。以南方电网光纤通信骨干网为例,介绍电力系统专用光缆、通信电源、参数匹配及业务倒换等方面的现状,分析存在的问题,并在此基础上提出解决问题的措施及思路。

关键词: 通信电缆;通信电源;参数匹配;业务倒换

中图分类号:TP311 文献标识码:A 文章编号:1671-7597(2012)1120128-02

分成两组,分别为2条母线供电,同时每条母线配置独立的蓄电

0 引言

池,以实现2条母线相对独立供电。该运行方式较好的实现了目前,SDH(synchronous digital hierarchy)光纤通

2条母线的独立供电,增强了通信电源设备的运行可靠性,同信凭借其安全、经济、可靠的优势,已逐步替代了微波通信、

时提高了设备检修的灵活性,由于2条母线共用同一台充电机,电力载波通信等通信方式,成为我国电力系统最重要的通信方

因此在充电机发生物理损坏的情况下容易导致2条母线同时失式,在其承载的业务中,仅直接与电网安全稳定运行的主要业

电,因此目前也较少使用。

务就有继电保护、安全自动装置、EMS、调度语音、能量计

3)双电源双母线运行方式:即由两套充电机分别对2条母量、故障录波、电力市场以及集控站控制等等。面对越来越多

线供电,并配置独立的蓄电池,实现了双路供电的完全独立,的系统应用,光纤通信迎来了巨大的发展机遇,但由于电力系

具有极高的可靠性,是目前电力通信系统中的主要供电方式。统对信号传输安全性、可靠性的特殊要求,光纤通信同样也面

伴随着通信电源运行方式的改变,南方电网光纤通信骨干临着严峻的挑战。

网已逐渐摸索出一套适合自身安全需要的供电方式:对于支持本文以南方电网光纤通信骨干网为例,就专用光缆、通信

双路电源的设备,采用两路相互独立的电源对设备供电,并实电源、参数匹配及业务倒换等方面对电力系统现状进行简要介

现负载均衡;对于只支持单路供电的设备,在设备前端增加电绍,分析存在的问题,并讨论解决问题的措施及思路。

源转换模块,实现两路电源输入;对于无人值守变电站,除采

1 通信设备自身存在的问题

用上述措施外,采用加大蓄电池组容量的方法以延长故障情况

1.1 通信光缆对系统的影响

下的设备运行时间。

作为电力系统专用的特殊光缆,光纤复合架空地线

2 通信设备与业务系统的匹配问题

(OPGW)具有强度高、性能稳定、无电腐蚀等优点,目前在电

2.1 通道时延对继电保护及安自业务的影响

力系统光纤通信骨干网中应用十分广泛。但因其与高压线路同

杆架设,且兼做地线,因此,雷击问题已经成为影响OPGW安全性能的重要因素。

雷击对OPGW的影响:随着OPGW大规模投入使用,其易受雷击的问题已变得越来越突出,国内已发生多起因雷击导致OPGW外丝断股进而影响内部光纤性能的事件,而建设单位为了确保所用光缆性能更加稳定,对OPGW更是提出了3级雷击不断股的近乎苛刻的要求,因此,如何提高OPGW抗雷击性能已经成为OPGW面临的最严峻的挑战之一。目前较为通用的做法主要有以下两点。

1)改善光缆结构和股线形状,主要是在外层股线和内层股线间留有空气隙,以防止外层热量传导至内层和光纤,这种思想主要是保护内层光纤,对外层雷击断股并无实质改善。

2)调整外层股线材料配比,对于雷击多发区,采用外径较粗的全铝包钢单丝,同时提高导电率,这种思想提高了外层单丝的抗雷击水平,但增加了光缆的生产成本和自身重量,对铁塔的承重造成了一定的压力,同时也加大了施工难度。

1.2 通信电源对通信系统的影响

“心脏”,通信电源运行的好坏直接影响着整个系统是否能够健康稳定运行。回顾通信电源的发展历程,主要经历了单电源单母线、单电源双母线和双电源双母线等三种运行方式。

1)单电源单母线运行方式:即将整流模块输出、蓄电池组、负载均连接于同一条母线,由于采用这种方式对设备供电安全性较低且维护检修不便,因此在电压等级较高的变电站已基本不用。

