高中物理 波动光学( 光的偏振)习题及答案
- 格式:doc
- 大小:261.00 KB
- 文档页数:4
高中物理波动光学复习题集及答案复习题一:1. 在出射的等厚玻璃板上有一纵切缝,已知光的波长λ,若缝宽为d,请问当入射角为θ时,通过纵切缝的最大次级最亮光条纹的间距Δy 是多少?答案:通过纵切缝的最大次级最亮光条纹的间距Δy为Δy = (λd) / sinθ。
复习题二:2. 元晖台发射站在电子束传播距离100km处设置接收器,电子速度为3×10^7m/s,求电子束频率为多少?答案:电子束的频率f = v / λ,其中v为电子速度,λ为电子束的波长。
由于速度为3×10^7m/s,传播距离为100km,所以λ = v × t = v × (d / v) = d,其中d为传播距离。
因此,电子束的频率f = v / λ = v / d = 3×10^7m/s / 100km = 3×10^14Hz。
复习题三:3. 在一个干涉环中,两个光波的相位差为π/2,若其中一个波的振幅为A,请问干涉环中最亮处的光波振幅是多少?答案:干涉环中最亮处的光波振幅为A。
复习题四:4. 一束波长为500nm的光垂直入射到一厚度为0.5mm介质中,设折射率为1.5,请问以什么样的波长的光波为干涉最强?答案:以两倍波长的光波为干涉最强。
根据干涉条件,1.5 × λ = 2 × λ',其中λ为入射波的波长,λ'为介质中的波长。
解方程可得λ' = 0.75λ,即以0.75倍波长的光波为干涉最强。
复习题五:5. 一束波长为600nm的平行光垂直入射到一厚度为5mm的玻璃片上,设折射率为1.5,请问在玻璃片上出现多少级次级最暗条纹?答案:次级最暗条纹的间距为Δy = (λd) / sinθ,其中λ为入射波的波长,d为玻璃片的厚度,θ为玻璃片的折射角。
根据折射定律,sinθ = λ / (λ' / n),其中λ'为玻璃中的波长,n为玻璃的折射率。
波动光学试题及答案1. 光波的波长为600nm,其频率是多少?答案:根据光速公式c = λν,其中c为光速(约为3×10^8m/s),λ为波长(600×10^-9 m),可得ν = c/λ = (3×10^8m/s) / (600×10^-9 m) = 5×10^14 Hz。
2. 一束光在折射率为1.5的介质中传播,其在真空中的速度是多少?答案:在折射率为1.5的介质中,光的速度v = c/n,其中c为真空中的光速(3×10^8 m/s),n为折射率。
因此,v = (3×10^8 m/s) / 1.5 = 2×10^8 m/s。
3. 光的偏振现象说明了什么?答案:光的偏振现象说明光是一种横波,即光波的振动方向与传播方向垂直。
4. 何为布儒斯特角?答案:布儒斯特角是指当光从一种介质(如空气)入射到另一种介质(如玻璃)时,反射光完全偏振时的入射角。
5. 干涉现象产生的条件是什么?答案:干涉现象产生的条件是两束光波的频率相同、相位差恒定且具有相同的振动方向。
6. 描述杨氏双缝干涉实验的基本原理。
答案:杨氏双缝干涉实验的基本原理是利用两个相干光源(如激光)通过两个相邻的狭缝产生两束相干光波,这两束光波在屏幕上相互叠加,形成明暗相间的干涉条纹。
7. 光的衍射现象说明了什么?答案:光的衍射现象说明光在遇到障碍物或通过狭缝时,其传播方向会发生改变,形成明暗相间的衍射图样。
8. 单缝衍射的中央亮条纹宽度与哪些因素有关?答案:单缝衍射的中央亮条纹宽度与光的波长、缝宽以及观察距离有关。
9. 光的色散现象是如何产生的?答案:光的色散现象是由于不同波长的光在介质中传播速度不同,导致折射率不同,从而在介质界面处发生不同程度的折射。
10. 描述光的全反射现象。
答案:光的全反射现象是指当光从光密介质(折射率较大)向光疏介质(折射率较小)传播时,如果入射角大于临界角,则光线不会折射,而是全部反射回光密介质中。
高中物理光的偏振激光课后习题答案1.什么是光的偏振现象?光的偏振现象对认识光的本性有什么意义?解析:在垂直于光的传播方向的平面上,只沿着某个特定的方向振动的光叫作偏振光,偏振光只能通过偏振方向与它振动方向相同的偏振片的现象叫做光的偏振现象,光的偏振现象说明光是一种横波。
从光的偏振概念来分析,偏振现象是横波独有的现象,纵波不会发生偏振现象。
2.市场上有一种太阳镜,它的镜片是偏振片。
为什么不用普通的带色玻璃而用偏振片?安装镜片时它的透振方向应该沿什么方向?利用偏振眼镜可以做哪些实验,做哪些检测?解析:两者的目的都是减少通光量,但普通带色玻璃改变了物体的颜色,而偏振片不会,并且会使看到的景物色彩柔和。
安装镜片时,两镜片的透振方向应相互垂直。
利用偏振镜片可以检验光波是不是横波,也可以检测某一光波是不是偏振光。
