当前位置:文档之家› 聚合物共混物的相容性

聚合物共混物的相容性

聚合物共混物的相容性
聚合物共混物的相容性

聚合物共混物的相容性

聚合物与聚合物组分之间的共混体系,有的有良好的相容性,有的相容性不大好,或者完全不相容。如何处理与解决聚合物组分之间的相容性问题,是塑料改性工作者研究、开拓的重要课题。

1、聚合物共混物的相容性原则

聚合物组分之间的共混改性,为达到改善性能的相应效果,往往需要加入相容体系。一般来说,不同聚合物组分之间的共混需要的是相适应的相容性,从而制得相相之间结合力较强的多相结构的共混物。了解与应用共混物体系之间的更好相容性,应考虑如下几个原则。

(1)溶解度参数相近原则

聚合物之间的共混过程,实际上是分子链间相互扩散的过程,并受分子链之间作用的制约。分子链间相互作用的大小,可以用溶解度参数来表示。溶解度参数的符号为δ,其数值为单位体积内聚能密度的平方根。不同组分之间的相容性好坏,也可以用溶解度参数δ之差来衡量,即δ越接近,其相容性越好。如两种聚合物溶解度参数相近,其差值通常要<0.2,而两种聚合物溶解度参数之差>0.5时,不能以任意比例相容。例如:PVC/NBR共混体系,PVC的溶解度参数δA为9.4~9.7,而NBR的溶解度参数δB为9.3~9.5,所以PVC与NBR相容性良好;又如PS/PB 共混体系,他们的溶解度参数之差>0.7,所以两者的相容性差。PVC与PS的溶解度参数之差>1,所以两者基本不相容。

(2)极性相近原则

聚合物之间共混体系的极性越相近,其相容性越好,即极性组分与极性组分、非极性组分与非极性组分都具有良好的相容性。例如:PVC/EV A、PVC/NBR、PVC/ABS之间极性相近,所以其相容性好。在考虑共混改性配方设计时,要了解聚合物之间相容性的基本原则:极性/极性≥非极性/非极性≥极性/非极性。极性组分与非极性组分之间一般不相容,例如:PVC/PC、PVC/PS、PC/PS等。

极性相近原则也有些例外,例如:PVC/CR共混体系,其极性相近,但不相容;而PPO/PS两种极性不同的组分,相容性反而很好。

(3)结构相近原则

聚合物共混体系中各组分的结构相似,则相容性就好,即两聚合物的结构越接近,其相容性越好。所谓结构相近,是指各组分分子链中含有相同或相近的结构单元,例如:PA6月PA66分子链中都含有—CH2—、—CO—NH —,故有较好的相容性。

(4)结晶能力相近原则

共混体系为结晶聚合物时,多组分的结晶能力即结晶难易程度与最大结晶相近时,其相容性就好。而晶态与非晶态、晶态与晶态体系的相容性很差,只有在混晶时才会相容,如PA/PVC、PE/PA、PET/PBT体系。两组分非晶态体系相容性较好,如PPO与PS,PVC与NBR,PVC与EV A等。

(5)表面张力у相近原则

共混体系中各组分的表面张力越接近,其相容性越好。共混物在熔融时,与乳状液相似,其稳定性及分散度受两者表面张力的控制。у越接近,两相间的浸润-接触与扩散就越好,界面的结合也越好。例如:聚丙烯、聚乙烯与顺丁橡胶、天然橡胶、乙丙橡胶表面张力相近,因此其相容性很好,尤其是PP/EPDM是典型的增韧共混体系。

2、提高共混物相容性方法

聚合物之间的相容性比较复杂,有的完全相容或部分相容;有的完全不相容或部分不相容。共混物完全相容是因为极性相同而结构相似,此类共混物性能改善不大。绝大多数的共混体系内聚合物之间只能部分相容。因此要想到达预期的改性效果,必须通过各种共混改性方法,例如:加入相容剂、交联、IPN、引入基团和改变结构等技术改善聚合物之间的相容性。

(1)加入相容剂

加入相容剂,使两种或多种聚合物组分通过混炼,提高相界面层的黏结力,促进相分散,使形态结构稳定化,并借助聚合物分子间的键合力,降低两相组分间的界面张力,增加共混体系的均匀性,减小相分离,改善聚合物共混的综合性能。

PE、PP、PS等聚烯烃之间,性能具有互补性但却缺乏良好的相容性,因此加入相容剂是必要的。PE/PP共混物两组分相容性差,但加入15%相容剂EPR后,其形态结构均化以及相界面黏结得到强化,性能有了明显改善。又如:PBT与PPO完全不相容且成型性极差,加入5%~8%带有环氧基的PS接枝相容剂,改善了PBT与PPO的

相容性,并促进力学与加工性能大大提高。

(2)交联反应

聚合物交联反应属于化学改性在塑料行业中应用较为广泛。交联是指在聚合物大分子链之间产生的化学反应,从而形成化学键的过程。交联反应如果是在相互不相容的聚合物之间,可大大提高两种聚合物的相容性,甚至使不相容组分变为相容组分。

交联可分为化学交联和物理交联两种情况。例如:用辐射的方法使LDPE/PP产生化学交联。结晶作用属于物理交联,由于取向纤维组织的结晶,使已形成的共混物形态结构稳定,从而产生相容作用。

用于提高聚合物共混组分相容性的交联,大多数企业采用动态交联方式。动态交联即可实现共混物的相容,又可提高共混物的综合性能,同时又不失去其固有的热塑性,仍然可用热塑性塑料成型加工方法加工。