2)单电源双母线运行方式:即将一套充电机的整流模块

继电保护和安自构成了我国电网安全稳定的三道防线,其主要功能依托通信通道承载,由于相关控制、保护信息对实时性要求很高,因此通信通道的时延将对装置的动作速动性、可靠性和灵敏性乃至电网的安全稳定速度造成严重影响。

2.1.1 通道时延对继电保护的影响

目前,我国线路保护的主保护为线路纵联保护,根据实现原理,又可以分为线路纵联距离(方向)保护和线路纵差保护:

对于线路纵联距离(方向)保护而言,虽然故障方向的判别只是依赖于本侧电气量,判别时间与通道时延没有关系。但是,通道时延对装置动作速度的影响是累加的。由于故障范围的判别决定于两个因素:一是根据本侧电气量得到的相对于本侧装置的故障方向,二是通过通道得到的相对于对侧装置的故障方向,只有相对于两侧保护装置的故障方向都确定为正方向,装置才确定本次故障时区内故障,因此通道时延对装置动作速度的影响是累加的。

1)对于线路纵联距离(方向)保护,由于故障范围的判别决定于两个因素:一是根据取决于本侧电气量得到的相对于本侧装置的故障方向,二是和通过通道得到的相对于对侧装置的故障方向,只有相对于两侧保护装置的故障方向都确定为正方向,装置才确定本次故障是区内故障。因此,通过通道得到的相对于对侧装置的故障方向信息对保护动作的正确性至关重要,如果通道延时过长,不仅影响保护的动作速度,很可能造成保护误动甚至可能造成保护误动、拒动。运行中,曾多次出

现在功率倒向情况下因通道延时过长造成的同塔双回线保护误

光纤通信实验报告

计算机与信息技术学院实验报告 专业:通信工程 年级/班级:2009级 2011—2012学年第一学期 课程名称 光纤通信 指导教师 李新源 本组成员 学号姓名 XXXXXX 实验地点 计算机楼501 实验时间 2012年4月6 日 项目名称 自动光功率控制电路 实验类型 硬件实验 一、 实验目的 1.掌握自动功率控制电路的工作原理 二、实验内容: 1.学习自动功率控制电路的工作原理 2.测量相关特征测试点的参数 三、实验仪器: 1.示波器。 2.光纤通信实验系统。 3.光功率计。 4.万用表。 5.FC/PC 型光纤跳线2根。 四、实验原理: 激光器输出光功率与温度和老化效应密切相关。保持激光器输出光功率稳定,可以用光反馈来自动调整偏置电流,电路如下图所示: 1 A 3 A 2 A B I

首先,PIN管监测背向光功率,经检出的光电流由A1放大,送入比较器A3的反向输入端,输入的数字信号和直流参考信号经A2比较放大,接到的A3同相输入端。A3和VT3组成恒流源,给激光器加上偏置电流IB的大小,其中信号参考电压是防止控制电路在无输入信号或长连“0”时,使偏流自动上升。这种电路在10°C~50°C温度范围内功率不稳定度ΔP/P可小于5%。 五、实验步骤: 1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块(数字信号输出一)P300—P100 1310数字光发模块 (数字光发信号输 入) 2.用光纤跳线连接1310nm光发模块和光功率计。 3.将1310nm光发模块的J100,两位都调到ON状态。 4.将1310nm光发模块的J101设置为“数字”。 5.打开系统电源,将数字信源模块第一路的拨码开关U311全拨到OFF状态。这时输入到1310nm数字光发模块的信号始终为“1”。 6.用万用表测量R124两端的电压。测量方法:先将万用表打到20V直流电 压档。然后,将红表笔插入1310nm数字发光模块的台阶插座TP101黑表笔插入TP102。读出万用表的读数U1,代入公式I1= U1/ R124(R124=51Ω)可得此时 自动光功率控制所补偿的电流。观察此时光功率计的读数P1。然后,将1310nm 的拨码开关的右边一位拨到OFF状态,记下光功率计的读数P2。 7.调整手调电位器RP100改变光功率的大小,再重复实验步骤5,将测的实 验数据填入下表。 8.关闭系统电源,拆除实验导线。将各实验仪器摆放整齐。 六、实验结果和心得: 1 2 3 4 5 6 7 16.31dB 16.17dB 11.90dB 7.62dB 6.62dB 4.59dB 3.40dB 37.31dB 25.58dB 11.88dB 7.62dB 6.63dB 4.59dB 3.42dB 3.14mA 5.88mA 8.43mA 12.75mA 1 4.51mA 19.80mA 24.12mA