比如检测镜面的反射光、玻璃的折射光是不是偏振光。
3.激光是相干光源。
根据激光的这个特点,可以将激光应用在哪些方面?解析:可以将激光应用在检查物体表面平整度和全息照相等方面。
4.一张光盘可以记录几亿个字节,其信息量相当于几千本十多万字的书,其中一个重要的原因就是光盘上记录信息的轨道可以做得很密,1 mm 的宽度至少可以容纳 650 条轨道。
这是应用了激光的什么特性?解析:利用了激光的平行度好的特点。
5.激光可以在很小的空间和很短的时间内聚集很大的能量。
例如一台红宝石巨脉冲激光器,激光束的发散角只有 10-3 rad,在垂直于激光束的平面上,平均每平方厘米面积的功率达到 109 W。
激光的这一特性有哪些应用价值?请你举例说明。
解析:可以利用激光束来切割、焊接以及在很硬的材料上打孔。
医学上可以用激光刀作为“光刀”来切开皮肤、切割肿瘤,还可以用激光“焊接”脱落的视网膜。
19光的偏振习题解答第⼗九章光的偏振⼀选择题1. 把两块偏振⽚⼀起紧密地放置在⼀盏灯前,使得后⾯没有光通过。
当把⼀块偏振⽚旋转180?时会发⽣何种现象:()A. 光强先增加,然后减⼩到零B. 光强始终为零C. 光强先增加后减⼩,然后⼜再增加D. 光强增加,然后减⼩到不为零的极⼩值解:)2π(cos 20+=αI I ,α从0增⼤到2π的过程中I 变⼤;从2π增⼤到π的过程中I 减⼩到零。
故本题答案为A 。
2. 强度为I 0的⾃然光通过两个偏振化⽅向互相垂直的偏振⽚后,出射光强度为零。
若在这两个偏振⽚之间再放⼊另⼀个偏振⽚,且其偏振化⽅向与第⼀偏振⽚的偏振化⽅向夹⾓为30?,则出射光强度为:()A. 0B. 3I 0 / 8C. 3I 0 / 16D. 3I 0 / 32解:0000202032341432)3090(cos 30cos 2I I I I =??=-=。
故本题答案为D 。
3. 振幅为A 的线偏振光,垂直⼊射到⼀理想偏振⽚上。
若偏振⽚的偏振化⽅向与⼊射偏振光的振动⽅向夹⾓为60?,则透过偏振⽚的振幅为:()A. A / 2B.2 / 3A C. A / 4 D. 3A / 4解:0222'60cos A A =,2/'A A =。
故本题答案为A 。
4. ⾃然光以60?的⼊射⾓照射到某透明介质表⾯时,反射光为线偏振光。
则()A 折射光为线偏振光,折射⾓为30?B 折射光为部分偏振光,折射⾓为30?C 折射光为线偏振光,折射⾓不能确定D 折射光为部分偏振光,折射⾓不能确定解:本题答案为B 。
5. 如题图所⽰,⼀束光垂直投射于⼀双折射晶体上,e o 选择题5图晶体的光轴如图所⽰。
下列哪种叙述是正确的?()A o光和e光将不分开B n e>n oC e光偏向左侧D o光为⾃然光解:本题答案为C。
6. 某晶⽚中o光和e光的折射率分别为n o和n e(n o>n e),若⽤此晶⽚做⼀个半波⽚,则晶⽚的厚度应为(光波长为λ):()A λ / 2B λ / 2n oC λ / 2n eD λ / 2(n o-n e)解:本题答案为D7. ⼀束圆偏振光经过四分之⼀波⽚后,()A. 仍为圆偏振光B. 为线偏振光C. 为椭圆偏振光D. 为⾃然光解:本题答案为B。
第11章 波动光学一. 基本要求1. 解获得相干光的方法。
掌握光程的概念以及光程差与相位差的关系。
2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。
3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。
4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 理解自然光和偏振光及偏振光的获得方法和检验方法。
6. 理解马吕斯定律和布儒斯特定律。
二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。
产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。
获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。
2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。
若光波先后通过几种介质,其总光程为各分段光程之和。
若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。
来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。
3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。