聚合物动态交联的必要条件如下:

①被分散聚合物的粒径应为1~2μm;

②两种或多种聚合物的表面张力差△у应低于0.5~3.0mN/m;

③塑料树脂的结晶度应大于15%~30%

通常动态交联品种有:PP/EPDM、PE/EPDM、PP/CPE、PP/PA、PP/丁基橡胶、PP/天然橡胶、PA/丁腈橡胶等。

(3)IPN技术

IPN技术,也叫互穿网络技术。互穿网络(IPN)技术可以制得互穿网络聚合物(IPN)共混物,是一种以化学法制备物理共混物的方法。它是两种聚合物分子在共混体系内互相贯穿,在分子水平上达到“强迫互容”和“分子协同”的效应的一种提高共混物相容性的一种比较有效的方法。

(4)引入聚合物组分间相互作用基团

聚合物组分中引入离子基团或离子—偶极官能团的相互作用,使聚合物分子键之间形成具有较好的相容性。在聚合物组分之间引入氢键或离子键,或促使分子链上原有的酸性或碱性基团相互作用,共混时产生质子转移,从而实现相容作用。例如:PMMA/PV A共混,由于分子链之间可以形成氢键,所以具有良好的相容性;又如:PS中引入5%mol的—SO3H基团,同时将丙烯酸乙酯与5%mol的乙烯吡啶共聚,然后将二者共混,即可制得稳定性能优异的共混材料。

(5)改变分子链结构

PS是极性较弱的聚合物,与其他聚合物相容比较困难。但是苯乙烯与丙烯腈的共聚物—SAN,由于改变了分子中链结构,可与许多聚合物混容,如能与PC、PVC、PSF等树脂共混相容。非极性的聚丁二烯与聚氯乙烯很难相容,但丁二烯与丙烯腈的共聚物与聚氯乙烯却具有很好的相容性。PE与PVC也难于相容,但乙烯与醋酸乙烯的共聚物EV A却能与PVC相容性很好。乙烯与丙烯酸的共聚物可与PA组成相容体系,而PE与PA则不能相容。所以说,通过共聚的方法改变聚合物的分子链结构,增加聚合物之间的相容性是一种比较有效的办法。

3、聚合物的相容性与相容剂

对于聚合物共混体系来说,大多数属于部分相容体系,如果共混组分之间缺乏足够的黏结强度,使应力和应变不能有效地在两相间传递和分散,则共混体系的性能很差。因此,解决聚合物共混体系的相容性,需引入相容剂技术。

(1)相容剂的选择

相容剂是两种共混聚合物的单体共聚而成的嵌段共聚物,或接枝共聚物,或者含有与共混组分起化学反应的官能团,能分布在两种或两种以上共混聚合物界面之间的共聚物,其作用是降低界面张力,阻止分散相凝聚,稳定已形成的相形态结构,以增加两种或两种以上聚合物的相容性。

相容剂的相对分子质量应与相应的共混物相对分子质量相匹配,并具有良好的相容性。一般来说,二嵌段共聚物的相容性优于三嵌段共聚物的相容性。例如PE/PP共混物的力学强度低,若在PE/PP的共混物中加入4%~8%的PE与PP嵌段共聚物(PE-b-PP)作为相容剂,其力学强度可以大幅度提高。又如SEBS可以作为PE/PS、PP/PS、PET/PE共混体系的相容剂。

(2)相容剂的作用

相容剂的作用与偶联剂的功能相似,可增加共混体系的均匀性,减少相分离,改善聚合物共混物的综合性能,

从而达到聚合物与聚合物相容目的。相容剂基本上有反应型和非反应型两种。

非反应型相容剂的效果主要是通过以下作用实现:

①作为第三组分加入共混体系,以实现降低两相之间界面能。

②促进相的更好分散,并阻止分散相的再凝聚。

③增加相区的黏合作用。

反应型相容剂主要是借助于分子中的反应性基团,与共混体系内两组分聚合物发生化学反应,可以与共混组分形成化学键或氢键。通过化学链实现相容目的,也称为化学相容。反应型相容剂尤其适用于那些相容性很差并且含有易反应官能团的聚合物之间的共混相容。

相容剂的加入不仅可以获得理想的海—岛或海—海形态结构,而且还可以根据需要获得分散相层化结构、分散相纤维化结构以及互穿网络结构等。例如:ABS、PS、PP、PVC等疏水性树脂与亲水性树脂PEO在共混过程中,形成PEO层状分散相,从而使共混物具有永久抗静电性能;在PA/HDPE共混体系中使用PE-g-MAH相容剂,可使分散相PA在共混体系中呈片状分布,促使共混材料具有良好的阻隔性。

马来酸酐在聚乙烯或聚丙烯上的接枝共聚物是一种常用的相容剂,可用于PE/PA、PP/PA、EPDM/PA、PP/POE 的共混改性。

4、相容剂的分类

目前,对相容剂的分类尚无统一的标准,有按分子量大小分类,也有按相容剂性质分类。按分子量大小分类,可以分为高分子相容剂和低分子相容剂,如有机过氧化物类。高分子相容剂大都属于非反应型相容剂。

按作用性质分类,可以分为非反应型相容剂和反应型相容剂。

非反应型相容剂是指在共混相容过程中,本身没有反应基团,在塑炼过程中并不发生化学反应,只是靠相容剂分子中链段的扩散作用或范德华力增加两组分的黏结力。如当聚合物A和聚合物B不相容共混体系中,加入A-b-B的嵌段共聚物或A-g-B的接枝共聚物,通常可以增加A与B的相容性。