数字光纤通信系统及其设计教学文案

数字光纤通信系统及 其设计

数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM)Digital optical communications system and its design Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to practical and large,

光纤通信optisystem实验

光纤通信大作业 1.选择一个你认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择你认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制和调解结构简单,在10G和一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理和终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制是用信号直接调制激光器的驱动电流,使其输出功率随信号变化.这种方式设备相对简单,研究较早,现已成熟并商品化.外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8.3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管和low pass gauss filter构成的光纤通信系统。 1).根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察和分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态和运行结果。整个光纤通信系统的架构如下图示:

外调制光纤通信系统设计

课程设计题目:外调制光纤通信系统设计 学院:信息科学与工程学院 年级专业:09级光电子1班 学号:xxxxxxxx 学生姓名:xxxxx 指导教师:xxx

一、设计要求 设计10Gpb速率的外调制光纤链路,保证链路能正常通信,误码率BER小于10-12,对应的品质因数Q大于7 二、设计技术参数 1)DFB-LD(SLM),光源中心波长λ0=1552.5nm(193.1Thz),谱线宽度Δλ=0.1 nm(12.5GHz) 2)光纤传输距离120km 3)光发射机发射光功率范围:10dBm~13dBm,可取10dBm 4)APD光接收机灵敏度范围:-25dBm~-9dBm ,可取-18dBm 5) G.652标准单模光纤,光纤的衰减系数α=0.2dB/km,色散系数D=17ps/nm/km 6) 色散补偿光纤衰减系数α=0.5dB/km, 色散系数D=-100ps/(nm.km) 7) 线路编码为NRZ 8) 连接器损耗α=1dB/个 二、设计要点 链路采用外调制的模式,系统通过电信号(NRZ码)控制光调制器产生光信号。产生的光信号通过光纤传输至信号接收端,经光电探测器转换为电信号,完成链路的传输。 衰减:在实际工作中,光纤有一个衰减系数,光信号会随着传输而衰减。为了使光信号传输到探测器时,信号的功率在光电探测器的灵敏度范围之内,链路设计放大模块将信号放大。 色散:不同频率的光波在光纤中传播的速度不同,频率较小的光传播速度快,频率较大的光传播速度慢。由于链路采用的光源激光器存在一定的带宽,因而光信号在传输过程中会产生色散,传输距离越长,色散现象越严重。针对色散问题,链路设计了色散补偿光纤来消除色散。 因此,设计链路所需要解决的主要问题是色散和衰减。通过改变色散光纤的长度和放大器的放大方法来消除传输中带来的色散问题和衰减问题。另外,在设计时,系统的噪声因素也应考虑在内。 三、链路设计 1.根据要求设计链路 通信链路由信号源、线路编码器、光源、连接器、光纤、必要补偿单元、连接器、光接收机组成。设计时,使用伪随机码发生器充当信号源,用连续波激光器和M-Z调制器组成外调制型光源,用1dB衰减器充当连接器,使用不同参数的光纤分别充当传输光纤和色散补偿光纤,使用7dB衰减器充当系统衰减富余量,使用眼图分析仪来观察链路传输的眼图、分析链路的误码率和品质因数。设计链路,初始时不添加色散光纤(色散光纤长度为0)和增益,检测系统的眼图和品质因数。如下图所示:

OptiSystem仿真在光纤通信实验教学中的应用_王秋光_解析

ISSN1672-4305CN12-1352/N实验室科学 LABORATORYSCIENCE 第18卷第 1期 2015年 2月 Vol. 18No. 1Feb. 2015 OptiSystem 仿真在光纤通信实验教学中的应用 王秋光 , 张亚林 , 胡彩云 , 赵莹琦 (广州大学松田学院电气与汽车工程系 , 广东广州 511370 摘 要 :介绍了光纤通信实验教学中的光纤色散实验、激光器调制频率特性实验、掺铒光纤放大器实验、光 接收机实验与 WDM 系统实验 5个 OptiSystem 仿真实验 , 给出了每个实验项目的仿真模型及模型中的参数设置 , 简要分析了仿真实验结果。 OptiSystem 仿真实验可以反复观察练习 , 节省较高的实验费用 , 有利于学生对光纤通信课程教学中抽象的理论知识的理解 , 在光纤通信实验教学中取得了较好效果。关键 词 :OptiSystem ; 光纤通信 ; 仿真 ; 实验教学中图分类号 :TN929.11; TP391.9 文献标识码 :A doi :10.3969/j.issn.1672-4305.2015.01.008 Application of OptiSystem simulation in experiment teaching of optical fiber communication WANG Qiu -guang , ZHANG Ya -lin , HU Cai -yun , ZHAO Ying -qi (Department of Electrical &Automotive Engineering , Guangzhou University Sontian College , Guang-zhou 511370, China

