当前位置:文档之家› 信号源基础知识1

信号源基础知识1

信号源基础知识1
信号源基础知识1

信号源基础知识1

————————————————————————————————作者: ————————————————————————————————日期:

?

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型 LED 显示器 可调 DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共 7 档) 频率控制Separate coarse and fine tuning 失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (±10%) 交流 100V/120V/220V/230V ±10%, 50/60Hz 电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1 230(宽) × 95(高) × 280(长) mm,约 2.1 公斤 信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率 1.信号发生器面板: (1)电源开关; (2)信号输出端子; (3)输出信号波形选择;

信号基础知识

目录 1相关概念及基础知识 (2) 1.1相关概念 (2) 1.2基础知识 (6) 1.2.1警冲标位置计算 (6) 1.2.1.1道岔尖轨至警冲标距离的计算 (6) 1.2.1.2道岔相关尺寸表 (6) 1.2.1.3警冲标计算举例及举例站场 (8) 1.2.2侵限绝缘 (10) 1.2.2.1侵限绝缘3.5米标准由来 (10) 1.2.2.2双边侵限 (11) 1.2.2.3单边侵限 (12) 1.2.2.4侵限绝缘的几种情况 (13) 1.2.3接近轨延长 (15) 1.2.46‰化简坡度的计算 (18) 1.2.5道岔位置及长度 (19)

摘要:在做数据设计与测试之前很重要的一步工作是对信号平面图和联锁表的审核,只有信号平面图和联锁表是正确的,才能更有效地进行设计、审核、确认等工作,否则输入文件出错,后续工作跟着出错,部分工作走了弯路。为了指导对信号平面图的审核和对特殊联锁的测试工作,编制此文。 1 相关概念及基础知识 1.1相关概念 【道岔】:道岔是列车从一股道转向另一股道的转辙设备,它是铁路线路中最关键的特殊设备,也是铁路信号设备的主要控制对象之一。 【联锁】:为了保证安全,在进路、道岔、信号机之间存在着某些互相制约的关系,我们把这种互相制约关系叫做联锁。 【进路】:列车或调车车列在站内运行使所经由的路径称为进路。 【抵触进路】:能由同一组道岔位置进行区分的不能同时建立的进路称为抵触进路。抵触进路不需要进行联锁处理,联锁表中不体现。 【敌对进路】:不能由道岔位置进行区分,且存在敌对关系的进路称为敌对进路。【顺向道岔】:列车顺着道岔尖轨运行时,该道岔就叫顺向道岔。如果道岔处于非进路开通方向时,列车强行驶过,最多造成道岔挤岔,挤断挤切销或造成道岔挤脱,列车不会发生脱线或颠覆事故,故称为顺向道岔。 【对向道岔】:列车迎着道岔尖轨运行时,该道岔就叫对向道岔。当列车迎着岔尖运行时,如果道岔位置扳错了,则列车就被接向另一条线路上了,如果这条线路已停留有车辆,就会造成列车冲撞。如果该道岔仍处于转换状态,前后轮对可能走得不是一条路线,不仅会造成道岔挤岔,甚至可能发生列车脱线或颠

信号源基础知识

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正

弦波整型电路产生正弦波,同时经由比较器的比较产生方波。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是

信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 1、频率(周期)不变,脉宽改变,其方法如下: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下:

信号基础复习题.doc

1)根据电流极性的不同有两种稳定的工作状态,定位和反位; 2)即使电流消失,继电器仍能保持状态; 3)要改变继电器的状态需通入相反极性的电流。 有极继电器的磁路系统是由永磁磁路和电磁磁路组成。接点号码是百位数。 4、偏极继电器有什么特点?磁路由哪几部分组成?接点号码是几位数? 答:偏极继电器的特点: 1)只有通过规定的电流方向时吸起,而通以反方向电流时衔铁不动作;具有电流极性鉴别能力; 2)只有一种稳态,落下是稳定状态(断电时落下)。 6、设计电路:用一组24V电源和DBJ、FBJ的第8组接点,DBJ吸起时点绿灯L,FBJ吸起时点黄灯U;且D BJ 的第8组FBJ必须串联。 7、固定信号机按用途分为几种?有什么类型? 答:固定信号机按用途分为:9种,有:进站、出站、进路、通过、调车、驼峰、遮断、预告、复示等 8、信号机和信号表示器有什么区别? 答:信号机是表达固定信号显示所用的机具,用来防护站内进路,防护区间,防护危险地点,具有严格的 防护意义。 信号表示器是对行车人员传达行车或调车意图的,或对信号进行某些补充说明所用的器具,没有严格的防护意义。 9、进站信号机的显示意义?(三显示、四显示自动闭塞) 答:1、三显示自动闭塞 (1) 一个绿色灯光——准许列车按规定速度经正线通过车站,表示出站及进路信号机在开 放状态,进路上的道岔均开通直向位置 (2) 一个黄色灯光——准许列车经道岔直向位置,进入站内正线准备停车; (3) 两个黄色灯光——准许列车经道岔侧向位置,进入站内准备停车; (4) 一个黄色闪光和一个黄色灯光——准许列车经过18号及其以上道岔侧向位置,进入站内越过下一架已经开放的信号机,且该信号机所防护的进路,经道岔的直向位置或18号及其以上道岔的侧向位置 (5) 一个红色灯光——不准列车越过该信号机; (6) 一个绿色灯光和一个黄色灯光——准许列车经道岔直向位置,进入站内越过下一架已经开放的接车进路信号机准备停车。 (7)准许列车在该信号机前方不停车,以不超过20km/h 进站或通过接车进路,并须准备随时停车。 10.四显示自动闭塞区段进站色灯信号机 (1) 一个绿色灯光——准许列车按规定速度经道岔直向位置进入或通过车站,表示运行前方至少有三个闭塞分区空闲; (2) 一个黄色灯光——准许列车按限速要求越过该信号机,经道岔直向位置进入站内正线准备车; (3) 两个黄色灯光——准许列车按限速要求越过该信号机,经道岔侧向位置进入站内准备停车; (4) 一个黄色闪光和一个黄色灯光——准许列车经过18号及其以上道岔侧向位置,进入站内越过下一架已经开放的信号机,且该信号机所防护的进路,经道岔的直向位置或18号及其以上道岔的侧向位置; (5) 一个红色灯光——不准列车越过该信号机; (6) 一个绿色灯光和一个黄色灯光——准许列车按规定速度越过该信号机,经道岔直向位置进入站内,表示下一架信号机已经开放一个黄灯。 (7)准许列车在该信号机前方不停车,以不超过20km/h 进站或通过接车进路,并须准备随时停车。 11、电化区段的信号机外缘与接触网带电部分距离和回流线有什么要求? 答:电化区段的信号机的金属体外缘部分与接触网带电部分的距离不得小于2M,与回流线距离在1M以内时,应加绝缘防护,但不得小于0.7M。 12、背画微电子JXW25相敏轨道电路图(一送二受)。 第2 / 6页 15、何谓轨道电路?说明及工作原理? 答:轨道电路是以两根钢轨作为导体,两端加以机械绝缘(或电气绝缘)为导体,接受送电和受电设备构成的电路称为轨道电路。 轨道电路的原理:

深度解读信号源所涉及的相关基础知识

深度解读信号源所涉及的相关基础知识 信号源是四大通用电子测量仪器之一,其他三种是:网络分析仪,频谱分析仪和示波器。这篇介绍信号源所涉及的相关基础知识。信号源的最常用的功能是用来产生一个正弦波,所以先从介绍正弦波的特征开始本篇文章。 一、正弦波的信号特性通过正弦波信号的表达等式,可以反映其信号所包含的参数为:信号幅度;频率;初始相位。信号的频率和初始相位可以包含在信号的相位信息中。 对于理想的正弦波信号而言,其幅度和频率及初始相位应该为确定参数,所以正弦波信号是比较简单的信号。定义一个连续波信号只需要幅度和频率两方面指标。 图1 正弦波信号特性 信号源产生正弦波的典型幅度参数有如下几项: 图2 信号源输出正弦波的典型幅度参数 信号源要考虑幅度精度,以提高测试的可重复性,降低测试不确定度。 信号源的典型频率参数有如下几项: 图3 信号源输出正弦波的典型频率参数 信号源的频率精度与参考振荡器的年老化率及校准之后经历的时间有关。实际正弦波的信号特征比理想信号要复杂的多,需要考虑相位噪声,寄生调频,杂散,如图4所示。相位噪声在频域反映为噪声边带,在时域上反映为随机的相位抖动,可理解为有随机的噪声对理想正弦信号进行调相。 图4 实际正弦波的信号特征 正弦波或连续波信号质量好坏的评估主要在频域上进行,频域上的杂散包含连续和离散成份,它们都对应时域上的失真。连续的噪声边带称为相位噪声,离散的杂散根据其与基波的频率关系分为谐波和杂波。 相位噪声主要由振荡器内部噪声带来,而谐波杂波的形成与器件的非线性有关: vo(t)=a1vi(t)+ a2vi2(t)+ a3vi3(t)+ ... 若输入为理想正弦信号,通过非线性作用输出为:

视频信号的基础知识

一、视频信号的结构与使用 ?图象采集卡是对模拟视频信号采样并作A/D转换而成为数字信号的,为了获得正确的数字信号,对模拟视频信号有一个大概的了解是十分重要的,尤其在一些特殊的应用领域,例如: ?实时处理 ?多路视频输入 ?非标准视频采集 ?立体视觉 ?序列图象分析 ?运动图象 ?等都对摄象机的同步连接;多路切换;图象处理与视频信号的同步配合;图象窗口的选择;亮度与对比度的调节有着特殊的要求,为了满足这些要求,把视频信号的结构了解清楚后,会对用户很快构成并调试好自己的图象处理系统;设计好自己的软件;充分提高CPU处理图象的效率等带来很大的好处

1-1、视频信号的概述 ?视频信号最初是用于广播电视的,也就是说是要经过传输,尤其是无线传输而送到观众接收机上,由于图象的信息量是如此巨大,如果不对视频信号作一定的处理,就会占据无线通讯很宽的宝贵频带,为此对全电视信号在清晰度、闪烁性、叠加彩色后的与黑白图象的兼容性、所占用的带宽等方方面面作了精心的权衡与安排,研究设计出目前的黑白/彩色全电视信号标准。例如隔行扫描就是考虑到带宽、抗闪烁、清晰度等方面而巧妙设计的;PAL或NTSC的彩色图象制式就是考虑到人眼对颜色的着色特性,与原黑白视频的兼容性,在不影响黑白灰度信息的前提下,而将彩色信息调制后插入黑白全电视信号频谱的缝隙之中的。而所谓的不影响仅仅是理论上的,由于技术上的局限性,在接收端将黑白信息与彩色信息分离时,在大多数情况下会大大影响黑白信息的分辨率。视频信号的这些特性在广播电视中带来了巨大的好处,但在图象处理的使用场合又会带来很大的不便与缺陷。

1-2、黑白全电视信号及采集 ?摄象机获取图象形成视频信号是用扫描的方式逐行顺序进行的,从景物的左上角开始扫描第一行,然后向下移动扫描第二行,直至这场扫描完312行(PAL制),到第313行的一半时,这一场结束,形成了一幅奇场图象;从图象的最上部中间开始第313行的后半部扫描,见图一,开始第二场即偶场的扫描,第二场的每一行夹在第一场的相邻行中间,直至625行结束,第二场图象结束,形成了一幅偶场图象,同时相邻行由奇场和偶场图象交叉形成了一帧图象。帧图象、奇偶场图象之间的关系见图二。从图一和图二可以看出,在水平方向一行中的像素从左到右是以纳秒级的速度顺序出现的,而一帧图象的上下二个相邻象素的相隔时间为一场的场周期,可达几十毫秒。这种隔行方式,在同样的分辨率、没有因人眼惰性有限而带来太大的闪烁性的情况下,视频信号的频带带宽几乎减低了一倍,节省了宝贵的通信资源。