反应型相容剂是通过相容剂分子中的活性基团,如酸基、环氧基、异氰酸酯基等与共混物中的活性基团,如乙烯基等之间的化学反应而实现相容目的。如PA与PP的共混体系中,可用马来酸酐接枝聚丙烯(PP-g-MAH)作为相容剂。

总体上讲,非反应型相容剂分为:无规共聚物型、均聚物型、接枝共聚物型、嵌段共聚物型。反应型相容剂分为:羧酸型、酸酐型、环氧型、低分子型。

5、相容剂应用举例

(1)在聚烯烃系列共混体系的应用。PE、PP、PS等聚烯烃之间,性能具有互补性,但缺乏良好的相容性,如PE/PP共混体系,由于两组分相容性差,界面黏结力小,其力学性能不理想,加入15%的相容剂EPR后,既改善了共混物的相容性,又提高了冲击强度,并大大地提高延伸率,可制造工程材料配件。又如:PS/LDPE共混物中加入PS-g-LDPE接枝相容剂,其相容性、拉伸强度均得到改善,随着接枝共聚物添加量的增加,其拉伸强度提高幅度增大。

(2)在聚酰胺共混体系的应用。聚酰胺是通用工程塑料,是一种在大分子链重复结构中含有酰胺基团的结晶聚合物,很难与其他聚合物共混,若加入相容剂可生产多种聚酰胺共混物,如:PA/PE、PA/PP、PA/EPDM、PA/ABS、PA/PS等,所用相容剂多为反应型,以含羧基和酸酐基的共聚物为主。如:PA与PS共混时,由于两者的极性差别太大,无法得到理想的共混效果,加入马来酸酐接枝聚苯乙烯(PS-g-MAH)作为相容剂后,分散相尺寸变小,相容性得到改善。

(3)在其他聚合物中的应用。

①含氯量36%的CPE,可作为PVC和PE共混物的相容剂,如PVC/PE(1:1)共混时,加入20%CPE,可获得良好的共混效果。

②PPS/ PPO(70:30)共混体系,若加入5%环氧基的反应型相容剂,则共混物不仅保持了PPS的耐高温性,降低了成本,而且力学性能也得到了改善,拉伸强度提高50%,断裂伸长率提高60%。

③天然橡胶与聚乙烯共混体系中,由于存在着聚乙烯非结晶部分与非结晶天然橡胶界面相互渗透,力学性能比较差。若加入5%的NR-g-PE嵌段相容剂,两者相容性大大提高、界面张力减小,具有优异的韧性和耐低温性能。

④PVC与ABS的溶解度参数非常接近,相容性良好,其共混体系可以不加相容剂,但在PVC/ABS(100:20)共混体系中加入2%CPE相容剂,比不添加CPE的冲击强度提高了22%。

⑤今天塑料工业的发展围绕着“塑料与环境问题”,是一件关系到保护环境、合理利用二次资源造福人类的大事。为此,相容剂在废旧塑料回收再生利用的问题上显得越来越重要,废旧塑料往往混杂在一起,无论是人工分拣或者物理方法进行分选,都要耗费大量人力和能源。采用相容技术和用相容剂可以使回收来的废旧塑料无需严格分拣,就可使各种塑料混合物加工再利用。例如:相容剂SEBS可促使HDPE与PET相容,并能形成耐冲击性能良好的共混材料,从而可使各种PET瓶体边角料和用HDPE制作的瓶托无需分离,就可直接加工再利用。

聚合物共混知识点总结讲课稿

1.聚合物共混:共混改性包括物理共混、化学共混和物理/化学共混三大类型。其中,物理共混就是通常意义上的“混合”。如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。 2.分布混合,又称分配混合。是混合体系在应变作用下置换流动单元位置而实现的。 3.分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。 4.总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 5.分散度则是指分散相颗粒的破碎程度。对于总体均匀性,则采用数理统计的方法进行定量表征。分散度则以分散相平均粒径来表征。 6.分散相的平衡粒径:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 7.高分子合金:(塑料合金)指含多种组分的聚合物均相或多相体系,常具有较高的力学性能,作工程塑料。 8.熔融共混:将聚合物组分加热到熔融状态后进行共混(应用广泛)。采用的设备-----密炼机、开炼机、挤出机等。本方法最具有工业价值。 9.溶液共混:将聚合物组分溶于溶剂后,进行共混。本方法主要用于基础研究领域 10.乳液共混:将不同聚合物乳液共混方法。本法可用于橡胶共混改性中;以乳液应用的产品可乳液共混改性等。 11.分散度:反映分散相物料的破碎程度; (分散相的平均粒径和分布表征) 12.均一性:反映分散相分散的均匀程度 (分散相浓度起伏大小,用统计法) 13.相界面:连续相与分散相之间的交界面。 (界面结合好坏对共混物性能有重大影响) 14. 所谓聚合物之间的相容性(Miscibility),从热力学角度而言,是指在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系,即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。 15. 直接观测 16. 间接观测 17.界面自由能:两相体系中两组分之间具有界面自由能,直接影响共混过程. 18.界面张力 19. 简答 1.简述影响热力学相容性的因素。 答:1.大分子间的相互作用 2.相对分子质量 3.共混组分的配比