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

光纤通信在电力系统的应用

Vol.28No.3 M ar.2012 赤峰学院学报(自然科学版)Journal of Chifeng University (Natural Science Edition )第28卷第3期(下) 2012年3月目前,光纤通信在电力载波通信、微波通信、一点多址等诸多通信方式中日显优势,已成为电力通信网的主要传输方式.它是以光波为载体,以光导纤维为传输媒质,将信号从一处传输到另一处的一种通信手段.它具有传输的信息量大、 距离远、频带宽、质量高、抗干扰及辐射性强等许多优点,是集语音、图像、数据通信为一体的综合传输系统. 随着电力系统变电站无人值守项目的实行,电网专业化管理的进一步深化,电力通信专网在整个电力系统运行管理中的地位越来越重要,积极采用新技术和新设备组建电力通信专网已是十分紧迫的任务.在此背景下, 自2000年以来,电力系统进行了电力通信专网的统一规划和建设,建成了以光纤通信为主,微波和电力载波为辅的通信系统.1系统组成、规模及维护1.1系统组成 1.1.1 OPGW 光缆,Optical Fiber Composite Over- head Ground Wire (也称光纤复合架空地线).把光纤放置在架空高压电线的地线中,用以构成输电线路上的光纤通信网,兼具地线和通信的双功能. 全介质自承光缆———ADSS (All Dielectric Self Supporting ).ADSS 光缆在输电线路上广泛使用,特别是在已建线路上使用较多.它能满足输电线跨度大、 垂度大的要求.其特点是:(1)张力理论值为零;(2)为全绝缘结构,安装及线路维护时可带电作业,这样可大大减少停电损失;(3)其伸缩率在温差很大的范围内可保持不变,而且其在极限温度下,具有稳定的光学特性;(4)耐电蚀ADSS 光缆可减少高压感应电场对光缆的电腐蚀;(5)ADSS 光缆直径小、质量轻,可以减少冰和风对光缆的影响,其对杆 塔强度的影响也很小. 由于光纤具有抗电磁干扰、自重轻等特点,它可以安装在输电线路杆塔顶部而不必考虑最佳架挂位置和电磁腐蚀等问题.因而, OPGW 具有较高的可靠性,优越的机械性能,成本较低等显著特点.在新敷设或更换现有地线时尤其合适和经济.1.1.2SDH 传输系统.SDH 传输系统具有灵活的设 备配置 OSN1500、OSN2500、OSN3500、OSN7500、OSN9500智能光传输设备,用于在网络骨干层到接入层实现SDH 、PDH 、Ethernet 、ATM 、DDN 、SAN 等多种业务的高效传输.设备支持智能网络技术,能实现对业务和带宽的智能化管理.系统支持内置微波中频板,配合微波设备的ODU 使用可实现业务的无线传输. STM -16/4兼容设备, 支持网络设备从622M 到2.5G 的在线升级,具备高低阶20G 全交叉能力.具有强大的组网能力支持Mesh 组网,网络节点即插即用.支持SDH 业务、PDH 业务、以太网等多业务接口,单子架可实现1×STM -16四纤环或2×STM-16二纤环,可支持M esh 网络中多达40个光方向的组网;具有完善的网络生存机制和完备的设备保护机制.1.1.3 同步时钟系统.同步时钟源包括:线路时钟 源、支路信号时钟源、两路外同步时钟源、内部时钟源.每个站点可以从两个方向提取时钟,对这两个方向时钟设置优先级,当高优先级的时钟质量低于要求时,自动跟随另一个低优先级的时钟,以此对同步时钟建立起时钟保护自愈环. 实际应用中,在中心有人站接入两路高质量的 光纤通信在电力系统的应用 张金祥 (内蒙古东部电力有限公司赤峰电业局,内蒙古赤峰024000) 摘 要:光纤通信技术在赤峰电业局的推广应用,实现了电网通信网建设的低成本、大容量、多业务 和智能化,满足了电力数据、语音、视频、宽带接入等多种业务的传输要求,并在网络通信的实时性、准确性和可靠性等方面提供了充分的保障. 关键词:电力通信;ADSS 光缆;OPGW 光缆;SDH 传输系统中图分类号: TN929.14文献标识码:A 文章编号:1673-260X (2012)03-0079-02 79--

