当前位置:文档之家› 基于MSP430F149实现的多路数据采集器

基于MSP430F149实现的多路数据采集器

基于MSP430F149实现的多路数据采集器
基于MSP430F149实现的多路数据采集器

基于MSP430F149实现的多路数据采集器一·方案论证

1·控制器:

方案一:采用AT89S52八位单片机实现。单片机软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制。而且体积小,硬件实现简单,安装方便。既可以单独对多传感器控制工作,还可以与PC机通信。运用主从分布式思想,由一台上位机(PC微型计算机),下位机(单片机)多点数据采集,组成两级分布式多点温度测量的巡回检测系统,实现远程控制。另外AT89C51在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟[1]。不过,其自身功能不够丰富,需要更多的外接电路来实现复杂功能。

方案二:使用MSP430作控制器,德州仪器 (TI) 的超低功率16位RISC 混合信号处理器MSP430产品系列为电池供电测量应用提供了最终解决方案。作为混合信号和数字技术的领导者,TI创新生产的MSP430,使系统设计人员能够在保持独一无二的低功率的同时同步连接至模拟信号、传感器和数字组件。

综上,我们的控制器采用方案二。

2·显示模块:

12864液晶显示器是一种具有 4 位/8 位并行、2 线或3 线串行多种接口方式,内部含

有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为 128×64, 内置8192 个 16*16 点汉字,和128个16*8点 ASCII 字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示 8×4 行 16×16 点阵的汉字. 也可完成图形显示.低电压低功耗是其又一显著特点。由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该

模块的价格也略低于相同点阵的图形液晶模块。所以本项目采用12864显示。

3·供电系统:

5V可由LM7805稳压电路转换而来,供液晶使用;3.3V则由SPX117产生,供单片机以及信号调理电路使用。

4·滤波电路

4~20mA电流信号经75欧姆采样电阻转换成0.3V~1.5V电压信号,经过低通滤波器后进入运放,通过射极跟随器连接到单片机IO口。在输入运放之前采用一阶低通滤波来减小高频的共模干扰,射极跟随器起的作用是,保护后级电路和实现阻抗匹配。

二·系统组成结构框图

如图所示:外部信号通过模拟信号调理电路将外界输入的4~20mA电流转换成0~1.5V 的电压信号用ADC10模块进行采集通过单片机的内部运算将电压信号转换成需要显示的电流信号。模拟信号调理版由采样电阻,低通滤波以及射极跟随器组成。采样电阻将输入的电

流信号转换成电压信号,低通滤波减少存在于输入端的共模干扰,射极跟随器起到减小输出阻抗以及保护后级电路的作用。模拟信号调理版将输入的4~20mA电流信号转换成0.3~1.5V 的电压信号通过单片机进行采集。采集完成后送往点阵液晶进行显示。

三·电路图

传感器接口

单片机电路

RS232转换电路

3.3V稳压电源

5V稳压电源

PCB版图

四·软件流程图

下图为本系统软件主流程图。

系统上电后,对各模块进行初始化,包括:A/D模块、定时器、看门狗、LCD以及串口等。然后判断采样方式,进行采样和显示,系统默认的采样方式为循环采样。

主程序

#include

#include"UART.h"

#include"ADC12.h"

#include"12864.h"

#include"Key.h"

void main()

{

WDTCTL=WDTPW+WDTHOLD;

UartInit();

display_init();

showNo = 0;

gap = 1;

gapTime=10;

TaTemp=0;

CCTL0 = CCIE; // CCR0 interrupt enabled/

CCR0 = 50000;

TACTL = TASSEL_2 + MC_1; // SMCLK, contmode

welcome();

ADC12Init();

P4OUT&=0xfd; //指示灯用

write_com(0x01);

channelSelect();

for(i=0;i<8;i++)

{

if(channel[i])

{

write_com(0x80+0x40+(2*i));

write_dat(' ');

write_dat(0x31+i);

}

else

{

write_com(0x80+0x40+(2*i));

write_dat(' ');

write_dat(' ');

}

}

// P1DIR=0xff;//测试用的,对功能没有影响__enable_interrupt();

while(1)

{

keyHandle();

Screen_show();

DATA();

/* send(0xffff);

for(i=0;i<8;i++)

{

send(ADresult[i]);