信号源的使用方法

在电子测试和测量中,经常要求信号源,生成只有在外部提供时才会有的信号。信号源可以提供“已知良好”的信号,或者在其提供的信号中添加可重复的数量和类型已知的失真(或误码)。这是信号源最大的特点之一,因为仅使用电路本身,通常不可能恰好在需要的时间和地点创建可预测的失真。从设计检验到检定,从极限和余量测试到一致性测试,信号源可以用于数百种应用。 因此,有多种信号源结构可供选择也就不足为奇了,而每种结构都有各自的优点、功能和经济性,适用于特定的用途。在本文中,我们将比较两种信号发生结构:一种用于任意波形/ 函数发生器中,一种用于任意波形发生器中。选择结果在很大程度上取决于应用。 了解信号发生方法 任意波形/ 函数发生器(AFG)通过读取内存的内容,来同时创建函数波形和任意波形。大多数现代AFG 采用直接信号合成(DDS)技术,在广泛的频率范围上提供信号。 任意波形发生器(AWG)基于真正可变时钟结构(通常称为" 真正的 arbs*1"),适用于在所有频率上生成比较复杂的波形。AWG 也读取内存的内容,但其读取方式不同(后面进行了介绍)。处理先进通信和计算单元的设计人员选择AWG,驱动采用复杂调制和带有异常事件的高速信号。结果,AWG 占据了研究、开发和工程应用的最高层。 这两种结构在波形生成方法上有着很大差异。本技术简 介讨论了基于可变时钟的任意波形发生器和基于DDS的任意波形/ 函数发生器之间的差别。 透过前面板:比较两个平台

AWG:概念简单,灵活性最大 尽管AWG 在这两种结构中更加灵活,但AWG 的底层波形生成技术非常简明。AWG的播放方案可以视为“反向取样”。 这是什么意思呢?看一下信号取样平台-- 示波器,它通过在连续时点上数字化模拟信号的电压值,来采集波形,其取样频率取决于用户选择的时钟速率。得到的样点存储在内存中。 AWG的流程相反。AWG开始时波形已经在内存中。波形占用指定数量的内存位置。在每个时钟周期中,仪器从内存中输出另一个波形样点。由于代表波形的样点数量是固定的,因此时钟速率越快,读取内存中波形数据点的速度越快,输出频率越高。换句话说,输出信号频率完全取决于时钟频率和内存中的波形样点数量*2。图1 中简化的方框图概括了AWG 结构。 AWG 的灵活性源自其内存中存储的波形。波形可以采取任何形状;它可以有任意数量的畸变,或根本没有畸变。在基于PC 的工具的帮助下,用户可以开发人们想得到的几乎任何波形(在物理限制内!)。可以在仪器能够生成的任何时钟频率上,从内存中读取样点。不管时钟是以1 MHz运行还是以1 GHz运行,波形的形状相同。 *1 工程师通常使用"arb" 来指任何类型的任意波形发生器。 *2 当然任何AWG 型号都有最大内存容量。波形占用的深度可能要小于全部容量。 AFG 在高频中采取高效的快捷方式 AFG也使用存储的波形,作为输出信号的基础。其样点读数中涉及时钟信号,但结果类似。 AFG 的时钟以某个固定速率运行。由于波形样点的数量在内存中也是固定的,因此AFG 怎样才能在变动频率上提供波形呢?例如,想象一下您正在使用一部AFG,它存储由1000 个样点组成的波形,以1 MHz 的固定速率输出。输出信号的周期将恰好固定在1 ms (1kHz)。很明显,单频信号源在大多数应用中用

微波测量系统的使用和信号源波长功率的测量

电磁场与微波测量实验报告 实验一微波测量系统的使用和信号源波长功率的测量 学院:电子工程学院 班级:2012211205 组员:秦爽左斌华姜铁增杨抒含 撰写人:杨抒含 一实验目的:

(1)学习微波的基本知识; (2)了解微波在波导中传播的特点,掌握微波基本测量技术; (3)学习用微波作为观测手段来研究物理现象。 二实验原理: 本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。 该系统由以下十一个部分组成: 1.微波信号源 DH1121C型微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。在教学方式下,可实时显示体效应管的工作电压和电流的关系。仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。 2.隔离器 位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。 3.衰减器 把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率从以及去耦合的作用。 4.波长计 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。 5.测量线 测量线是测量微波传输系统中电场的强弱和分布的精密仪器。由开槽波导、不调谐探头和滑架组成。在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。由于探针与电场平行,电场的变化在探针上就感应出的电动势经过晶体检波器变成电流信号输出。 6.检波晶体 微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二

轨道交通信号基础题库

一、填空题 1.城市轨道交通系统改变了传统的铁路以地面信号显示指挥列车的方式,实现了以车载信号为主体信号, 3.轨道电路的送电设备设在送电端,由轨道电源、变压器、限流电阻R等组成。 4.扼流变压器:对牵引电流的阻抗很小,而对信号电流的阻抗很大, 5.轨道电路中通以直流电流时,钢轨阻抗就是纯电阻,称为钢轨电阻 6. 继电器按工作可靠程度分为安全型继电器和非安全型继电器。 7.将处于禁止运行状态的故障,有利于行车安全,称为安全侧故障;处于允许运行状态的故障,可能危及行车安全,称为危险侧故障 8 .继电器平时所处的状态,我们称为定位状态 9. 列车迎着道岔尖轨运行时,该道岔就叫对向道岔, 10. 列车顺着道岔尖轨运行时,该道岔就叫顺向道岔;当按压一个道岔动作按钮(电动道岔的操纵元件),仅能使一组道岔转换,则称该道岔为单动道岔 11. 转辙机按动作能源和传动方式分:可分为电动转辙机、电液压转辙机、电空转辙机。按供电电源分:可分为直流转辙机和交流转辙机。按锁闭方式分可分为内锁闭转辙机和外锁闭转辙机。 12.电动转辙机由电动机提供动力,采用机械传动方式;电动液压转辙机由电动机提供动力,采用液压传动方式;电空转辙机由压缩空气作为动力,由电磁换向阀控制。 13.S700K 电动转辙机动力传动机构主要由三相电动机、摇把齿轮、摩擦连接器、滚珠丝杠、保持联接器、动作杆等六个部分组成。

14.道岔控制电路分为启动电路和表示电路两部分。 15.对每组单动道岔或双动道岔要分别设置两个道岔表示继电器。一个是道岔定位表示继电器,一个是道岔反位表示继电器。 16、一组道岔由一台转辙机牵引的称为单机牵引;一组道岔由两台转辙机牵引的称为双机牵引。 17、安装计轴器时发送磁头(Tx)应设置于钢轨的外侧,. 安装计轴器时接收磁头(Rx)应设置于钢轨的内侧。 18、应答器也称“信标”;分为无源和有源应答器。 19、自动闭塞按照行车组织方法,分为单向和双向自动闭塞。 20、按通过信号机的显示制度,可分为二显示、三显示和四显示自动闭塞。 21、在自动闭塞区段,一个站间区间内同方向可有两列或两列以上列车,以闭塞分区间隔运行,称为追踪运行 22、追踪运行列车之间的最小间隔时间,称为追踪列车间隔时间。 23 、信号、道岔、进路之间相互制约的关系叫做联锁。 24、进路与进路之间存在着两种不同性质的联锁关系:一是抵触进路,二是敌对进路。 25、进路与进路之间的联锁关系,可用进路与信号机之间的联锁关系来描述。 26、凡是两对象间存在着一个或几个条件才构成锁闭关系,就是条件锁闭。 27、列车接近时的进路锁闭,叫做接近锁闭,或称为完全锁闭

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,[是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波]。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路:

1、频率(周期)不变,脉宽改变,其方法如下: [改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性],但其最主要的缺点是占空 比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion 的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设计方式在此也顺便一提: 1. 扫频:一般分成线性(Lin)及对数(Log)扫频; 2. VCG:即一般的FM,输入一音频信号,即可与信号源本身的信号产生频率调制; 上述两项设计方式,第1项要先产生锯齿波及对数波信号,并与第2项的输入信号经过多路器(Multiplexer)选择,然后再经过电压对电流转换电路,同步地去加到图二中的I1、I2上; 但注意这样的TTL信号须再经过缓冲门(buffer)后才能输出,以增加扇出数(Fan Out),通常有时还并联几个buffer。而TTL INV 则只要加个NOT Gate即可;

测量用信号源

第六章测量用信号源 第一节引言 测量用信号源指测量用信号发生器.在电子电路测量中,需要各种信号源.大致可分为三大类:即正弦信号发生器、函数波形)信号发生器和数字信号发生器. 正弦信号源在线性系统测试中具有特殊意义,这是因为正弦测试信号具有它独特的特点:它的波形不受线性电路或系统的影响.众所周知.在正弦信号的激励下,线性电路内的所有电压和电流都是具有同一频率的正弦波,只是彼此之间的幅值和相位可能有所差别.此外,若已知线性系统对一切频率(或一组靠得很近的频率)的外加正弦信号的幅值和相位的响应,那么就能够完全确定该系统在其线性工作范围内对于任意输入信号的响应.也就是说,正弦波测试是线性系统频域分析的重要实验方法。 正因为正弦测试信号的上述特点,正强信号源在线性系统测试中应用十分广泛,例如,电子放大器增益的测量、相位差的测量、非线性失真的测鳗、以及系统频域特性的测量等等.无不需要正蓝信号源. 具有频率稳定度很高的正弦信号源还可以作为标准频率源,它可以作为勺其它各种频率测量进行比对的标准频率. 本章专门讨论正弦信号源.我们将对一般正弦信号发生器作扼要介绍,而重点放在锁相和频率合成技术在正弦信号源中的应用. 第二节正弦信号发生器的分类.组成和工作特性 一、分类与组成 正弦信号发生器的分类与其组成密切相关.传统的分类是:无线电测量用正弦信号发生器一般按频段分,见表6-l。这一类信号发生器一般都是波段式的.有线载波通信系统用正弦信号发生器.其输出频率范围是根据载波复用设备的话路所占用的频带宽度来划分的,见表6-2.这一类信号发生器都是差频式的,通常称“电平振荡器”,例如,18。6 MHZ电平振荡器,其输出频率为10 k H~18。6 MHZ.它是1800成 3 600路载波系统的测试用信号源. (-)波段式信号发生器组成 波段式信号发生器的组成方框图如图6-l所示.输出频率由主振级确定,低于视频频段的主振器一般采用RC振荡器,而高频段的主振器都采用LC振荡器,由于这两类振荡器的频率覆盖都不大,故都做成波段式的.高频信号发生器除输出等幅波外,还可输出调幅波(AM),而甚高频信号发生器还可输出调频波FM).