光纤通信optisystem实验

光纤通信大作业 1、选择一个您认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择您认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由就是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制与调解结构简单,在10G与一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理与终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制就是用信号直接调制激光器的驱动电流,使其输出功率随信号变化、这种方式设备相对简单,研究较早,现已成熟并商品化、外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8、3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)就是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性就是无法实现的,所有的设计只不过就是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管与low pass gauss filter构成的光纤通信系统。 1)、根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察与分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态与运行结果。整个光纤通信系统的架构如下图示: 完整的光纤通信系统

光纤通信系统总体设计的一些考虑

光纤通信系统总体设计的一些考虑 内蒙古铁通通信工程公司 师林 摘 要:当设计一个光纤通信系统(例如一个数字段)时,首先要弄清所设计系统的整体情况,它所处的地理位置,当前和未来3~5年内对容量的要求,ITU—T的各项建议及系统的各项性能指标,以及当前设备和技术的成熟程度等。在弄清楚情况的基础上,对下述问题进行具体的考虑和设计。 关键词:光纤通信系统,总体设计。 一、选择路由,设置局站 对于一个需要设计的系统,首先要在两个终端站之间选择最合理的路由、设置中继站(或转接站和分路站)。选择路由一般以直、近为依据,同时应考虑不同级别线路(例如一级干线和二级干线)的配合,以达到最高的线路利用效率和覆盖面积。 中间站的设置(中继站、转接站和分路站)既要考虑上下话路的需要,又要考虑信号放大再生的需要。由于光纤通道的衰减和色散使传输距离受限,需要在适当的距离上设置光再生器以恢复信号的幅度和波形,从而实现长距离传输的目的。 传统的O/E/O实再生器具有所谓的3R功能,即再整形(Reshaping)、再定时(Retiming)和再生(Regenerating)功能。这种再生器相当于光接收机和光发射机的组合,设备较复杂,成本很高,耗电也大。目前,在1.55μm波段运行的系统,已普遍采用掺铒光纤放大器(EDFA)代替传统的O/E/O再生器。虽然国际上也在研究具备3R功能的EDFA,但目前实用的EDFA只具备光放大的功能。因此,对高速率、长距离光纤通信系统,当使用级联EDFA时,须考虑对色散的补偿和对放大的自发辐射(ASE)噪声的抑制。 二、确定系统的制式、速率 20世纪90年代中期,SDH设备已经成熟并在通信网中大量使用,考虑到SDH设备良好的兼容性和组网的灵活性,新建设的长途干线和大城市的市话通信一般都应选择SDH设备,长途干线已采用STM-16、多路波分复用的2.5Gbit/s系统、甚至10Gbit/s系统。 对于农话线路,为了节省投资,也可采用速率为34Mbit/s,140 Mbit/s的PDH系统。 三、光纤选型 目前可选择的光纤类型有G.652光纤、G.653光纤、G.654光纤、G.655光纤及大有效面积光纤。G.652光纤是目前已大量敷设。在1.3μm波段性能最佳的单模光纤,该光纤设计简单、工艺成熟、成本底。但这种光纤工作在1.55μm波段时,有+17ps/km﹒nm左右的色散, 109

光纤实验报告--数字光纤通信线路编译码CPLD仿真实验

光纤实验报告--数字光纤通信线路编译码CPLD仿真实验

数字光纤通信线路编译码 CMI实验

班级: 姓名: 一、实验目的: 1.熟悉m序列NRZ码、任意周期码产生原理以及光纤线路CMI编译码原理。 2.初步熟练Altera公司Maxplus II仿真平台的使用。 3.进一步熟悉数字电路设计技巧。 4.基本掌握如何进行CPLD的电路设计与仿真。 5.深入理解光纤线路编译码在光纤通信系统中的实际运用方法。 二、实验内容: 1.学习使用Altera公司Maxplus II仿真平台进行CPLD数字电路的设计与仿真。