}*/

}

}

// Timer A0 interrupt service routine

#pragma vector=TIMERA0_VECTOR

__interrupt void Timer_A (void)

{

TaTemp+=1;

if(TaTemp >= gapTime)

send(0xffff);

for(i=0;i<8;i++)

{

send(ADresult[i]);

}

// P1OUT^=0x01;//测试用的,对功能没有影响

TaTemp=0;

}

}

总结与思考

通常,在大家使用ADC10是往往只是运用其单次采样模式,而本作品运用AD10,IO模块让大家学会应用顺序采样模式。顺序采样用很多优点,比如在并行度要求不高的情况下可考虑用顺序采样代替,本作品最高可达到0.1ms/8路的采样速度,足以应付速度不高的应用。顺序采样还可以加快采样速度(只需对软件略作修改),当我们通常会对采样值取平均,以降低偶然误差,但这么做也会降低采样速度,如1M的采集速度,采50个数去平均,值只能达到20K但若在此基础上采用8路顺序采样,就可将速度提高到160K,提高了8倍!本作品充分利用了2231的内部资源,完全利用了它的14个IO口,经测试,性能良好。

在本作品基础上,建议读者关于本作品功能的进一步增强进行如下思考:

(1)为了降低8路信号之间的相互干扰,可否在面包板上自己搭建在采集板上能否加入硬件隔离电路?

(2)硬件运用了大量的无源滤波电路,为了实现更好的阻抗匹配是否可使用使用有源滤波?(3)用取样电阻的方式将电流转换成电压会浪费精度。Eg:将4~20mA的电流信号用取样电阻进行取样只能转换成0.3~1.5V的电压。浪费了0.3V以下的电压。可否设计一种电路使其充分利用精度范围.

(4)程序中运用软件延时控制采集间隔,为了更好地节省CPU资源,可否运用Timer解决延时问题。

数据采集卡技术原理

核心提示:一、数据采集卡の定义:数据采集卡就是把模拟信号转换成数字信号の设备,其核心就是A/D芯片。二、数据采集简介:在计算机广泛应用の今天,数据采集の重要性是十分显著の。它是计算机与外部物理世界连接の桥梁。各种类型信号采集の难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多の实际の问题要解决。假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。时 一、数据采集卡の定义: 数据采集卡就是把模拟信号转换成数字信号の设备,其核心就是A/D芯片。 二、数据采集简介: 在计算机广泛应用の今天,数据采集の重要性是十分显著の。它是计算机与外部物理世界连接の桥梁。各种类型信号采集の难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多の实际の问题要解决。 假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。时间间隔Δ t 被称为采样间隔或者采样周期。它の倒数1/ Δ t 被称为采样频率,单位是采样数 / 每秒。t=0, Δ t ,2 Δ t ,3 Δ t …… 等等, x(t) の数值就被称为采样值。所有x(0),x( Δ t),x(2 Δ t ) 都是采样值。这样信号x(t) 可以用一组分散の采样值来表示: 下图显示了一个模拟信号和它采样后の采样值。采样间隔是Δ t ,注意,采样点在时域上是分散の。 图 1 模拟信号和采样显示 如果对信号 x(t) 采集 N 个采样点,那么 x(t) 就可以用下面这个数列表示: 这个数列被称为信号 x(t) の数字化显示或者采样显示。注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或Δ t )の信息。所以如果只知道该信号の采样值,并不能知道它の采样率,缺少了时间尺度,也不可能知道信号 x(t) の频率。 根据采样定理,最低采样频率必须是信号频率の两倍。反过来说,如果给定了采样频率,

34970A数据采集器中文说明书

Agilent34970A 数据采集仪基本操作实验 一、实验目的 1.了解Agilent34970A数据采集仪的基本结构和功能。 2.了解Agilent34901A测量模块的基本功能和工作原理。 3.学习Agilent34970A数据采集仪使用面板进行数据采集的方法。 二、实验要求 1.根据Agilent34970A数据采集仪用户手册,掌握各开关、按钮的功能与作用。 2.通过Agilent34901A测量模块,分别对J型热电偶、Pt100、502AT热敏电组、直流电压、直流电流进行测量。 三、实验内容与步骤 1.实验准备 Agilent34970A数据采集仪的基本功能与性能。Agilent 34970A数据采集仪是一种精度为6位半的带通讯接口和程序控制的多功能数据采集装置,外形结构如图1、图2所示:

其性能指标和功能如下: 1.仪器支持热电偶、热电阻和热敏电阻的直接测量,具体包括如下类型: 热电偶:B、E、J、K、N、R|T型,并可进行外部或固定参考温度冷端补偿。 热电阻:R0=49?至?,α=(NID/IEC751)或α=的所有热电阻。 热敏电阻:k?、5 k?、10 k?型。

2.仪器支持直流电压、直流电流、交流电压、交流电流、二线电阻、四线电阻、频率、周期等11种信号的测量。 3.可对测量信号进行增益和偏移(Mx+B)的设置。 4.具有数字量输入/输出、定时和计数功能。 5.能进行度量单位、量程、分辨率和积分周期的自由设置。 6.具有报警设置和输出功能。 7.热电偶测量基本准确度:℃,温度系数:℃。 8.热电阻测量基本准确度:℃,温度系数:℃。 9.热敏电阻测量基本准确度:℃,温度系数:℃。 10.直流电压测量基本准确度:+(读数的℅+量程的℅)。 11.直流电流测量基本准确度:+(读数的℅+量程的℅)。 12.电阻测量基本准确度:+(读数的℅+量程的℅)。 13.交流电压测量基本准确度:+(读数的℅+量程的℅)(10Hz~20kHz 时)。 14.交流电流测量基本准确度:+(读数的℅+量程的℅)(10Hz~5kHz 时)。 15.频率、周期测量基本准确度:(读数的℅)(40Hz~300kHz时)。16.具有系统状态、校准设置和数据存储等功能。 Agilent34970A 数据采集仪的面板按钮功能与作用。 1. 在所显示的通道上配置测量参数:

微机原理课程设计报告--数据采集系统三(中断法)

微机原理课程设计 课设题目:数据采集系统三(中断法) 实验者姓名: 实验者学号: 学院: 数据采集系统三(中断法) 一、实验目的 进一步掌握微机原理知识,了解微机在实时采集过程中的应用,学习、掌握编程和程序调试方法。 二、实验内容 1、用中断法,将ADC 0809通道0外接0 ~ 5V电压,转换成数字量后,在七段LED 数码管上,以小数点后两位(几十毫伏)的精度,显示其模拟电压的十进值;0809通道0的数字量以线性控制方式送DAC0832输出,当通道0的电压为5V时,0832的OUT为0V, 当通道0的电压为0时,0832的OUT为2.5V;此模拟电压再送到ADC 0809通道1,转换后的数字量在CRT上以十六进制显示。 2、ADC 0809 的CLK 脉冲,由定时器8254的OUT0提供;ADC 0809的EOC信号,用作8259中断请求信号。 3、要有较好的人机对话界面;控制程序的运行。 三、总体设计 1 、ADC 0809的IN0采集电位器0 — 5V电压,IN1采集0832输出的模拟量。 2 、DAC 0832将ADC 0809的IN0数字量后重新转换成模拟量输出。 3、8259用于检测ADC 0809转换是否结束和向CPU发送INTR信号 4、 8255为七段LED数码管显示提供显示驱动信息。 5、七段LED数码管显示ADC 0809的IN0的值。 6、8254提供ADC 0809的采样时钟脉冲。 7、有良好的人—机对话界面。系统运行时,显示主菜单,开始数据采集, 在数据采集时, 主键盘有键按下, 退出返回DOD系统。 四、硬件设计 因采用了PC机和微机实验箱, 硬件电路设计相对比较简单, 主要利用微机实验箱上的8255并行口、ADC 0809、DAC 0832、七段LED数码管单元、8254定时/计数器、74LS574输出接口、电位器等单元电路, 就构成了数据采集系统, 硬件电原理框图4-3-1所示。 五、软件设计 本设计通过软件编程,实现模/数转换器0809分别对IN0 0-5V直流电压的采样,和

