当前位置:文档之家› 绿色萤光蛋白

绿色萤光蛋白

绿色萤光蛋白
绿色萤光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。

由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。

在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。

我们这边细胞组的基本上都在用这个东东。标记细胞

GFP的分子结构和发光机制

绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。

Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。这种坚实的结构保证了其稳定和抗热、抗变性的特点。

GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。GFP的生色基团是蛋白质自身催化环化的结果,环化是一个有氧过程,在严格厌氧条件下GFP不能形成荧光,因为GFP的生色团形成需要O2使Tyr66脱氢氧化。生色基团通过Tyr66的脱质子(酚盐)和质子化状态(羟酚基)的转换决定荧光发射,此模型为Yang等的晶体学证据所支持。

GFP在生物技术中的应用研究

1.分子标记

作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。1996年,Ehrdardt等人首次报道了利用GFP的特性研究细胞分化蛋白FtsZ的定位。研究显示FtsZ在细胞分裂位点形成了一个环状物,且至少有9种蛋白在细胞分裂中起重要作用,尽管对这些蛋白功能仍然不是很清楚,但是利用GFP融合蛋白已经搞清楚了它们聚合的顺序以及在蛋白定位中的一些特征。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。

除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。

2.药物筛选

许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。基于细胞的荧光分析可分为三类:即根据荧光的密度变化、能量转移或荧光探针的分布来研究目标蛋白如受体、离子通道或酶的状态的变化。荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。

在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。例如当信号分子和某一特殊受体结合后常会导致配体-受体复合物从某一细胞区域迁移到另一区域,而这一迁移过程通常会介导一重要的生理功能。因而,这些受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。利用这一原理,已经成功构建了一个筛选模型用于研究药物介导的糖皮质激素受体(hGR)的迁移过程。在一96孔板中培养细胞,并以一编码hGR GFP蛋白的质粒转染该细胞。当细胞用待筛选的药物处理后,hGR-GFP从细胞质迁移人细胞核的过程可实时或在某一时段

内被证实,根据荧光分布即可推断哪一种药物具有与hGR配体相类似的功能。利用GFP来进行药物筛选由于受其必须与迁移的信号分子相偶联,其筛选容量相对较低,但是由于GFP在细胞内的穿透性强及独特的发光机制,因而在药物筛选中具有相当大的应用潜力。

3.融合抗体

近二十年来,抗体生成技术有了飞速发展,已经从细胞工程抗体(杂交瘤技术一单克隆抗体)发展到了第三代抗体:基因工程抗体,尤其是噬菌体抗体库技术的出现,解决了人源抗体的研制问题,促进了各种性能优良抗体以及具有多种功能的抗体融合蛋白的开发。单链抗体(Single-chain variable fragment,ScFv)是研究得较多的一种小分子抗体,其优越陛在于可在宿主细胞内大量表达,易于基因工程操作,尤其易于构建抗体融合蛋白。近年来,关于绿色荧光蛋白融合单链抗体的报道很多,国内也有相关报道,如程虹等报道将抗肝癌单链双功能抗体融合GFP真核表达载体并导人小鼠成纤维细胞NIH3T3表达并获得成功。因融合抗体具有与抗原结合及发射荧光两种特性,故这一人工分子可用做免疫染色的检测试剂,直接应用于流式细胞仪和免疫荧光的标记及肿瘤的检测等等。

由于技术上的的原因,一般融合抗体均置于原核表达系统如E.coli中表达。为便于表达蛋白的分离纯化,一般在单链抗体的N端或C端插入一6×His序列,便于用Ni-NTA亲和层析柱纯化目标蛋白。但这一技术也存在一些问题。由于抗体分子内存在二硫键,而在原核表达系统内由于抗体不能正确折叠,容易形成包涵体,表达出来的目标蛋白无活性,需要在氧化还原体系中进行复性。但近来也有报道在动物细胞细胞质中成功表达出具有抗原结合活性的单链抗体。若能成功解决融合抗体的表达问题,则在免疫染色及肿瘤检测这一领域融合抗体将扮演极为重要的角色。

4.生物传感器

蛋白质工程技术已经开始采用将一具有信号传导功能分子识别位点的分子结合到另一分子上来设计生物感受器。绿色荧光蛋白由于其独特的光信号传导机制,以及在表达后易被周围化学环境和蛋白之间的相互作用所影响的特性,因而极适于用做活细胞体内的光学感受器。第一个基于GFP的生物感受器为Ca2+感受器,由Romoser和Miyawaki几乎同时提出。这一感受器原理是利用钙调蛋白结合钙离子后引起的空间构象变化导致两种GFP突变体间发生荧光共振能量转移。但是由于大多数蛋白不能像钙调蛋白那样承受较大的空间构象变化,为克服这一缺点,人们开始提出利用基因融合技术将一新的分子识别位点结合到GFP上以构建新的分子感受器。Doi和Yanagawa根据这一原理将TEM1 β-内酰胺酶(Bla)融合到GFP上。当缺少目标分子时,GFP处于静止状态不会产生荧光。但是当目标分子β-内酰胺酶抑制蛋白(BLIP)与Bla结合后,即使GFP活化产生荧光,而这一变化很容易被检测到。将受体蛋白插入到GFP表面的技术已经成为构建分子感受器的有力工具,这种GFP感受器能被用来检测多种分子,如蛋白质、核酸、激素、药物、金属及其他的一些小分子化合物等,其潜在应用前景极为广阔。