其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,( λλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。
第11章 波动光学一. 基本要求1. 解获得相干光的方法。
掌握光程的概念以及光程差与相位差的关系。
2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。
3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。
4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 理解自然光和偏振光及偏振光的获得方法和检验方法。
6. 理解马吕斯定律和布儒斯特定律。
二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。
产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。
获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。
2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。
若光波先后通过几种介质,其总光程为各分段光程之和。
若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。
来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。
3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。
其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,(ΛΛλλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。
光的偏振和偏振方向练习题一、选择题(单选)1. 偏振光的特点是()。
a)振动方向与传播方向垂直b)振动方向与传播方向平行c)振动方向与传播方向夹角为45度d)振动方向与传播方向相反2. 光的偏振是指()。
a)光的振动方向恒定不变b)光的传播速度不同c)光的波长不同d)光的频率不同3. 偏振片是利用()进行光的偏振。
a)反射b)折射c)干涉d)吸收4. 偏振片的主要作用是()。
a)将非偏振光转化为偏振光b)将偏振光转化为非偏振光c)改变光的波长d)改变光的强度5. 两个互相垂直的偏振片的透过光强度()。
a)最大b)最小c)为零d)不受偏振片方向影响二、判断题(对错)1. 当光的振动方向与偏振片方向垂直时,光完全透过偏振片。
2. 两个互相平行的偏振片的透过光强度为零。
3. 光在经过偏振片后,无论振动方向如何改变,传播速度始终保持不变。
4. 光的偏振方向与电场振动方向垂直。
5. 偏振片的透过光强度与偏振片的厚度无关。
三、简答题1. 定义偏振现象,并解释为什么会发生偏振。
2. 请简述偏振片的工作原理,并举例说明偏振片在实际中的应用。
3. 光的偏振方向可以改变吗?如果可以,请说明原因。
四、应用题1. 一个 unpolarized 光源 S 发出的光通过一个偏振片 P1,然后垂直于 P1 的方向放置了另一个垂直偏振片 P2。
求通过 P2 透射光的强度与光源 S 发出的光强度的比值。
2. 一个 unpolarized 光源 S 发出的光通过一个偏振片 P1,然后将 P1 逆时针旋转 30 度,再通过另一个逆时针旋转 45 度的偏振片 P2。
求通过 P2 透射光的强度与光源 S 发出的光强度的比值。
参考答案:一、选择题(单选)1. a)振动方向与传播方向垂直2. a)光的振动方向恒定不变3. a)反射4. a)将非偏振光转化为偏振光5. c)为零二、判断题(对错)1. 对2. 错3. 对4. 对5. 对三、简答题1. 偏振现象是指光中的电场振动方向在某一平面上的变化。
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
一. 选择题
[
A ]1. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射
光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为
(A) 1 / 2. (B) 1 / 3. (C) 1 / 4. (D) 1 / 5.