数据采集卡技术原理

核心提示:一、数据采集卡①定义: 数据采集卡就是把模拟信号转换成数字信 号①设备,其核心就是A/D芯片。二、数据采集简 介:在计算机广泛应用①今天, 数据采集①重要性是十分显著①。它是计算机与外部物理世界连接①桥梁。各种类型信号采集①难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多①实际①问题要解决。假设现在对一个模拟信号x(t)每 隔△ t时间采样一次。时 一、数据采集卡①定义: 数据采集卡就是把模拟信号转换成数字信号①设备,其核心就是A/D芯片。 二、数据采集简介: 在计算机广泛应用①今天,数据采集①重要性是十分显著①。它是计算机与外部物理世界连接①桥梁。各种类型信号采集①难易程度差别很大。实际采集时,噪声也可能带来 一些麻烦。数据采集时,有一些基本原理要注意,还有更多①实际①问题要解决。 假设现在对一个模拟信号x(t)每隔△ t时间采样一次。时间间隔△ t被称为采样间隔或者采样周期。它①倒数1/ △ t被称为采样频率,单位是采样数/每秒。t=0, △ t ,2 △ t ,3 A t……等等,x(t)①数值就被称为采样值。所有x(0),x( △ t),x(2 △ t )都是采样值。这样信号x(t) 可以用一组分散①采样值来表示: 下图显示了一个模拟信号和它采样后①采样值。采样间隔是A t ,注意,采样点在时域上是分散

①。 如果对信号x(t)采集N个采样点,那么x(t)就可以用下面这个数列表示: 这个数列被称为信号x(t)①数字化显示或者采样显示。注意这个数列中仅仅用下标变 量编制索引,而不含有任何关于采样率(或△ t)o信息。所以如果只知道该信号①采样 值,并不能知道它①采样率,缺少了时间尺度,也不可能知道信号x(t)①频率。 根据采样定理,最低采样频率必须是信号频率①两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变①最大频率叫做恩奎斯特频率,它是采样频率①一半。 如果信号中包含频率高于奈奎斯特频率①成分,信号将在直流和恩奎斯特频率之间畸变。图2显示了一个信号分别用合适①采样率和过低①采样率进行采样①结果。 采样率过低①结果是还原①信号①频率看上去与原始信号不同。这种信号畸变叫做混叠(alias )。出现①混频偏差(alias frequency )是输入信号①频率和最靠近①采样率

51单片机数据采集系统

课程设计报告书 设计任务书 一、设计任务 1一秒钟采集一次。 2把INO口采集的电压值放入30H单元中。 3做出原理图。 4画出流程图并写出所要运行的程序。 二、设计方案及工作原理 方案: 1. 采用8051和ADC0809构成一个8通道数据采集系统。 2. 能够顺序采集各个通道的信号。

3. 采集信号的动态范围:0~5V。 4. 每个通道的采样速率:100 SPS。 5.在面包板上完成电路,将采样数据送入单片机20h~27h 存储单元。 6.编写相应的单片机采集程序,到达规定的性能。 工作原理: 通过一个A/D转换器循环采样模拟电压,每隔一定时间去采样一次,一次按顺序采样信号。A/D转换器芯片AD0809将采样到的模拟信号转换为数字信号,转换完成后,CPU读取数据转换结果,并将结果送入外设即CRT/LED显示,显示电压路数和数据值。 目录 第一章系统设计要求和解决方案 第二章硬件系统 第三章软件系统 第四章实现的功能 第五章缺点及可能的解决方法 第六章心得体会

附录一参考文献 附录二硬件原理图 附录三程序流程图 第一章系统设计要求和解决方案 根据系统基本要求,将本系统划分为如下几个部分: ●信号调理电路 ●8路模拟信号的产生与A/D转换器 ●发送端的数据采集与传输控制器 ●人机通道的接口电路 ●数据传输接口电路 数据采集与传输系统一般由信号调理电路,多路开关,采样保持电路,A/D,单片机,电平转换接口,接收端(单片机、PC或其它设备)组成。系统框图如图1-1所示

1.1 信号采集分析 被测电压为0~5V 直流电压,可通过电位器调节产生。 1.1.1 信号采集 多路数据采集系统多采用共享数据采集通道的结构形式。 数据采集方式选择程序控制数据采集。 程序控制数据采集,由硬件和软件两部分组成。,据不同的采集需要,在程序存储器中,存放若干种信号采集程序,选择相应的采集程序进行采集工作,还可通过编新的程序,以满足不同采样任务的要求。如图1-3所示。 程序控制数据采集的采样通道地址可随意选择,控制多路传输门开启的通道地址码由存储器中读出的指令确定。即改变存储器中的指令内容便可改变通道地址。 由于顺序控制数据采集方式 缺乏通用性和灵活性,所以本设计中选用程序控制数据采集方式。 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,A/D 转换器前端还需加采样/保持(S/H)电路。 待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D 转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。 通常希望输入到A/D 转换器的信号能接近A/D 转换器的满量程以保证转换精度,因此在直流电流电源输出端与A/D 转换器之间应接入放大器以满足要求。 本题要求中的被测量为0~5V 直流信号,由于输出电压比较大,满足A/D 转换输入的要求,故可省去放大器,而将电源输出直接连接至A/D 转换器输入端。 多路数据采集输入通道的结构图1-4所示。 图1-3 程序控制数据采集原理