GFP在细胞方面的应用

生物发光

Protein tagging

GFP蛋白首先被应用在观察活体细胞中蛋白的位置及动态的变化.使用GFP进行此类研究的好处是细胞在实验之前不需要进行固定或破坏,如此便能在几乎不影响细胞的正常生理作用下进行即时的观察及分析.主要可以应用在Biological screen及Drug screen上.

GFP蛋白除了能在细胞中标定特定fusion protein的位置及存在,另外也能利用生物分子之间的特殊作用力标定特定DNA序列的位置.例如有研究就利用bacterial lac repressor protein(lac I)跟其DNA目标之间的特殊强结合力来标定lacI的目标基因.

GFP的barrel-like structure能确保GFP在fusion protein中的结构及其发光的性质,使其适宜接在不同fusion protein中表现.但利用GFP有期限制性,因为要将GFP折叠成具有活性(会发光)的形状可能会花较长的时间,这使得应用GFP在短生命周期的蛋白研究中相形困难. Monitoring of gene expression

将GFP当作报告子基因在生医研究上有很多的应用,主要分成下列两种:

1、测知transcriptase或reverse transcriptase的存在

在文献报道,利用具有hTERT (human Tolemerase Reverse Transcriptase)作用之promoter及拥有在此promoter下游GFP报告子基因的adenovirus来感染细胞,进而利用萤光的发光位置来辨认出肿瘤细胞的存在及其位移,发展的过程.

2、Promoter强度之研究

Promoter强度及其作用之研究对於有用到Molecular Cloning的实验来讲是非常重要的.利用GFP当作下游之reporter gene可以让研究者即时观察得知promoter在不同细胞或在不同状况下表现下游基因的能力.

FRET(Fluorescence Resonance Energy Transfer)

利用Fluorescent Energy donor及acceptor之间的能量传递而造成发光波长的改变来得知donor和acceptor之间的相对位置关系,进而作为蛋白间交互作用研究的有力证据及资料.

荧光蛋白(整理)

荧光 一、定义 荧光(fluorescence )又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。 二、原理 光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。 荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发射。当辐射波长与吸收波长相等时,既是共 荧光强度:荧光强度与该种物质的荧光量子产率、消光系数以及含量等因素有关。荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。荧光蛋白分子的亮度由其量子产率与消光系数的乘积决定,与成像检测灵敏度密切相关。 三、荧光蛋白 1、绿色荧光蛋白(green fluorescent protein,GFP )