聚合物共混物的性能

聚合物共混及性能的基本原理 聚合物共混物的性能

聚合物共混物的性能 ?物质的性能是其内部结构的表现。聚台物共混物的性能不仅与其组分的性能有关,而且与其形态结构密切相关。 ?聚合物是多层次结构的物质。例如大分子的化学组成、结构单元的连接方式和空间构型称为一次结构。聚合物的分子量、大分子的形状为二次结构。大分子之间堆砌、排列的情况即聚集结构依所涉及的范围分为三次结构和高次结构,即超分子结构。每种结构层次都有其相应的运动特性。 ?不同的性能对各结构层次的敏感程度是不同的。例如,化学性质主要决定于一次结构;玻璃化转变主要决定于一次和二次结构;力学性能则一般与三次结构和高次结构有更直接的关系。同一种聚合物,结晶态和非晶态、取向和不取向,其力学性能迥然不同。

聚合物共混物的性能 ?加工条件不同会影响制品内部的高次结构,从而可改变制品的力学性能。 ?聚合物共混物的结构极为复杂,定量地描述性能与结构的关系非常困难,目前仅限于粗略的定性描述和某些半定量的经验公式。 ?聚合物共混物的性能与其组分性能的关系取决于共混物的形态结构,即两相之间的结合力大小、界面层的结构、界面层的厚度、两相的连续性、分散相的相区尺寸、分散相粒子的形状等。

聚合物共混物性能与其纯组分性能之间的一般关系 ?双组分体系的性能与其组分性能之间的关系常可用最简单的关系式表示,称作“混合法则”式中P 为双组分体系的某项性能;β为组分浓度,包括重量分数、体积分 数或摩尔分数。 ?在多数情况下,上式给出性能P 的上限值,而下式则给出下限值。 ?上述混合物法则只是很粗略的近似。对于聚合物共混体系,与上述法则的偏离一般都较大,很多情况下甚至完全不适用。这种情况和共混物的形态结构密切相关。 22112 2111P P P P P P ββββ+=+=

聚合物共混改性原理及应用.

聚合物共混改性原理及应用 ``````` 201015014057 一.名词解释(每题5分,共20分) 1.聚合物共混 答:共混改性包括物理共混、化学共混和物理/化学共混三大类型。其中,物理共混就是通常意义上的“混合”。如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。 2.分布混合和分散混合 答:分布混合,又称分配混合。是混合体系在应变作用下置换流动单元位置而实现的。分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。 3.总体均匀性和分散度 答:总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。分散度则是指分散相颗粒的破碎程度。对于总体均匀性,则采用数理统计的方法进行定量表征。分散度则以分散相平均粒径来表征。

4.分散相的平衡粒径 答:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 二.选择题(每题1.5分,共15分) 1.热力学相容条件是混合过程的吉布斯自由能( A ) A.小于零 B 大于零 C 等于零 D 不确定 2.共混物形态的三种基本类型不包括( D ) 3. A.均相体系 4. B 海-岛结构 5.C 海--海结构 6. D 共混体系 3.影响熔融共混过程的因素不包括(B ) A 聚合物两相体系的熔体黏度 B 聚合物两相体系的表面张力 C 聚合物两相体系的界面张力 D 流动场的形式和强度 4.共混物形态研究的主要内容不包括( D )

聚合物共混改性-作业题答案

1. 聚合物共混改性的主要目的有哪些? 物性(谋求新的功能提高性能):功能化、高性能化、耐久性 成型加工性:流动性、收缩性、离型性、尺寸稳定性、结晶性、结晶速度、热熔融强度等 经济性:增量、代用、省资源、循环利用等 2. 聚合物共混改性的主要方法有哪些? 物理共混:是指两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀的新材料的过程。 化学共混:聚合物的化学共混改性是通过聚合物的化学反应,改变大分子链上的原子或原子团的种类及其结合方式的一类共混改性方法。 物理/化学共混:是在物理共混的过程中发生某些化学反应 3. 简述混合的基本方式及其特点。 基本方式:分配混合(分布混合、层流混合)、分散混合 特点:在混合中仅增加粒子在混合物中分布均匀性而不减小粒子初始尺寸的过程,称为分配混合。 分布混合:只改变分散相的空间分布状况,增加分散相分布的随机性。分散相物料主要通过对流作用来实现;层流混合:是分布混合的一种特定形式,其理论基于一种假设,即在层流混合的过程中,层与层之间不发生扩散。分散混合:在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。 4. 试述聚合物共混物的形态及特点。 海-岛结构:是一种两相体系,一相为连续相,另一相为分散相,分散相分散在连续相中,亦即单相连续体系。 海-海结构:也是一种二相体系,但两相皆为连续相,相互贯穿,亦即两相连续体系。 两相互锁或交错结构:也是一种二相体系,这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。 梯度结构:为二相体系,特殊的共连续体系(两相连续体系)其组成在空间上互为增减。 阶跃结构:为二相体系,特殊的共连续体系(两相连续体系),在极小过渡区域内,其组成在空间上互为增减。 单相连续体系:海-岛结构、两相互锁或交错结构 共连续体系:海-海结构、梯度结构、阶跃结构 5. 影响熔融共混的主要因素有哪些? (1)聚合物两相体系的熔体黏度(比值)及熔体弹性。(2)聚合物两相体系的界面张力。(3)聚合物两相体系的组分含量以及物料的初始状态。(4)流动场形式和强度。(5)共混时间。 1. 试述聚合物共混的概念。 聚合物共混是指将两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀,而且力学、热学、光学、电学及其他性能得到改善的新材料的过程,这种混合过程称为聚合物的共混改性,所得到的新的共混产物称为聚合物共混物,简称共混物。 2. 共混物的形态学要素有哪些? 分散相和连续相、分散相的分散状况、两相体系的形貌、相界面 3. 简述分散相颗粒分散过程的两种主要机理。 液滴分裂机理:分散相的大粒子,分裂成两个较小的粒子,然后,较小的粒子在进一步分裂,这一过程不断重复,直至平衡。细流线破裂机理:分散相的大粒子,在拉伸应力下变形为细流线,细流线再在瞬间破裂成细小的粒子。 4. 依据“液滴模型”,讨论影响分散相变形的因素。 Weber数:We很小时,σ占据主导作用,形成稳定的液滴。“液滴模型”认为,对于特定的体系和在一定条件下,We可以有特定的Wecrit,当We < Wecrit,液滴稳定;We>Wecrit,液滴会变得不稳定,进而破裂。 γ γ :↑→We ↑→D ↑。