数据采集器原理

数据采集器原理 为商品流通环节而设计的数据采集器(Bar一code Hand Terminal)或称掌上电脑,其具有一体性、机动性、体积小、重量轻、高性能,并适于手持等特点。它是将条码扫描装置与数据终端一体化,带有电池可离线操作的终端电脑设备。 它具有中央处理器(CPU),只读存储器(ROM)、可读写存储器(RAM)、键盘、屏幕显示器、与计算机接口。条码扫描器,电源等配置,手持终端可通过通讯座与计算机相连用于接收或上传数据,手持终端的运行程序是由计算机编制后下载到手持终端中,可按使用要求完成相应的功能。 数据采集器可用于补充订货、接收订货、销售、入出库、盘点和库存管理以及物流管理等方面。 目前,国内常用的数据采集器有美国Symbol公司的PDT3100、国内公司的LK-PT921等,价格一万多元到两万元。数据采集器有效地解决了商品在流转过程中数据的标识和数量确认的问题,是保证系统的信息快速、准确进行处理的有效手段,由于设备的价格相对较高,商品还没有达到全部通用条码化,数据采集器的普及率还较低,还有待于不断推广。 二、数据采集器的程序功能 数据采集器的操作程序是根据实际的需要进行编制的,必须充分考虑操作使用过程的方便、灵活和通用性。 数据采集器的一般功能 数据采集器应具有数据采集、数据传送、数据删除和系统管理等功能。 数据采集 是将商品的条码通过扫描装置读入,对商品的数量直接进行确认或通过键盘录入的过程,在数据采集器的存储器中以文本数据格式存储,格式为条码(C20)、数量(N4)。 数据传送 数据传送功能有数据的下载和上传。 数据下载是将需要数据采集器进行确认的商品信息从计算机中传送到数据采集器中,通过数据采集器与计算机之间的通讯接口,在计算机管理系统的相应功能中运行设备厂商所提供的数据传送程序,传送内容可以包括:商品条码、名称和数量。数据的下载可以方便地在数据采集时,显示当前读入条码的商品名称和需确认的数量。 数据上传是将采集到的商品数据通过通讯接口,将数据传送到计算机中去,再通过计算机系统的处理,将数据转换到相应的数据库中。 数据删除 数据采集器中的数据在完成了向计算机系统的传送后,需要将数据删除,否则会导致再次数据读入的迭加,造成数据错误。有些情况下,数据可能会向计算机传送多次,待数据确认无效后,方可实行删除。 系统管理 系统管理功能有检查磁盘空间和系统日期时间的调较。 需考虑的一些细节