在光谱的绿光区(500nm-525nm)已经发现了多种荧光蛋白,而且来源广泛,包括不同种属的Aequorea 、桡足类动物、文昌鱼以及珊瑚。然而多数有齐聚反应,即使最好的荧光蛋白与EGFP相比,也没有明显的优点。或许目前活细胞成像最好的选择是GFP 衍生的Emerald(祖母绿),它与EGFP的特性相似。Emerald包含F64L 和S65T突变,另外还有四个点突变从而改进了折叠、37℃时的突变率以及亮度。虽然Emerald比EGFP更有效,但含有快速光漂白成分,可能在某些环境下其定量成像会受到影响。 下面主要介绍GFP及其衍生型荧光蛋白: (1)来源绿色荧光蛋白最早由美籍日裔科学家下村修于1962年在水母中发现。这种蛋白质在蓝色波长范围的光照激发下发出绿色荧光,其发光过程需要冷光蛋白质 Aequorin 的帮助,而且,这个冷光蛋白质可与钙离子(Ca2+)相互作用。在水母中发现的野生型绿色荧光蛋白的分子量较小,仅为27~30kDa,而编码GFP的基因序列也很短,为2.6kb 。 (2)性质 GFP由238个氨基酸残基组成。GFP序列中的65-67 位残基(Ser65-Tyr66-Gly67 )可自发形成荧光发色基团——对羟基苯咪唑啉酮GFP的激发光谱在400nm附近有一个主激发峰,在470nm附近有一个次激发峰。发射光谱在505nm附近有一尖锐的主发射峰,在540nm附近有一肩峰GFP的化学性质相当稳定,无光漂白现象(Photobleaching ),用甲醛固定和石蜡包埋亦不影响其荧光性质。在细胞生物学与分子生物学领域中,绿色荧光蛋白基因常被用作报告基因。 (3)野生型 野生型GFP(wild type GFP, wtGFP )从一开始就引起了人们极大的兴趣,而且被用作新型的简单报告基因及体内标记,但GFP在异源生物体中的表达并非那么简单。例如,研究人员很早就发现需要在较高的温度下孵育才能在细胞或生物体中表达GFP,并且wtGFP在37℃的热稳定性差。这些都阻碍了它在转基因中的应用。这些难题促使人们进一步筛选分离wtGFP的变体。现在,人们已经找到了荧光强度更强且更耐热的变体。 这些变体多数为经突变的脱辅基蛋白,它们可防止高温导致的错误折叠。近年来出现的新型wtGFP基因突变体的激发和发射谱发生了改变,热稳定性和荧光强度得到了提高,GFP报告基因在小鼠中的应用就是以这些变体作为基础的。 (4)增强型绿色荧光蛋白(EGFP)现在,应用最为广泛的是红移变体增强型GFP (EGFP)。诸如EGFP这些红移变体的最大激发峰发生红向移动,大约为490nm,这一波长也恰好是多数分光设备、流式细胞仪及共聚焦显微镜的常用波长。EGFP有两个氨基酸突变,当被蓝光激发时,它发出的荧光要比wtGFP亮30-40 倍。wtGFP和包括EGFP在内的多数变体半衰期长,所以不适合精确追踪表达的减少或损耗。 (5)不稳定增强型绿色荧光蛋白(dEGFP) 为克服这一问题,人们在1998年构建了不稳定增强型绿色荧光蛋白(dEGFP)。原理就是将EGFP的cDNA融合到小鼠鸟氨酸脱羧酶(Ornithine decarboxylase, ODC)基因的C-末端。ODC含有一个PEST序列,这个序列可促进该蛋白在细胞内的降解。虽然,目前这些不稳定变体还没有在小鼠中应用,但这些变体有利于实时追踪基因表达动力学的研究。 (6)增强型黄色荧光蛋白(EYFP)另一种红移变体是增强型黄色荧光蛋白(EYFP),该变体有四个氨基酸突变。在527nm时,EYFP的发射光从绿色变为黄绿色。EYFP荧光的亮度水平与EGFP相当。EYFP 抗酸性差、对卤化物敏感,使它的应用受到限制。在EYFP 基础上改进的突变体mCitrine[21] 和mVenus[22]是目前应用

绿色荧光蛋白的应用及发展前景汇总

学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景 姓名周紫嫣学 号014010110349 专业生物工程 指导教师周小萍职 称教师 中国·武汉二○一二年四月

目录 摘要······················································································ II 关键词 ···················································································· II Abstract ··················································································· II Key words ················································································ II 1 GPF的发现 (1) 2 GFP的结构及发光原理 (1) 2.1 GFP的结构 (1) 2.2 GFP的发光原理 (2) 3 GFP在生物技术中的应用 (2) 3.1 GFP作为报告基因 (2) 3.2 GFP用于研究病毒与宿主的关系 (3) 3.3 GFP用于药物筛选 (3) 3.4 GFP作为生物传感器 (3) 3.5 GFP用于融合抗体 (4) 3.6 GFP用于计算细胞生长速度 (4) 3.7 GFP用于基因表达调控 (4) 4 GFP存在问题及发展前景 (4) 参考文献 (5) 致谢 (5)

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用 Feb 20, 2010No Comments 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 ?0?2 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2 荧光蛋白 第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳歌谷创作

绿色荧光蛋白(GFP)基因的克隆、表 达和粗提取 欧阳歌谷(2021.02.01) 南方医科大学 2011预防医学(卫生检验检疫) 摘要 目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。方法:从 E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。将含有GFP基因的质粒转化到感受态细胞 E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。用IPTG诱导GFP基因表达可以看到浅绿色菌落。最后对绿色荧光蛋白进行粗提取。结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。 关键词:绿色荧光蛋白基因克隆重组表达转化粗提取

目录 1 前言3 2 实验目的4 3 实验设备4 4 材料及试剂5 5 实验操作步骤5 5.1操作流程5 5.2质粒DNA的分离与纯化6 5.2.1 质粒的培养6 5.2.2 质粒的DNA的碱提取法6 5.2.3 质粒DNA的鉴定与纯化7 5.3酶切及连接8 5.3.1 双酶切8 5.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)8 5.3.3 连接9 5.4大肠杆菌感受态细胞的制备及转化9 5.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附 录)9

绿色荧光蛋白

绿色荧光蛋白(GFP)原核表达情况分析 姓名:韩吉梅学号:2013107001 专业:作物栽培学与耕作学 摘要:将含有绿色荧光基因的重组载体导入大肠杆菌中,经IPTG诱导产生大量融合蛋白,用SDS-PAGE来确定目的蛋白的可溶性及其分子量。考马斯亮蓝染色4小时再过夜脱色,观察目的蛋白的分子量大约为31.9kD,与预期值相符。 关键字:绿色荧光蛋白SDS-PAGE 原核表达 1 前言 绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。由于GFP检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域[1-2]。采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有