聚合物共混改性

1.高分子的来源是来自天然高分子、半天然高分子、以及合成高分子。而其中天然高分子是自然界存在的高分子 2.共混方法:物理方法:机械混合溶液混合胶乳混合粉末混合 化学方法:接枝共聚(组分间有化学反应)嵌段共聚(组分间有化学应) 互穿网络(组分间没有化学反应)渐变处理(组分间没有化学反应) 3.高分子材料共混技术进展 相容剂技术(见离聚体进展报告) 互穿聚合物网络技术(见第五章内容) 动态硫化技术(见第三章) 反应挤出成型技术 形态结构研究 增韧机理研究 4.反应挤出成型技术特点: 可连续且小批量的生产; 投资少; 不使用溶剂,节省能源和减少公害; 对制品和原料有较大选择余地; 可方便地进行混炼、聚合等操作,简化脱挥发物、造粒和成型加工等过程,并可使其一体化; 在控制化学结构的同时还可控制微相等物理结构,以制备具有良好性能的新物质。 5.弹性体增韧理论 a 多重银纹理论 Mertz等人首次提出了聚合物的增韧理论。该理论认为,作增韧体的部分橡胶粒子会横跨在材料变形所产生的很多微细的裂缝上,阻止其迅速发展,而橡胶在变形过程中消耗了能量,从而提高了材料的韧性。此理论的主要弱点是注意了橡胶而忽视了母体。后来Newman等人计算了拉伸断裂过程中橡胶断裂所耗散的能量仅占总能量的10%,这说明该理论并未真正揭示橡胶增韧的本质原因。 Bucknall等人发展了Mertz等人的微缝理论,提出了多重银纹理论。该理论认为,在橡胶增韧塑料体系中,橡胶相颗粒起了应力集中的作用。当材料受到冲击时,它能引发大量的银纹,但由于大量银纹之间的应力场的相互干扰并且如果生产着的银纹前峰处的应力集中低于临界值或银纹遇到另一橡胶颗粒时,则银纹就会终止,橡胶相粒子不仅能引发银纹而且能控制银纹。材料受到冲击时产生的大量银纹可吸收大量的冲击能量,从而保护了材料不受破坏 6.弹性体增韧和非弹性体增韧两种理论比较 a 增韧剂种类不同:前者是橡胶或热塑性弹性材料,模量低、易于挠曲、流动性差;后者是脆性塑料或刚性无机粒子,模量高,几乎不发生塑性形变,流动性好。 b 增韧对象不同:前者可增韧脆性或韧性材料;后者则要求基体本身有—定韧性。 c 增韧剂含量变化的效果不同:前者随加入量的增加韧性一直增加;后者有一合适的增韧范围,超过这一范围后无增韧效果。 d 复合体系性质不同:前者在提高材料韧性的同时,材料的模量、强度和热变形温度等大幅度降低;后者则在提高材料韧性的同时,提高材料的模量、强度和热变形温度,不过,前者对基体韧性提高幅度大;后者则通常不能大幅度提高韧性。

聚合物共混改性(小字)

1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定:如果一种共混物具有类似于均相材料所具有的性能,该共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准.如果两种聚合物共混后, 形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系. 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 P17— 18 , 一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5答:a. 调控共混温度,改变剪 ,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达,使We 值增大,进而使液滴(分散相)的形变增大; σ下降,使We 值增大,进而使液滴的形变增大; 的影响; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 答:①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 10、简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数 内聚能密度 2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043 .0m V K δφσ =;表面张力随溶解度参数的增大而增大。 11、简述共混体系界面张力、界面层厚度与相容性的关系 答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。 13、试述影响共混体系熔融流变性能的因素 答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 16、表面处理作用机理 答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。 答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等. 18、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高 温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定:如果一种共混物具有类似于均相材料所具有的性能,该共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准 .如果两种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系。 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 P17—18 ,一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5 答:a. 调控共混温度,改变剪,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达,使We 值增大,进而使液滴(分散相)的形变增大; σ下降,使We 值增大,进而使液滴的形变增大; 的影响; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 答:①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 10、简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数 内聚能密度 2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043.0m V K δφσ=;表面张力随溶解度参数的增大而增大。 11、简述共混体系界面张力、界面层厚度与相容性的关系 答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。 13、试述影响共混体系熔融流变性能的因素 答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 16、表面处理作用机理 答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。 答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等. 18、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。