基于STM32数据采集器的设计

基于STM32数据采集器的设计 关键字:数据采集STM32 MODBUS RS485 数据采集技术在工业、航天、军事等方面具有很强的实用性,随着现代科技发展,数据采集技术在众多领域得到了广泛的应用和发展。同时对数据采集器的精度、抗干扰能力、安全和通信兼容等方面提出了更高的要求。基于上述要求提出了一种基于STM32F101 的数据采 集器的设计方案,该数据采集器使用MODBUS 协议作为RS485 通信标准规约,信号调理电路与STM32F101 的AD 采样通道之间均采用硬件隔离保护,可同时采样3 路DC0-5V 电压信号、3 路DC4-20mA 电流信号和6 路开关量输入信号,实验证明本数据采集器具 有较高的测量精度,符合工业现场应用需求。 信号采集主要包括电压信号、电流信号、频率信号以及开关量信号,随着现代技术的发展,传感器主要输出标准的电压电流信号,而传感器是将外部的非电量信号转换成标准的电信号进行输出,本课题所设计的数据采集器可以同时采集电压、电流、开关量输入输出信号,且每个部分独立工作,硬件调理电路中均采用信号隔离技术,数据采集器与上位机采用RS485通信,使用MODBUS协议作为通信规约,便于数据采集器与其他工业设备实现数据共享。 课题设计的基于STM32的数据采集器,使用性价比较高的STM32F101 作为核心处理器,时钟倍频后处理速度可达36MHz ;内部自带12 位AD 转换通道,保证数据采样和处理的速度和精度。 1 数据采集器工作原理 数据采集器具有标准的电压、电流以及开关量输入信号采样接口。模拟量信号采样接口电路,使用HCNR201线性光耦进行信号隔离。电压信号接口可输入DC0-5V 信号,输入的电压 信号经过电压信号调理电路对信号进行滤波、隔离和限幅后送入STM32F101 的AD 采样 通道;电流信号接口可输入4-20mA 信号,输入的电流信号通过精密采样电阻,将电流信 号转换成电压信号,然后再将转换的电压信号送入电压信号调理电路进行处理,最后再送入AD 采样通道;开关量输入接口采用光耦进行隔离,实现光电转换和隔离保护。STM32F101 将采样的数据进行软件处理后,再通过RS485 通信接口将数据上传至上位机或者其他设备,完成数据采集处理和通信的功能。 2 数据采集器硬件设计 数据采集器硬件结构包括STM32 最小系统、电源、开关量输入接口电路、电压信号采样接口电路、电流信号采样接口电路和RS485 通信接口电路,数据采集器结构图如图1 所示。

数据采集的基本原理

数据采集的基本原理 [摘要]在计算机广泛应用的今天,数据采集的重要性是十分显著的。各种类型信号采集的难易程度差别很大,尤其是在采样频率、抗混叠滤波器和样本数等几方面。 [关键词]数据采集噪声采样 算机与外部物理世界连接的桥梁。各种类型信号采集的难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多的实际问题要解决。 如果对信号x(t)采集N 个采样点,那么x(t)就可以用表一这个数列表示: 这个数列被称为信号x(t)的数字化显示或者采样显示。注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或膖)的信息。所以如果只知道该信号的采样值,并不能知道它的采样率,缺少了时间尺度,也不可能知道信号x(t)的频率。 根据采样定理,最低采样频率必须是信号频率的两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的最大频率叫做恩奎斯特频率,它是采样频率的一半。如果信号中包含频率高于奈奎斯特频率的成分,信号将在直流和恩奎斯特频率之间畸变。图2显示了一个信号分别用合适的采样率和过低的采样率进行采样的结果。 采样率过低的结果是还原的信号的频率看上去与原始信号不同。这种信号畸变叫做混叠(alias)。出现的混频偏差(alias frequency)是输入信号的频率和最靠近的采样率整数倍的差的绝对值。 图三:给出了一个例子。假设采样频率fs是100HZ,信号中含有25、70、160、和510Hz的成分。 采样的结果将会是低于奈奎斯特频率(fs/2=50 Hz)的信号可以被正确采样。而频率高于50HZ的信号成分采样时会发生畸变。分别产生了30 、40和10 Hz 的畸变频率F2、F3和F4 。计算混频偏差的公式是: 混频偏差=ABS(采样频率的最近整数倍-输入频率) 其中ABS表示绝对值,例如: 混频偏差F2 = |10070| = 30 Hz

数据采集电路设计

电气工程学院课程设计数据采集电路的设计 学生姓名韩章强 学号2013411107 学院电气工程学院 指导老师雷继海 专业测控技术与仪器 答辩日期

测控电路课程设计任务书 一、设计目的 根据常用的电子技术知识,以及可获得技术书籍与电子文档,初步形成电子设计过程中收集、阅读及应用技术资料的能力;熟悉电子系统设计的一般流程;掌握分析电路原理及对主要技术性能进行测试的常见方法;使学生学会使用电路仿真分析软件(Multisim)在计算机上进行电路设计与分析的方法。 二、任务与要求 设计一个数据采集电路,满足以下条件: 1.结合单片机的课程,选用ADC0808A/D转换器,采集输入实时电压,用四位的共阴数码管显示,并设计完整电路以及程序,仿真调试。 2.设计的精度为小数点后两位,输入电压的范围是0-5v,要求电路图简单合理。 三、进程安排 1.布置任务、查阅资料,方案设计 根据设计要求,查阅参考资料,进行方案设计及可行性论证,确定设计方案,2.上机在Multisim境下按要求进行设计。 3.总结报告 四、所需调试工具 Keil和Multisim软件。