效的手段[3-4]。同时也正因为其荧光反应不是酶反应,所以当细胞本身还存在一些可以受蓝光激发和产生绿色荧光的物质,或者GFP表达频率不高的情况下,GFP的检测可能会产生一些假相,不易对荧光进行定量的测定。我们利用基因工程手段在大肠杆菌中高效的表达了GFP,制备出GFP抗体,利用抗原与抗体之间的特异性,在体外对GFP进行检测,可在一定程度上弥补上述GFP检测中可能出现的问题,可以作为一种重要的辅助手段用以提高GFP检测的灵敏度和准确度[5]。 原核表达是将克隆基因插入合适载体后导入大肠杆菌,用于表达大量蛋白质的方法。选用原核表达系统的原因是易于生长和控制、用于细菌培养的材料不及哺乳动物细胞培养的材料昂贵、有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。包涵体是在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,形成被膜包裹的结构,具有水不溶性的特点。本实验主要是通过SDS-PAGE来检测绿色荧光的原核表达情况。 2 材料与方法 2.1 材料 30%分离胶贮液分离胶缓冲液(Tris-HC l缓冲液pH8.9)浓缩胶贮液浓缩胶缓冲液10%SDS 20%过硫酸铵(AP)染色液脱色液1×SDS上样缓冲液1×Tris-甘氨酸电泳缓冲液四甲基乙二

绿色荧光蛋白

绿色荧光蛋白(GFP)的转化表达及免疫印迹检测 王媛0811142 南开大学生命科学学院生物技术08级 一、摘要: 本实验利用酶切方法检测载体中所含GFP片段后,通过转化的方法把绿色荧光蛋白(GFP)外源基因转入大肠杆菌进行表达,通过免疫印记杂交方法(western blotting)分析GFP在大肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜色亮丽的绿色荧光蛋白。 关键词:绿色荧光蛋白免疫印记杂交 二、引言: 绿色荧光蛋白是一种源于水母(Aequorea Victoria)等海洋无脊椎动物的蛋白,分子量为26.9KD。GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发色基团,无需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。GFP能在不同的细胞内稳定表达,无种属、组织和位置特异性,对细胞无毒性且检测方法简单,将其作为报告基因已广泛应用于细胞生物学和分子生物学领域。 免疫印记又称蛋白质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的一种免疫检测技术。其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋白质向阳极转移,即膜侧连接阳极或面向阳极,从而将电泳分离的蛋白从凝胶转移至固相载体上。 三、实验材料、仪器及方法: 3.1 实验材料 3.1.1 菌种 E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21 (pETH)菌株E.coli BL21 (pETH-GFP))菌株 3.1.2 试剂与材料 LB培养基(自己配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5% A.P.S 质粒小量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸 3.1.3 仪器 紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半干式蛋白质印迹电转移系统等。3.2 实验方法 1、配置LB培养基,包括液体、固体培养基后灭菌;分别接种pETH-GFP/DH 5α(LA 4ml)一支,pETH/DH 5α(LA 4ml)一支,BL21(LB 4ml)四支 2、按照protocal,利用tiangen质粒提取试剂盒分别提取pETH-GFP/DH 5α、pETH/DH 5α质粒后,按照酶切体系混匀后,至于37℃温箱酶切2h。 3、制备0.8%琼脂糖凝胶,20ml每块,加入适量EB,按照点样顺序点样后,60V恒压电泳,约0.5~1h.后,凝胶自显影拍照(胶图见后面实验结果) 4、取40μlBL21菌液接种于4mlLB,37℃,200rpm,约2.5h,此时OD600=0.3~0.5,利用氯化钙法制备感受态细胞,制备完成至于冰上备用。 5、铺制平板,1块LB,4块LA,冷却凝固后于37℃倒置烘干备用。其中两块LA平板上面涂布IPTG(100μl+100μl水),正置备用。 6、按照阴性对照、空白对照、GFP基因转化表达、GFP基因的转化四组分别进行转化,涂板,37℃倒置过夜培养,紫外灯下观察,呈绿色荧光的单菌落即为转化子。记录各板菌落数