2.设计m序列NRZ码产生电路以及光纤线路CMI编译码电路。 m序列: 伪随机序列; NRZ: 不归零码; CMI编码规则: 0码:01; 1码::00/11 交替; 3.通过CPLD仿真确保上述电路的正确设计。 4.总结光纤线路编译码在光纤通信系统中的实际运用。 三、实验要求: 在MAX+plus II软件仿真环境中, 1.用绘制原理图的方法建立新工程,设计CPLD内部下述电路:15位m序列NRZ码的生成电路; CMI编码电路; CMI编码输入的选择电路:周期15位m序列与由周期15位二进制码表示本组内某学号最后四位(前面可补零)分别选择作为CMI编码输入; CMI译码电路(在实验室条件下使用统一系统时钟,输入为CMI编码输出)。 2.对所做设计完成正确编译。 3.使用仿真环境完成信号波形仿真。CPLD电路仿真的输入输出信号即各测试点数 信号要求如下: 输入:电路的总复位信号:1路(位); 系统时钟信号(2Mbps):1路; CMI编码输入的选择信号:1路; 输出:周期15位m序列NRZ码:1路; 周期15位二进制后四位学号:1路; CMI编码输出信号:1路; CMI译码输出信号:1路;

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

电力系统光纤通信若干问题

电力系统光纤通信若干问题分析 李 玮 (广东省电力设计研究院 广东 广州 510000) 摘 要: 随着光纤通信在电力系统内应用水平的进一步提高,光纤通信取代微波、电力载波已成为必然。以南方电网光纤通信骨干网为例,介绍电力系统专用光缆、通信电源、参数匹配及业务倒换等方面的现状,分析存在的问题,并在此基础上提出解决问题的措施及思路。 关键词: 通信电缆;通信电源;参数匹配;业务倒换 中图分类号:TP311 文献标识码:A 文章编号:1671-7597(2012)1120128-02 分成两组,分别为2条母线供电,同时每条母线配置独立的蓄电 0 引言 池,以实现2条母线相对独立供电。该运行方式较好的实现了目前,SDH(synchronous digital hierarchy)光纤通 2条母线的独立供电,增强了通信电源设备的运行可靠性,同信凭借其安全、经济、可靠的优势,已逐步替代了微波通信、 时提高了设备检修的灵活性,由于2条母线共用同一台充电机,电力载波通信等通信方式,成为我国电力系统最重要的通信方 因此在充电机发生物理损坏的情况下容易导致2条母线同时失式,在其承载的业务中,仅直接与电网安全稳定运行的主要业 电,因此目前也较少使用。 务就有继电保护、安全自动装置、EMS、调度语音、能量计 3)双电源双母线运行方式:即由两套充电机分别对2条母量、故障录波、电力市场以及集控站控制等等。面对越来越多 线供电,并配置独立的蓄电池,实现了双路供电的完全独立,的系统应用,光纤通信迎来了巨大的发展机遇,但由于电力系 具有极高的可靠性,是目前电力通信系统中的主要供电方式。统对信号传输安全性、可靠性的特殊要求,光纤通信同样也面 伴随着通信电源运行方式的改变,南方电网光纤通信骨干临着严峻的挑战。 网已逐渐摸索出一套适合自身安全需要的供电方式:对于支持本文以南方电网光纤通信骨干网为例,就专用光缆、通信 双路电源的设备,采用两路相互独立的电源对设备供电,并实电源、参数匹配及业务倒换等方面对电力系统现状进行简要介 现负载均衡;对于只支持单路供电的设备,在设备前端增加电绍,分析存在的问题,并讨论解决问题的措施及思路。 源转换模块,实现两路电源输入;对于无人值守变电站,除采 1 通信设备自身存在的问题 用上述措施外,采用加大蓄电池组容量的方法以延长故障情况 1.1 通信光缆对系统的影响 下的设备运行时间。 作为电力系统专用的特殊光缆,光纤复合架空地线 2 通信设备与业务系统的匹配问题 (OPGW)具有强度高、性能稳定、无电腐蚀等优点,目前在电 2.1 通道时延对继电保护及安自业务的影响 力系统光纤通信骨干网中应用十分广泛。但因其与高压线路同 杆架设,且兼做地线,因此,雷击问题已经成为影响OPGW安全性能的重要因素。 雷击对OPGW的影响:随着OPGW大规模投入使用,其易受雷击的问题已变得越来越突出,国内已发生多起因雷击导致OPGW外丝断股进而影响内部光纤性能的事件,而建设单位为了确保所用光缆性能更加稳定,对OPGW更是提出了3级雷击不断股的近乎苛刻的要求,因此,如何提高OPGW抗雷击性能已经成为OPGW面临的最严峻的挑战之一。目前较为通用的做法主要有以下两点。 1)改善光缆结构和股线形状,主要是在外层股线和内层股线间留有空气隙,以防止外层热量传导至内层和光纤,这种思想主要是保护内层光纤,对外层雷击断股并无实质改善。 2)调整外层股线材料配比,对于雷击多发区,采用外径较粗的全铝包钢单丝,同时提高导电率,这种思想提高了外层单丝的抗雷击水平,但增加了光缆的生产成本和自身重量,对铁塔的承重造成了一定的压力,同时也加大了施工难度。 1.2 通信电源对通信系统的影响 “心脏”,通信电源运行的好坏直接影响着整个系统是否能够健康稳定运行。回顾通信电源的发展历程,主要经历了单电源单母线、单电源双母线和双电源双母线等三种运行方式。 1)单电源单母线运行方式:即将整流模块输出、蓄电池组、负载均连接于同一条母线,由于采用这种方式对设备供电安全性较低且维护检修不便,因此在电压等级较高的变电站已基本不用。 2)单电源双母线运行方式:即将一套充电机的整流模块 继电保护和安自构成了我国电网安全稳定的三道防线,其主要功能依托通信通道承载,由于相关控制、保护信息对实时性要求很高,因此通信通道的时延将对装置的动作速动性、可靠性和灵敏性乃至电网的安全稳定速度造成严重影响。 2.1.1 通道时延对继电保护的影响 目前,我国线路保护的主保护为线路纵联保护,根据实现原理,又可以分为线路纵联距离(方向)保护和线路纵差保护: 对于线路纵联距离(方向)保护而言,虽然故障方向的判别只是依赖于本侧电气量,判别时间与通道时延没有关系。但是,通道时延对装置动作速度的影响是累加的。由于故障范围的判别决定于两个因素:一是根据本侧电气量得到的相对于本侧装置的故障方向,二是通过通道得到的相对于对侧装置的故障方向,只有相对于两侧保护装置的故障方向都确定为正方向,装置才确定本次故障时区内故障,因此通道时延对装置动作速度的影响是累加的。 1)对于线路纵联距离(方向)保护,由于故障范围的判别决定于两个因素:一是根据取决于本侧电气量得到的相对于本侧装置的故障方向,二是和通过通道得到的相对于对侧装置的故障方向,只有相对于两侧保护装置的故障方向都确定为正方向,装置才确定本次故障是区内故障。因此,通过通道得到的相对于对侧装置的故障方向信息对保护动作的正确性至关重要,如果通道延时过长,不仅影响保护的动作速度,很可能造成保护误动甚至可能造成保护误动、拒动。运行中,曾多次出 现在功率倒向情况下因通道延时过长造成的同塔双回线保护误