提示:
[ D ]2. 某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质
时的布儒斯特角是
(A) 35.3°.
(B) 40.9°.
(C) 45°. (D) 54.7°. (E) 57.3°.
[ ]3. 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,
则在界面2的反射光
(A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光. 提示:
[ ]4. 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为22
12
cos :cos αα
提示:
二. 填空题
1. 如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S ,在屏幕上能看到干涉条纹.若在双缝S 1和S 2的一侧分别加一同质同厚的偏振片P 1、P 2,则当P 1与P 2的偏振化方向相互___平行________时,在屏幕上仍能看到很清晰的干涉条纹.
提示:
要相互平行。
致”,两个偏振片方向
为了满足“振动方向一
致,相位差恒定。
频率相同,振动方向一件:
两束光必须满足相干条为了看到清晰的条纹,
2. 要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过_____2_____块理想偏振片.在此情况下,透射光强最大是原来光强的___1/4_____倍 。
提示:如图
P 2
P 1
S 1
S 2
S
3. 在以下五个图中,前四个图表示线偏振光入射于两种介质分界面上,最后一图表示入射光是自然光.n 1、n 2为两种介质的折射率,图中入射角i 0=arctg (n 2/n 1),i ≠i 0.试在图上画出实际存在的折射光线和反射光线,并用点或短线把振动方向表示出来.
提示:作图时注意细节。
三. 计算题
1. 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求
(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?
(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.
解:设自然光的光强为I ,则线偏振光的光强也为I ,总光强为2I ,
(1)过P 1后,2
1cos 2
I I I θ=
+
另外,由已知条件得:124(2)3
3
I I I ==
得:0
2
24,6
5cos ==
θθ
(2)过P 2后,2
211334cos 30(
)4
4
3
I I I I I ==
=
⨯=
21222
I I I
I
∴==
2. 有一平面玻璃板放在水中,板面与水面夹角为
θ (见图).设水和玻璃的折射率分别为 1.333和
1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?
解:设空气的折射率为n 0 =1,水的折射率为n 1,玻
璃的折射率为n 2
依题意:是布儒斯特角
和21i i ,0
1110
1.333, 53.12, n tgi i n =
=∴=
000
21221
1.517 9036.88, 1.138, 48.691.333
n r i tgi i n =-==
=
=∴=
由ΔABC 的内角和=π,得ππ
π
θ=-+++)2
(
)2
(
2i r ,
281.1188
.3669
.48=-=-=∴r i θ
3. 一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.
解:(1)由空气入射到不透明介质:
482.1tg56
,
56,
11==∴===
介介空
介依题意,n i n n n tgi
(2)由水中入射到该介质表面:0
2209.48114.133
.1482.1===
=
i n n tgi ,
水
介
4. 如图安排的三种透光媒质Ⅰ、Ⅱ、Ⅲ,其折射率分别为
n 1=1.33,n 2=1.50,n 3=1.两个交界面相互平行.一束自然光
自媒质Ⅰ中入射 到Ⅰ与Ⅱ的交界面上,若反射光为线偏振光,
(1) 求入射角i . (2) 媒质Ⅱ、Ⅲ界面上的反射光是不是线偏振光?为什么?
解:
(1)依题意,Ⅰ与Ⅱ的交界面上,反射光为线偏振光,
所以入射角i 是布儒斯特角: ,
4.48,
128.133
.150.10
1
2=∴===
i n n tgi
(2)媒质Ⅱ、Ⅲ界面上的入射角为r,i r -=0
90
,1)90(2
32
10
n n n n tgi
ctgi i tg tgr ≠
=
=
=-=
不满足布儒斯特定律,所以,反射光不是线偏振光。
C。