对绿色荧光蛋白(GFP)的了解及应用

对绿色荧光蛋白的了解及应用 学院:生命科学学院 姓名:马宗英 年级:2011 学号:2011012923

前言 绿色荧光蛋白(green fluorescent protein),简称GFP,是一种具有奇妙特性的“光学蛋白质”。这种蛋白质从成分和结构上来说,没有丝毫的特殊性,它的组成单元是20种常见的氨基酸,二级结构也是普通的α螺旋和β片层。但是,这种蛋白质却具有一个非常特别的性质——发出绿色荧光。 【关键词】绿色荧光蛋白生命科学应用 一、绿色荧光蛋白 绿色荧光蛋白最早是由下村修等人于1962年在一种学名Aequorea victoria的水母中发现的。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,吸收蓝光的部分能量,发出绿色荧光。 野生型水母GFP的一级序列已由其cDNA序列推导出来[1],它至少存在4种同源GFP,但这些突变并不影响GFP的基本功能,只是使突变的GFP具有了新的性质。 生色团是GFP发出荧光的物质基础,也是GFP结构中的一个重要组成部分。GFP的生色团位于氨基酸序列64~69位的六肽内,65~67位的丝氨酸、脱氢酪氨酸、甘氨酸通过共价键形成的对羟基苯甲基咪唑环酮是一个独特的、相当稳定的环状三肽结构,构成了GFP生色团的核心[2],见图1。图2为生色团的形成机制。 图1 多管水母中GFP生色团的化学结构和附近序列 图2生色团的形成机制 目前人们对GFP的荧光发光机制并不十分清楚,大家只是认为,GFP是生物发光过程中的能量受体,并且是最终的发光体,不同的生物发光机制各不相同,不同的突变体发光机

制也有很大差异。 二、GFP在生命科学中的应用 1、作为蛋白质标签(protein tagging) 利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染到合适的细胞中进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内的活体观察。由于GFP只有238个氨基酸,相对较小,所以将其与其它蛋白质融合后并不影响自身的发光功能。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更为详尽的观察的新方法。如细胞分裂、染色体复制和分裂、发育和信号转导等过程的研究均是借助绿色荧光蛋白进行标记。 GFP作为蛋白质标签除用于特定蛋白质的标记定位外,还大量用于各种细胞成分的标记如细胞骨架、质膜、细胞核等等。曾经有人将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境监测以及探测信号转导过程等等,以上都可以为传统生物学研究提供新思路和新方法。 2、药物筛选 利用细胞表面标记,通过流体细胞分光光度计或荧光活化细胞筛选仪,可以分离与纯化特殊类型的细胞;同时还可利用不同颜色GFP衍生物标记相关蛋白质,来观察在单细胞内相互作用的靶细胞,再借助于荧光激活细胞分离器、等聚焦显微镜分离出目的细胞,从而可方便地用于大规模筛选新的药物。 另一方面,利用GFP来进行药物筛选由于必须与迁移的信号分子相偶联的限制,其筛选容量相对较低,但是由于GFP在细胞内的穿透性强及独特的发光机制,因而在药物筛选中具有相当大的应用潜力。 3、用于免疫学 可采用基因工程的方法生产GFP标记抗体,以取代传统的免疫学标记方法,建立一种简便、快速的免疫诊断新技术。相比于一般的标记物,GFP对光稳定、对抗体的标记率可达100%,而且因为GFP是直接与抗体结合,所以无需添加任何底物,可以避免非抗原抗体结合的背景干扰等。 线粒体中表达的GFP是研究比较成功的一种小分子抗体,因为它可以在宿主细胞内大量表达,易于基因工程操作,尤其易于构架抗体融合蛋白。因融合抗体具有与抗原结合及发射荧光两种特性,故这一人工分子可用做免疫染色的检测试剂,直接应用于流式细胞仪和免疫荧光的标记及肿瘤的检测等等。 在制备抗体时,为便于表达蛋白的分离纯化,一般在单链抗体的N端或C端插入一6×His 序列,便于用Ni-NTA亲和层析柱纯化目标蛋白。但这一技术也存在一些问题,由于抗体分子内存在二硫键,而在原核表达系统内由于抗体不能正确折叠,容易形成包涵体,表达出来的目标蛋白无活性,需要在氧化还原体系中进行复性。但近来也有报道在动物细胞细胞质中成功表达出具有抗原结合活性的单链抗体,若能成功解决融合抗体的表达问题,则在免疫染色及肿瘤检测这一领域融合抗体将扮演极为重要的角色。 除了以上应用之外,绿色荧光蛋白还普遍应用于跟踪观察微生物、发育机理研究、细胞筛选以及生物传感器等许多生命科学研究中。 三、GFP的突变及其应用 GFP作为一种新型标记物,正受到科学界的广泛关注,而且野生型的GFP也不断地在被改造,著名的生物学家钱永健所完成的单点突变(S65T) 显著提高了GFP的光谱性质,其荧