目录 测控电路课程设计任务书 (1) 1 课程设计要求 (4) 2 89C51单片机简介 (4) 2.1ADC0808转换器简介 (4) 2.2引脚功能 (5) 2.3A/D转换原理 (6) 3 时钟电路 (6) 3.1复位电路 (6) 3.2LED显示电路 (7) 4 仿真设计图 (7) 5 仿真心得 (8) 6 程序 (8) 6.1程序调试 (11) 参考文献 (11) 致谢 (12)

摘要:数据采集与显示系统是利用一种装置,从系统外部采集数据并输入到系统内部的一个接口。然后利用处理器处理,最后在显示出来。数据采集与显示技术广泛应用在各个领域。 被采集数据是已被转换为电讯号的各种物理量,如电压、温度、水位、风速、压力等,可以是模拟量,也可以是数字量。采集的数据大多是瞬时值,也可是某段时间内的一个特征值。准确的数据测量是数据采集的基础。不论哪种方法和元件,均以不影响被测对象状态和测量环境为前提,以保证数据的正确性。数据采集含义很广,包括对面状连续物理量的采集。在计算机辅助制图、测图、设计中,对图形或图像数字化过程也可称为数据采集,此时被采集的是几何量(或包括物理量,如灰度)数据。 关键词;数据采集;电路;信号; Abstract Data acquisition and display system is the use of a device, collect data from outside the system and input to the internal system of an interface. Then the processor, finally came up on the screen. Data acquisition and display technology is widely used in various fields. Data is being collected has various physical quantities, are converted to electrical signals such as voltage, temperature, water level, wind pressure, etc., can be analog, also can be the digital quantity. Most of the data collected is instantaneous, but also a feature within a certain period of time value of accurate data measurement is. The basis for data collection. No matter what kind of methods and components are not affected the measured object and measuring environment is the premise to ensure the accuracy of the data. Data acquisition is a very broad meaning, including planar continuous physical collection. In computer aided drawing, mapping, design, digital graphics or image the process is called data acquisition, the acquisition is the geometric volume (including the physical quantities, such as the gray data). Keywords : Data acquisition; Circuit; Signal;