光纤通信系统的仿真分析(Optisystem仿真附程序)

光纤通信系统的仿真分析(Optisystem仿真附程序) 摘要光纤通信系统的计算机仿真, 是对此类系统进行规划设计、可行性论证以及研制新型系统的重要手段,可用于对已设计的光纤传输系统在硬件实现之前进行性能评估和可行性论证, 可节约大量时间和经费; 同时在分析中可随时改动参数值, 便于理论研究。要建立一个...

摘要
光纤系统的计算机仿真, 是对此类系统进行规划设计、可行性论证以及研制新型系统的重要手段,可用于对已设计的光纤传输系统在硬件实现之前进行性能评估和可行性论证, 可节约大量时间和经费; 同时在分析中可随时改动参数值, 便于理论研究。要建立一个方便可靠的光纤系统的仿真平台, 有赖于对系统各模块物理特性进行推导和归纳, 建立起系统各模块的数学模型。建模的基本原则是既要能描述器件的特性, 具有一定的精确度, 同时又要兼顾计算的复杂度, 要有较快的分析速度。同时, 还应能根据研究目

的的不同, 调整模型的选取。在对光纤通信系统分析的基础上,利用Optisystem仿真软件,建立了高速大容量光纤系统的仿真模型,得到了高速光纤通信系统特性与激光器的调制频率、偏置电流的关系,光纤的损耗和色散以及其他参数的仿真结果。并对传输速率为10Gb/s的光纤通信系统进行仿真设计和分析。
关键词  光纤  仿真  optisystem   模型  误码率  信道
为此,本文设计了光通信系统的仿真模型,并利用这些模型来研究光通信系统的性能。基于加拿大Optiwave公司的Optisystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通信系统到LANS和MANS都能使用。为此,设计光通信系统的仿真模型,并利用这些模型来研究光通信系统的性能,可以用OptiSystem这一仿真软件来实现。