绿色萤光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。 由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。 我们这边细胞组的基本上都在用这个东东。标记细胞 GFP的分子结构和发光机制 绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。 Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。这种坚实的结构保证了其稳定和抗热、抗变性的特点。 GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。GFP的生色基团是蛋白质自身催化环化的结果,环化是一个有氧过程,在严格厌氧条件下GFP不能形成荧光,因为GFP的生色团形成需要O2使Tyr66脱氢氧化。生色基团通过Tyr66的脱质子(酚盐)和质子化状态(羟酚基)的转换决定荧光发射,此模型为Yang等的晶体学证据所支持。 GFP在生物技术中的应用研究 1.分子标记 作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。1996年,Ehrdardt等人首次报道了利用GFP的特性研究细胞分化蛋白FtsZ的定位。研究显示FtsZ在细胞分裂位点形成了一个环状物,且至少有9种蛋白在细胞分裂中起重要作用,尽管对这些蛋白功能仍然不是很清楚,但是利用GFP融合蛋白已经搞清楚了它们聚合的顺序以及在蛋白定位中的一些特征。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。 除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。 2.药物筛选 许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。基于细胞的荧光分析可分为三类:即根据荧光的密度变化、能量转移或荧光探针的分布来研究目标蛋白如受体、离子通道或酶的状态的变化。荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。 在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。例如当信号分子和某一特殊受体结合后常会导致配体-受体复合物从某一细胞区域迁移到另一区域,而这一迁移过程通常会介导一重要的生理功能。因而,这些受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。利用这一原理,已经成功构建了一个筛选模型用于研究药物介导的糖皮质激素受体(hGR)的迁移过程。在一96孔板中培养细胞,并以一编码hGR GFP蛋白的质粒转染该细胞。当细胞用待筛选的药物处理后,hGR-GFP从细胞质迁移人细胞核的过程可实时或在某一时段

绿色荧光蛋白

知识介绍 绿色荧光蛋白 马金石 (中国科学院化学研究所 北京 100190) 摘 要 绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光。 由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领 域。本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用。 关键词 绿色荧光蛋白 基因表达 结构 发色团 生物发光 Green Fluorescent Protein Ma Jinshi (Insti tute of Chemistry,Chinese Academy of Sciences,Beijing100190) Abstract Green fluorescent protein(GFP)was discovered46years ago from A equorea V ictoria,it can emit green light under exci tation of blue or UV irradiation.GFP as a marker for gene expression and localization of gene products has been widely used in life sciences for the past years because of its stable structure and photophysical property and easy expression in cells.A brief introduction on the relationship of aequorin and GFP,GFP structure,chromophore formation,and the mechanism of bioluminescence,also the variants,characteri stic and application are presented in this paper. Keywords Green fluorescent protein,Gene expression,Structure,Chromophore,Bioluminescence 由于对绿色荧光蛋白(Green Fluorescent Protein,GFP)的发现、机理研究以及利用做出的特殊贡献,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予美国科学家下村修(Osamu Shimomura)、马丁 沙尔菲(Martin Chalfie)和美籍华裔化学家钱永健(Roger Y Tsien)。 化学奖评选委员会主席贡纳尔 冯 海伊内和评委莫恩斯 艾伦贝里对绿色荧光蛋白的评价指出,这是当代生物学的重要工具,借助这一 指路标 ,科学家们已经研究出监控脑神经细胞生长过程的方法,这在以前是不可能实现的。他们说,下村修1962年在北美西海岸的水母中首次发现了一种在紫外线下发出绿色荧光的蛋白质,即GFP。随后,马丁 沙尔菲在利用GFP做生物示踪分子方面做出了贡献;钱永健让科学界更全面地理解GFP的发光机理,对GFP作了改造,通过改变其氨基酸排序合成出了能吸收、发射不同颜色(蓝色、蓝绿色和黄色)光的荧光蛋白,为同时追踪多种生物细胞变化的研究奠定了基础。 我国在生命科学领域已经广泛应用GFP,对它的介绍和应用的文章也有很多[1~6]。国外的综述可阅读钱永健和Zimmer的文章,最新的是Shaner等的文章[7~9]。化学界对它的了解可能较少,在此做个简单介绍。 1 生物发光与水母 先从生物发光说起,生物体的发光现象称为生物发光。植物界有细菌植物门的发光细菌和真菌植物门的发光蘑菇,动物界从原生动物到脊椎动物都有,脊椎动物中主要是鱼类。从发光生物的分布来 2008 10 25收稿,2008 11 04接受