聚合物共混物的相容性

聚合物共混物的相容性 聚合物与聚合物组分之间的共混体系,有的有良好的相容性,有的相容性不大好,或者完全不相容。如何处理与解决聚合物组分之间的相容性问题,是塑料改性工作者研究、开拓的重要课题。 1、聚合物共混物的相容性原则 聚合物组分之间的共混改性,为达到改善性能的相应效果,往往需要加入相容体系。一般来说,不同聚合物组分之间的共混需要的是相适应的相容性,从而制得相相之间结合力较强的多相结构的共混物。了解与应用共混物体系之间的更好相容性,应考虑如下几个原则。 (1)溶解度参数相近原则 聚合物之间的共混过程,实际上是分子链间相互扩散的过程,并受分子链之间作用的制约。分子链间相互作用的大小,可以用溶解度参数来表示。溶解度参数的符号为δ,其数值为单位体积内聚能密度的平方根。不同组分之间的相容性好坏,也可以用溶解度参数δ之差来衡量,即δ越接近,其相容性越好。如两种聚合物溶解度参数相近,其差值通常要<0.2,而两种聚合物溶解度参数之差>0.5时,不能以任意比例相容。例如:PVC/NBR共混体系,PVC的溶解度参数δA为9.4~9.7,而NBR的溶解度参数δB为9.3~9.5,所以PVC与NBR相容性良好;又如PS/PB 共混体系,他们的溶解度参数之差>0.7,所以两者的相容性差。PVC与PS的溶解度参数之差>1,所以两者基本不相容。 (2)极性相近原则 聚合物之间共混体系的极性越相近,其相容性越好,即极性组分与极性组分、非极性组分与非极性组分都具有良好的相容性。例如:PVC/EV A、PVC/NBR、PVC/ABS之间极性相近,所以其相容性好。在考虑共混改性配方设计时,要了解聚合物之间相容性的基本原则:极性/极性≥非极性/非极性≥极性/非极性。极性组分与非极性组分之间一般不相容,例如:PVC/PC、PVC/PS、PC/PS等。 极性相近原则也有些例外,例如:PVC/CR共混体系,其极性相近,但不相容;而PPO/PS两种极性不同的组分,相容性反而很好。 (3)结构相近原则 聚合物共混体系中各组分的结构相似,则相容性就好,即两聚合物的结构越接近,其相容性越好。所谓结构相近,是指各组分分子链中含有相同或相近的结构单元,例如:PA6月PA66分子链中都含有—CH2—、—CO—NH —,故有较好的相容性。 (4)结晶能力相近原则 共混体系为结晶聚合物时,多组分的结晶能力即结晶难易程度与最大结晶相近时,其相容性就好。而晶态与非晶态、晶态与晶态体系的相容性很差,只有在混晶时才会相容,如PA/PVC、PE/PA、PET/PBT体系。两组分非晶态体系相容性较好,如PPO与PS,PVC与NBR,PVC与EV A等。 (5)表面张力у相近原则 共混体系中各组分的表面张力越接近,其相容性越好。共混物在熔融时,与乳状液相似,其稳定性及分散度受两者表面张力的控制。у越接近,两相间的浸润-接触与扩散就越好,界面的结合也越好。例如:聚丙烯、聚乙烯与顺丁橡胶、天然橡胶、乙丙橡胶表面张力相近,因此其相容性很好,尤其是PP/EPDM是典型的增韧共混体系。 2、提高共混物相容性方法 聚合物之间的相容性比较复杂,有的完全相容或部分相容;有的完全不相容或部分不相容。共混物完全相容是因为极性相同而结构相似,此类共混物性能改善不大。绝大多数的共混体系内聚合物之间只能部分相容。因此要想到达预期的改性效果,必须通过各种共混改性方法,例如:加入相容剂、交联、IPN、引入基团和改变结构等技术改善聚合物之间的相容性。 (1)加入相容剂 加入相容剂,使两种或多种聚合物组分通过混炼,提高相界面层的黏结力,促进相分散,使形态结构稳定化,并借助聚合物分子间的键合力,降低两相组分间的界面张力,增加共混体系的均匀性,减小相分离,改善聚合物共混的综合性能。 PE、PP、PS等聚烯烃之间,性能具有互补性但却缺乏良好的相容性,因此加入相容剂是必要的。PE/PP共混物两组分相容性差,但加入15%相容剂EPR后,其形态结构均化以及相界面黏结得到强化,性能有了明显改善。又如:PBT与PPO完全不相容且成型性极差,加入5%~8%带有环氧基的PS接枝相容剂,改善了PBT与PPO的

聚合物共混改性原理与应用

聚合物共混改性原理与应用第二章聚合物共混的基本概念 1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相 为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2、均相体系的判定 答:如果一种共混物具有类似于均相材料所具有的性能,这种共混物就可以认为是具有 均相结构的共混物。在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准。如果两 种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系。 第三章聚合物共混过程及其调控 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4P17—18 答:在分散相颗粒的分散过程中,一个分散相大粒子(大液滴)分裂成两个较 展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5 答:a.调控共混温度,改变剪 答:(1,使We值增大,进而使形变增大; 较大的分散相粒径,使We值增大,易于变形.液滴的变形 连续相的黏度增大,使We值增大,进而使液滴(分散相)的形变增大; σ下降,使We值增大,进而使液滴的形变增大; 的影响;⑥熔体弹性;⑦流动场形式的影响 ⑧液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相 颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 ①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 第四章聚合物共混物的微观形态 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力 作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分 散过程产生影响,进而影响分散相粒径。