光纤通信系统概述
光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责

光纤通信系统设计实例

光纤通信系统设计 1 概述 图 1.1 标准光纤通信系统架构 2 模拟系统设计 光纤系统中,各组件的累加损耗应足够低以符合探测器的阈值要求。模拟系统中,充足的功率意味着高SNR,另外,组件的组合应该提供足够的带宽以通过较高的调制频率,因此,应对单个器件的损耗和带宽进行分析,并计算整个系统的功率分配和带宽预算。 2.1 系统规格 2.1.1 初始方案 以设计简单的点对点视频系统为例,电视广播信号的带宽为6MHz,要求SNR为50dB。 表2.1 系统方案一:窄带宽和低功率 Carrier Source LED0.8-0.9um Information Channel MMF (SI or GRIN) Detector PIN-PD 表2.2 系统方案二:高带宽和高功率 Carrier Source LD 1.3um Information Channel SMF Detector APD 2.1.2 负载电阻计算 已知PIN-PD的电容和传输带宽,根据方程 求得负载电阻

取近似值,计算得为6.24MHz。 2.2 功率预算 2.2.1 平均光功率计算 标准的SNR方程是 由于使用PIN-PD作为光电探测器,假设系统是热噪声限系统,调制系数m为100%,SNR方程简化为 由于放大器噪声的存在,将实际温度T替换为等效噪声温度,假设环境温度T为300K,放大器噪声系数F为2,则,又已知PD响应率为,计算平均光功率P为 取P近似值为。 2.2.2 平均光电流计算 根据平均光功率P为,计算得PIN-PD的平均光电流,远大于暗电流(几个纳安),因此系统中暗电流的影响可以忽略,计算热噪声电流均方值 散粒噪声电流均方值 可以得到,热噪声功率是散粒噪声功率的近7倍,符合最开始采用热噪声限模型的假设。 预测平均光电流为时,并没有驱动探测器进入非线性区,最大饱和电流等于偏置电压与负载电阻的比值,使用5V偏压时,最大允许电流为(或),远远大于,系统不存在饱和问题。 2.2.3 详细方案 光源SE LED SI MMF

光发送机仿真

光发送机的仿真实验 ㈠实验目的: ①学会使用仿真软件进行仿真模信号 ②了解光发机的组成与仿真实验图的构建 ③熟悉光发射机工作原理 ㈡实验原理及结果: 光发送机是一个非常重要组成部分,它的作用是将电信号转化成光信号,并有效地将光信号传入光纤,其核心是光源和其驱动电路。现在广泛应用的有两种半导体光源:发光二极管(LED)、激光二极管(LD)。其中LED输出的是非相干光,频谱宽,入纤功率小,调制速率低:而LD是相干光则与之相反。前者适宜于短距离低速系统,后者适宜于长距离高速系统。 光发送机一般都是由光源、脉冲驱动电路、光调制器组成,图1如下: (图1)

①构建一个外调制激光发射机:光源为频率193.1THZ的激光二极管,同时用仿真软件模拟所需数字信号序列,经过NRZ 脉冲发生器转化成所需电脉冲信号,让该信号通过调制器加载到光波上,成为载有“信息”的光信号。构建图2如下: (图2) ②设计实例,对铌酸型Mach-Zehnder调制的啁啾分析,外调制器由于激光光源处于窄带稳频模式,消除降低系统啁啾量。典型的外调器是由铌酸锂(LiNo3)晶体构成。通过对其外加电压的分析调整而减少其啁啾量,设计图3如下: (图3)

③在图3中,驱动电路1电压改变量▽V1和驱动电路2电压改变量▽V2相同,图4为MZ调制器参数设定窗口,MZ以正交模式工作,其参数调制如下图4: (图4) 其中V1、V2分别为两个驱动电路的的电压,α为啁啾系数:α=(V1+V2)/(V1—V2) 图5为一系列信号脉冲输入时,在2、3口的电压V1=-V2=2.0V 时的波形,根据公式可得图6的结果:

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

相关主题
文本预览
相关文档 最新文档