试验设计——绿色荧光蛋白的表达

分子生物学实验设计报告 绿色荧光蛋白的克隆表达 ——闵霞(2013141241165)李彩云(2013141241095) 一、引言 基因标记技术是近年来发展起来的分子生物学技术。荧光蛋白基因在标记基因方面由于具有独特的优点而广受科学家们的关注。荧光蛋白是海洋生物体内的一类发光蛋白,分为绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白和红色荧光蛋白。 绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP发射绿色荧光。它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的。 基因克隆技术包括把来自不同物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。采用重组DNA技术,将不同来源的DNA分子在体外进行特异性切割,重新连接,组装成一个新的杂合DNA 分子。在此基础上,这个杂合分子能够在一定的宿主细胞中进行扩增,形成大量的子代分子。 本次实验中,分子克隆质粒载体所携带的外源基因是EGFP绿色荧光蛋白,实验的最终目的是将EGFP基因插入表达载体pET-28a中,组成重组子,并导入到大肠杆菌细胞中并诱导其表达,培养出绿色的大肠杆菌菌落。为此,我们要利用碱变性法将大肠杆菌中的质粒DNA提取出来,并通过Bam HI和NotⅠ两种酶的双酶切作用,从而获得目的外源基因片段EGFP和表达载体pET-28a质粒的DNA,然后通过连接酶连接后形成重组子,并通过氯化钙法导入大肠杆菌感受态细胞中,让其在含有Amp和IPTG的LB琼脂平板上生长繁殖,最后通过观察大肠杆菌能否在含有Amp和IPTG的LB平板上长出绿色的菌落,来判断EGFP基因工程菌的构建效果 二、主要路线: 1、质粒DNA的提取 2、琼脂糖凝胶电泳检测质粒DNA 3、酶切连接重组质粒 4、重组质粒的扩增 5、菌落PCR法鉴定阳性克隆 6、目的荧光蛋白基因的表达 1、质粒DNA的提取 实验原理: 1)质粒是一种染色体外的遗传因子,大小在1kb~200kb之间,是具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制能力,,能使子代保持他们恒定的复制数,可表达它携带的遗传信息。它可以独立游离于细胞质内,也可以整合到细菌染色体中,它离开宿主细胞就不能复制,而它控制的许多生物学功能也是对宿主细胞

绿色荧光蛋白和PCR技术

绿色萤光蛋白 (green fluorescent protein),简称GFP,这种蛋白质最早是由下村修等人在1962年在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca2+)可产生交互作用。 由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm 分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。 2008年10月8日,日本科学家下村修(伍兹霍尔海洋生物学研究所)、美国科学家马丁·查尔菲(哥伦比亚大学)和钱永健(加利福尼亚大学圣迭戈分校)因为发现和改造绿色荧光蛋白而获得了当年(2008)的诺贝尔化学奖。 GFP的性质 GFP荧光极其稳定,在激发光照射下,GFP抗光漂白(Photobleaching)能力比荧光素(fluorescein)强,特别在450~ 490nm蓝光波长下更稳定。 GFP需要在氧化状态下产生荧光,强还原剂能使GFP 转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光 便立即得到恢复。而一些弱还原剂并不影响GFP荧光。中度氧化剂对GFP荧光影响也不大,如生物材料的固定、脱水剂戊二酸或甲醛等。 GFP融合蛋白的荧光灵敏度远比荧光素标记的荧光抗体高,抗光漂白能力强,因此更适用于定量测定与分析。但因为GFP不是酶,荧光信号没有酶学放大效果,因此GFP灵敏度可能低于某些酶类报告蛋白。 由于GFP荧光是生物细胞的自主功能,荧光的产生不需要任何外源反应底物,因此GFP作为一种广泛应用的活体报告蛋白,其作用是任何其它酶类报告蛋白无法比拟的。 GFP在肿瘤发病机制研究中的应用 GFP是一个分子量较小的蛋白,易与其他一些目的基因形成融合蛋白且不影响自身的目的基因产物的空间构象和功能。GFP 与目的基因融合,将目的基因标记为绿色,即可定量分析目的基因的表达水平,显示其在肿瘤细胞内的表达位置和量的变化,为探讨该基因在肿瘤发生、发展中的作用及其分子机制提供便利条件。 在肿瘤的形成过程中,增殖和凋亡是一对相互矛盾的统一体。若肿瘤细胞凋亡占优势,肿瘤组织将长期处于休眠状态或自行消亡。肿瘤细胞的凋亡受凋亡相关基因调控。用GFP转染肿瘤细胞凋亡相关基因,并与正常组织进行比较,则大致可判断此基因为抑制肿瘤细胞凋亡的基因;反之,为促进肿瘤细胞凋亡的基因。 肿瘤细胞浸润是肿瘤细胞粘连、酶降解、移动和基质内增殖等一系列过程的表现,其根本原因在于肿瘤细胞内某些基因表达异常。利用GFP 的示踪特性,研究肿瘤细胞内某些基因异常表达与肿瘤细胞浸润的关系,即可揭示肿瘤细胞浸润的某些

绿色荧光蛋白(GFP)原核表达分析

石河子大学 分子生物学实验结课论文 绿色荧光蛋白(GFP)原核表达分析 学生姓名 学号 专业 年级、班级 指导教师 所在学院 中国·新疆·石河子 2016年1月 绿色荧光蛋白(GFP)原核表达分析