聚合物共混改性_思考题答案

1.试述聚合物共混的概念。 答:聚合物共混是指将两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀,而且力学、热学、光学、电学及其他性能得到改善的新材料的过程,这种混合过程称为聚合物的共混改性,所得到的新的共混产物称为聚合物共混物,简称共混物。 2.共混物的形态学要素有哪些? 答:1. 分散相和连续相;2. 分散相的分散状况;3. 两相体系的形貌;4. 相界面。 3.简述分散相颗粒分散过程的两种主要机理。 答:液滴分裂机理:分散相的大粒子,分裂成两个较小的粒子,然后,较小的粒子在进一步分裂,这一过程不断重复,直至平衡。 细流线破裂机理:分散相的大粒子,在拉伸应力下变形为细流线,细流线再在瞬间破裂成细小的粒子。 4.依据“液滴模型”,讨论影响分散相变形的因素。 答:Weber数粒径;连续相黏度;界面张力;熔体弹性;流动场;两相粘度比。 5.依据“双小球模型”,讨论影响分散相破碎的因素。 答:K值的影响;r*值的影响;初始位置(分散相粒径)的影响 6.采用哪些方法,可以对聚合物熔体黏度进行调控。 答:调节剪切应力;通过助剂调节;调节共混组分的相对分子量。 1.影响共混物性能的因素有哪些? 答:一、各组分的性能与配比的影响;二、共混物形态的影响;三、制样方法和条件的影响;四、测试方法与条件的影响 2.试述聚合物大形变时的形变机理及两种过程。 答:玻璃态聚合物大形变时的形变机理包含两种可能的过程 剪切形变过程:剪切过程包括弥散型的剪切屈服形变和形成局部剪切带两种情况。 剪切形变只是使物体形状改变,分子间的内聚能和物体的密度基本上不受影响。 银纹化过程:银纹化过程则使物体的密度大大下降。这两种机理各自所占的比重与聚合物结构及实验条件有关。 3.形成局部应变的两种原因是什么? 答:1)是纯几何的原因(试样截面积的波动)。这种纯几何的原因仅在一定的负荷条件下才会产生局部应变 2)应变软化(材料对应变的阻力随应变的增加而减小)。是由聚合物材料的本性引起的。 4.试述银纹的结构和性质。

最新聚合物改性考试试题题

一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容; 4. 两相之间产生部分交联,形成物理或化学缠结; 5. 形成互穿网络结构(IPN); 6. 改变加工工艺,施加强烈的力剪切作用。 六、一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 答:采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善

聚合物共混

酚醛树脂的发展历程及共混改性 一、前言 酚醛树脂作为最古老的合成树脂,因其具有较高的机械强度,耐热性好,难燃、低毒、低发烟,可与其它多聚物共混,实现高性能化,广泛应用于民用、工业、航空航天、汽车、电子、机械、交通运输等国民经济各个领域。近年来科研人员对酚醛树脂本身的脆性和机械性能进行改进,并积极开发下游产品应用新工艺,使酚醛树脂基复合材料有了更大的发展。随着消费电子产业的迅速成长,高纯度及改性酚醛树脂也在半导体封装材料、印制电路基板材料和光刻胶领域,发挥着越来越重要的作用。现代对酚醛泡沫反应机理和生产工艺的不断研发,已使酚醛泡沫材料应用于民用建筑、采矿等领域。各种改性酚醛树脂作为增粘、增硬、补强材料,也不断地应用于橡胶配方的改进之中。酚醛树脂是以酚类(苯酚、甲酚、间苯二酚等)与醛类(甲醛、糠醛等)为原料,在催化剂作用下缩聚而成。根据合成条件及用途的不同,酚醛树脂可分为热塑性酚醛树脂和热固性酚醛树脂。酚醛树脂与其他热固性树脂比较,其固化温度较高,固化树脂的力学性能、耐化学腐蚀性可与不饱和聚酯相当,但不及环氧树脂。酚醛树脂的脆性比较大、收缩率高、不耐碱、易吸潮、电性能差,不及聚酯和环氧树脂[1]。针对此问题,需要提出多种改性酚醛树脂增韧及耐热改性的方法。 二、酚醛树脂的重要性能 (1)高温性能 酚醛树脂最重要的特征就是耐高温性,即使在非常高的温度下,也能保持其结构的整体性和尺寸的稳定性。正因为这个原因,酚醛树脂才被应用于一些高温领域,例如耐火材料,摩擦材料,粘结剂和铸造行业酚醛树脂耐火材料 (2)粘结强度 酚醛树脂一个重要的应用就是作为粘结剂。酚醛树脂是一种多功能,与各种各样的有机和无机填料都能相容的物质。设计正确的酚醛树脂,润湿速度特别快。并且在交联后可以为磨具、耐火材料,摩擦材料以及电木粉提供所需要的机械强度,耐热性能和电性能。水溶性酚醛树脂或醇溶性酚醛树脂被用来浸渍纸、棉布、玻璃、石棉和其它类似的物质为它们提供机械强度,电性能等。典型的例子包括电绝缘和机械层压制造,离合器