解析数据采集器的工作原理和分类

解析数据采集器的工作原理和分类 数据采集器Datadectionterminal:别名盘点机,数据采集器分类有:手持终端/手持电脑,移动电脑,车载电脑/车载终端/车载计算机,工业终端/工业平板电脑,防爆级电脑 数据采集器用途:条码信息数据采集,并进行数据处理的装置,一般还带有显示窗口和信息输出接口。 数据采集器分类:手持式/固定式/袖珍式/光笔式/手持枪式/固定台式/激光式/卡式/便携式/机械式等数据采集终端。 数据采集器的产品硬件特点: 1、C PU处理器:随着数字电路技术的发展,数据采集终端大多采用16位或是更好的32位C PU(中央微处理器)。CPU的位数、主频等指标的提高,使得数据采集器的数据采集处理能力、处理速度要求越来越高。使用户的现场工作效率得到改善。 2、手持终端内存:目前大多数产品采用FLASH-ROM+RAM型内存。操作系统、应用程序、字库文件等重要的文件存储在FLASH-ROM里面,即使长期的不供电也能够保持。采集的数据存储在RAM里面,依靠电池、后备电池保持数据。由于RAM的读写速度较快,使得操作的速度能够得到保证。手持终端内存容量的大小,决定了一次能处理的数据容量。 3、功耗:包括条码扫描设备的功耗、显示屏的功耗、C PU的功耗等及部分。由电池支持工作。 4、输入设备:包括条码扫描输入、键盘输入两种方式。 5、显示输出:目前的数据采集器大都具备大屏液晶显示屏。能够显示中英文、图形等各种用户信息。同时在显示精度、屏幕的工业性能上面都有较严格的要求。 6、与计算机系统的通讯能力:作为计算机网络系统的延伸,手持终端采集的数据及处理结果要与计算机系统交换信息。 7、外围设备驱动能力: 利用数据采集器的串口、红外口,可以联接各种标准串口设备,或者通过串-并转换可以连结各种并口设备。包括:串并口打印机、调制解调器等,实现电脑的各种功能。 无线数据采集器的特点 便携式数据采集器是对于传统手工操作的优势已经是不言而喻的,然而一种更先进的设备——无线数据采集器则将普通便携式数据采集器的性能进一步的扩展。无线数据采集器大都是便携式的,除了具有一般便携式数据采集器的优点外,还有在线式数据采集器的优点,它与计算机的通讯是通过无线电波来实现的,可以把现场采集到的数据实时传输给计算机。相比普通便携式数据采集器又更进一步的提高了操作员的工作效率,使数据从原来的本机校验、保存转变为远程控制,实时传输。 无线式数据采集器之所以称之为无线,就是因为它不需要像普通便携式数据采集器那样依靠通讯座和PC进行数据交换,而可以直接通过无线网络和PC、服务器进行实时数据通讯。要使用无线手持终端就必须先建立无线网络。无线网络设备——登陆点(AccessPoint)相当于一个连接有线局域网和无线网的网桥,它通过双绞线或同轴电缆接入有线网络(以太网或令牌网),无线手持终端则通过与AP的无线通讯和局域网的服务器进行数据交换。 无线式数据采集器通讯数据实时性强,效率高。无线数据采集器直接和服务器进行数据交换,数据都是以实时方式传输。数据从无线数据采集器发出,通过无线网络到达当前无线终端所在频道的AP,AP通过连接的双绞线或同轴电缆将数据传入有线LAN网,数据最后到达服务器的网卡端口后进入服务器,然后服务器将返回的数据通过原路径返回到无线终端。所有数据都以TC P/IP通讯协议传输。可以看出操作员在无线数据采集器上所有操作后的数据都在第一时间进入后台数据库,也就是说无线数据采集器将数据库信息系统延伸到每一个操作员的手中。 无线数据采集器的产品硬件技术特点与便携式的要求一致,包括C PU、内存、屏幕显示、输入设备、输出设备等等。除此之外,比较关键的就是无线通讯机制。目前使用比较广泛的有无线跳频技术、无线扩频技术两种。应该说两种技术各有优缺点,但是对于普通的仓储物流、零售应用来说,跳频技术由于其抗干扰能力较强,数据传输稳定,所以采用较广泛。 每个无线数据采集器都是一个自带IP地址的网络节点,通过无线的登陆点(AP),实现与网络系统的实时数据交换。

数据采集电路设计

南京理工大学科目现代测量技术与误差分析 学院 姓名 学号 2011年05月06日

一种基于AT89S52的数据采集系统电路设计 摘要 本数据采集系统是以单片机AT89S52 为控制核心的四通道数据采集系统,该数据采集系统具有电路简单、功耗低、可靠性高等优点,能实现对多路模拟通道信号的数据采集与处理。并将采集的数据送经F/V变换电路,使得低频率信号转换为目标电压,从而驱动控制电机。 关键词:单片机,数据采集系统 一.主要功能指标和系统方案选择 1.信号产生器指标分析 由于测试用信号发生器相对独立,可以先进行设计,这部分必须完成两个模块的工作:一是低频正弦波的产生;二是F/V变换电路。在这里低频正弦波的产生可以依赖于现有的芯片完成。ICL8038是一款常见的单片集成函数发生器,其工作频率范围在几赫兹至几千赫兹之间,可同时输出方波、正弦波、三角波3种波形,配以简单的外围电路,能实现输出频率的线性调节,因此,对于该题目,单片集成发生器是一种叫理想的选择。 对于F/V变换器来说,高性能、低成本的LM331是理想的选择。加上输出电压的线性调整电路,就可得到较好的实现方案。 2.四通道数据采集的指标分析 常见的数据采集系统提出采用上位机和下位机两层结构模式。下位常采用单片机完成前端的多路数据采集,上位机则通常用PC机或工控机来实现系统的控制和相关的数据处理机结果显示。有线常用RS-232或RS-485正弦协议等,其上可以运行地址或数据等不同的信号类型,之间采用分时或编码的方式加以区分。 用于采用主从双MCU系统,所以这部分问题的核心在于选择什么芯片。题目要求采样四通道,精度为4位。因此可以采用8位的ADC芯片,在于MCU揭开问题上,常有并行接口和串行接口两中方式。 这里选用RS-485,因为它采用差分传输,两根传输线,有效距离很广,同时能方便扩展多个从机设备。

相关主题
文本预览
相关文档 最新文档