摘要:本实验主要探讨目的蛋白(GFP)在大肠杆菌中的表达的情况以及鉴定目的蛋白形成的是包涵体还是可溶性蛋白。本实验先对菌液进行培养、活化、然后采用IPTG分别对其不同时间点的诱导,用SDS-PAGE来确定目的蛋白的可溶性及其分子量,掌握GFP 诱导不同时间的表达情况的检测方法。 关键词:绿色荧光蛋白;SDS-PAGE;原核表达 1 前言 1.1实验目的 掌握聚合酶链式反应(PCR)的原理和操作方法;了解重组载体的构建方法;锻炼学生查阅文献资料、设计与优化实验的能力;加强学生对化学生物学中常用研究方法的认知。 1.2实验背景 绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。与以往lacZ、CAT 等报告基因相比,有很多无可比拟的优越性: GFP 不具有种属依赖性,在多种原核和真核生物细胞中都表达;荧光强度高,稳定性高;不需要反应底物与其他辅助因子,受蓝光激发产生绿色荧光,尤其适用于体内的即时检测;另外GFP 分子量小,易于融合,适用于多种转化方式,对受体无毒害,安全可靠;并且通过替换一些特殊氨基酸,可以使之产生不同颜色的光,从而适应不同的研究需要。正是由于GFP 检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域。绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有效的手段。同时也正因为其荧光反应不是酶反应,所以当细胞本身还存在一些可以受蓝光激发和产生绿色荧光的物质,或者GFP表达频率不高的情况下,GFP的检测可能会产生一些假相,不易对荧光进行定量的测定。我们利用基因工程手段在大肠杆菌中高效的表达了GFP,制备出GFP抗体,利用抗原与抗体之间的特异性,在体外对GFP进行检测,可在一定程度上弥补上述GFP检测中可能出现的问题,可以作为一种重要的辅助手段用以提高GFP检测的灵敏度和准确度。 原核表达是将克隆基因插入合适载体后导入大肠杆菌,用于表达大量蛋白质的方法。选用原核表达系统的原因是易于生长和控制、用于细菌培养的材料不及哺乳动物细胞培养的材料昂贵、有各种各样的大肠杆菌菌株及与之匹配的具各种

绿色荧光蛋白的研究

《生物工程进展》1997,V o l.17,N o.4 绿色荧光蛋白——现代细胞生物学与分子 生物学研究领域的新标记物 岳莉莉 齐义鹏 (武汉大学病毒学研究所 武汉430072) 摘要 从多管水母属A equoren v ictu ria分离出的绿色荧光蛋白(GFP),因其特有的生物化学性质及该基因在异源细胞内的表达产物亦能产生强烈的绿色荧光,使其在现代细胞生物学和分子生物学研究领域的应用具有广阔前景。本文就其研究进展及其应用进行简要综述。 关键词 GFP 荧光 基因表达 突变株 应用 基因的表达或蛋白质的定位及时序的变化常需要用荧光物质作为标记。这种标记也是免疫荧光和免疫组化的基础。传统的荧光标记是通过纯化蛋白质再共价结合到荧光染料上,但是化学计量和染料附着的部位难于控制,因此尚需再次纯化。若该蛋白需用于活细胞内检测,最关键的问题是如何使其通过细胞膜。现在可用分子生物学的方法产生荧光蛋白,以取代传统的标记方法。常用的有荧火虫和细菌的荧光素酶基因,但由于它们都需要底物和辅助因子,因而在活体组织中的应用受到限制。由于绿色荧光蛋白所特有的生物化学性质,且该基因在异源细胞内的表达产物亦能产生强烈的绿色荧光,使其在生命科学中的应用具有美好的前景。本文就其研究进展进行简要综述。 一、绿色荧光蛋白的生物发光现象 早在六十年代初期,Sh i m om u ra等[1]首先从多管水母属(A equoria v ictoria)中分离出一种称为aequo ria的蛋白,该蛋白在结合钙离子后可发射蓝光,当时称为光蛋白(p ho top ro tein)。它是分子量为20kD的单一多肽链,在其发光前,1M o l的aequo ria结合3M o l 的钙离子及1M o l非共价键结合的腔肠动物荧光素。尽管光蛋白体系本身发射蓝光,然而水母整体发光及其提取的颗粒都是呈绿色,推测其粗提液中一定还有一种蛋白即绿色荧光蛋白(green fluo rescen t p ro tein,GFP)[1,2]。M o rise 等[3]对GFP进行了分离和纯化,他们的实验结果表明,GFP的荧光发射峰在509nm,最大激发波长为395nm,并在475nm处有一肩峰。当将Ca2+加入到含低浓度GFP的aequo rin溶液中时,光谱接近于aequo rin发射的蓝光(Κm ax 472nm);而将aequo rin和GFP按大自然比例混合时,加入Ca2+,则光谱接近于活体的发射光(Κm ax509nm)。推测在活体内,GFP通过荧光素酶或钙活化光蛋白的能量转换过程,吸收蓝光而后发出强烈的绿色荧光。A equo rea发光系统分子间的能量转换过程如下: A equo rin Ca2+ B FP3+b lue L igh t GFP ↓ 激发 GFP3+ green ligh t (B FP为蓝色荧光蛋白) 二、GFP的生色基团 从jellyfish A equorea v icioria分离出的GFP分子量约27230kD,为一单链多肽,它的生色基团(ch rom opho re)在各种苛性条件下(如热、极端pH、化学变性剂)都很稳定,比如用

相关主题
文本预览
相关文档 最新文档