聚合物共混理论考试重点

聚合物共混理论重点内容纲要 绪论 1、聚合物共混的3钟基本作用及共混的优势。 聚合物共混可以具有如下3种基本作用 一、通过聚合物共混,显著提高聚合物的性能。 二、通过聚合物共混,在性能基本不变的前提下,降低材料的成本 三、通过聚合物共混,获取新的性能 共混的主要优势在于简便易行,可适应小的生产规模,也可形成大规模生产。 第二章聚合物共混的基本概念 1、共混改性的主要方法及应用。 按照宽泛的聚合物共混概念,共混改性的基本类型可分为物理共混、化学共混和物理/化学共混三大类。共混改性的方法又可按共混时物料的状态划分,分为熔融共混、溶液共混、乳液共混等 (1)熔融共混 熔融共混是将聚合物组分加热到熔融状态后进行共混,熔融共混是采用密炼机、开炼机、挤出机等加工机械进行的。 (2)溶液共混 溶液共混是将聚合物组分溶于溶剂后,进行共混。 (3)乳液共混 乳液共混是将两种或两种以上的聚合物乳液进行共混的方法。 (4)釜内共混 釜内共混(又称为“釜内合金化”)为近年来新问世的共混方法,是两种(或两种以上)聚合物单体同在一个聚合釜中完成其聚合过程,在聚合的同时也完成了共混。 2、共混物形态的3中基本类型 共混物的形态多种多样,可分为三种基本类型:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿 “海-岛结构”被称为“单相连续体系”,“海-海结构”被称为“两相连续体系” 3、相容性的基本概念及判断依据 ●热力学相容性 热力学形容性,亦可称为互溶性或溶解性,热力学相容体系是满足热力学相容条件的体系,是达到了分子程度混合的均相共混物。热力学相容条件是混合过程的吉布斯自由能 △Gm<0。 ●溶混性 是指一种共混物具有类似于均相材料所具有的性能,在大多数情况下,可以用玻璃化转变温度Tg作为均相体系判定的标准,相应地,可以把Tg作为相容性的判断标准。 ●广义相容性 是指共混物各组分之间彼此相互容纳的能力。这一相容性概念表示了共混物组分在共混中相互扩散的分散能力和稳定程度。其分为完全相容、部分相容、不相容体系 (1)完全相容体系 形成的共混物具有单一的Tg

聚合物共混改性原理要点整理

名词解释 1.【聚合物共混】:是指两种或两种以上聚合物经过混合制成宏观均匀物质的过程,能增加体系的均匀性。 2.【高分子合金】:是指含多种组分的聚合物均相或多相体系,包括聚合物共混物和嵌段、接枝共聚物,一般为具有较高力学性能的工程塑料。 3.【复合材料】:是指由两个或两个以上独立的物理相组成的固体产物,其组成包括基体和增强材料两部分。 4.【杂化材料】:两种以上不同种类的有机、无机、金属材料,在原子、分子水平上杂化,产生具有新型原子、分子集合结构的物质,含有这种结构要素的物质为杂化材料。 5.【分布混合】:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的。指分散相粒子不发生破碎,只改变分散相的空间分布、增加随机性的混合过程。 6.【分散混合】:是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 7.【总体均匀性】:是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小,一般采用数理统计的方法进行定量表征。 8.【分散度】:是指分散相颗粒的破碎程度,一般以分散相平均粒径来表征。 9.【平衡粒径】:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 10.【相逆转】:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。

简答题 1.试述共混物形态结构形态的3种基本类型?并简述其特点。 答:主要分为(1)均相体系,共混物中只有一个连续相;(2)两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中;(3)两相体系,两相都为连续相,相互贯穿。 2.试述均相体系的判定方法? 答:可以利用玻璃化转变温度(T g)作为判定标准。如果两种聚合物共混后,形成的共混物具有单一的T g,则就可以认为该共混体系为均相体系;如果形成的共混物具有两个T g,则就可以认为该共混物为两相体系。 3.分别简述热力学相容性与广义相容性的涵义,并且两者进行比较。 答:热力学相容性也可称为互溶性或溶解性,该体系是满足热力学相容条件的体系,是达到了分子程度混合的均相共混物,条件是混合过程吉布斯自由能ΔG m<0。而广义相容性是从实用角度提出的,是指共混物各组分之间相互容纳的能力,这一相容性概念表示了共混组分在共混中相互扩散的分散能力和稳定程度。 广义相容性与热力学相容性是有区别的,热力学相容与热力学不相容是相应的热力学条件,即吉布斯自由能ΔG m<0。 4.简述分散相颗粒分散过程的两个主要机理。 答:(1)液滴分裂机理。在分散相颗粒分散过程中,一个分散相大粒子分裂成两个较小的粒子,然后,较小的粒子再进一步分裂,是一种逐步进行的重复破裂过程。(2)细流线破裂机理。分散相大粒子先变为细流线,细流线再在瞬间破裂成细小的粒子。 5.影响共混过程中的5个主要因素是什么? 答:①聚合物两相体系的熔体黏度以及熔体弹性;②聚合物两相体系的界面能;③聚合物两相体系的组分含量配比以及物料初始状态;④流动场的形式和强度;⑤共混时间(共混物料在混合设备各个区段的停留时间)。 6.采用哪些办法,可以对聚合物熔体黏度进行调控? 答:①调节共混温度。利用聚合物熔体黏度与温度的关系,通过调节共混温度,可以调控共混体系的熔体黏度比值;②调节剪切应力。聚合物熔体通常具有切力变稀的流变特性,而不同聚合物熔体对剪切应力的敏感程度是不同的,因此,剪切应力可以调控熔体黏度;③调节助剂含量。如填充剂、软化剂等;④调节相对分子质量。在其他性能的许可的条件下,适当调节共混组成的相对分子质量,有助熔体黏度的调控。

相关主题
文本预览
相关文档 最新文档