DAQ基础知识

现今,在实验室研究、测试和测量以及工业自动化领域中,绝大多数科研人员和工程师使用配有PCI、PXI/CompactPCI、PCMCIA、USB、IEEE1394、ISA、并行或串行接口的基于PC 的数据采集系统。许多应用使用插入式设备采集数据并把数据直接传送到计算机内存中,而在一些其它应用中数据采集硬件与PC分离,通过并行或串行接口和PC相连。从基于PC的数据采集系统中获取适当的结果取决于图示一中的各项组成部分: PC 传感器信号调理数据采集硬件软件 本文详细介绍了数据采集系统的各个组成部分,并解释各个部分最重要的准则。本文也定义了用于基于PC的数据采集系统组成部分的许多通用术语。 图1 典型的基于PC的DAQ系统 个人电脑(PC) 数据采集系统所使用的计算机会极大地影响连续采集数据的最大速度,而当今的技术已可以使用Pentium级别以及多核的处理器,它们能结合更高性能的PCI/PCI Express、 PXI/CompactPCI和IEEE1394(火线)总线以及传统的ISA总线和USB总线。PCI总线和USB接口是目前绝大多数台式计算机的标准设备,而ISA总线已不再经常使用。随着PCMCIA、USB和IEEE 1394的出现,为基于桌面PC的数据采集系统提供了一种更为灵活的总线替代选择。对于使用RS-232或RS-485串口通信的远程数据采集应用,串口通信的速率常常会使数据吞吐量受到限制。在选择数据采集设备和总线方式时,请记住您所选择的设备和总线所能支持的数据传输方式。 计算机的数据传送能力会极大地影响数据采集系统的性能。所有PC都具有可编程I/O和中断传送方式。目前绝大多数个人电脑可以使用直接内存访问(Direct memory access,DMA)传送方式,它使用专门的硬件把数据直接传送到计算机内存,从而提高了系统的数据吞吐量。采用这种方式后,处理器不需要控制数据的传送,因此它就可以用来处理更复杂的工作。为了利用DMA或中断传送方式,您的数据采集设备必须能支持这些传送类型。例如,PCI、USB设备可以支持DMA和中断传送方式,而PCMCIA设备只能使用中断传送方式。所选用的数据传送方式会影响您数据采集设备的数据吞吐量。 限制采集大量数据的因素常常是硬盘,磁盘的访问时间和硬盘的分区会极大地降低数据采集和存储到硬盘的最大速率。对于要求采集高频信号的系统,就需要为您的PC选择高速硬盘,

信号发生器的基本原理

信号发生器的基本原理 - 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。 信号发生器的分类与用途 信号发生器按传统工作频段分类,有超低频信号发生器、低频信号发生器、高频信号发生器、微波信号发生器。 超低频信号发生器一般是指工作频率下潜到0.1Hz以下的信号发生器,一般用于专业上的特殊用途。低频信号发生器一般是指工作频率主要在1Hz~1MHz的信号发生器,多用于音

RIGOL DG1022函数信号发生器使用入门

RIGOL DG1022函数信号发生器 使用初步 RIGOL DG1022双通道函数/任意波形发生器采用直接数字频率合成(DDS)技术设计,能够产生精确、稳定、低失真的输出信号,且操作简单。下面讲述一些操作实例,望大家能初步掌握该信号发生器的使用。其他功能可触类旁通,或通过发生器的帮助系统。使用帮助系统有以下两条途径: ?使用面板上的Help功能按键; ?将某一按键长按,将获得该键的帮助。 I初识面板 ?电源开关 接上电源线而未开机前,此按钮闪烁;开机后此按钮常亮。 该发生器长时间不操作时,屏幕自动关闭,但工作状态不改变,电源开关外的其他按键将唤醒显示屏。 ?波形、输出通道选择 Sine:正弦波 Squre:方波 Ramp:三角波 Pulse:脉冲 Noise:白噪声(频谱在20M内均匀分布) Arb:用户编辑波形 (当以上按键起作用时,该按键的背景灯亮起) CH1/CH2:输出通道选择

?菜单选择 根据屏幕提示选择相应菜单 ?功能按键 Mod:调制 Store/Recall:存储 Sweep:扫频 Utility:提供对输出配置参数等的处理 Burst:脉冲序列串 Help:帮助 ?数字按键 ?输出按键与端口 按下输出按键,背景灯亮起,且信号从相应端口输出 II产生常见波形 从CH1、CH2输出同频率、不同幅值、不同相位的正弦信号,并在示波器上观察。操作过程如下: ?关闭任何功能键(功能键起作用时其背景灯亮起,再次按下则关闭); ?通过CH1/CH2按钮选择通道CH1; ?通过按键Sine选择波形; ?通过菜单按键、数字按键、旋钮等设置波形参数(频率、幅度、偏置、相位); ?按下Output使信号从CH1端口输出; ?用同样的方法从CH2端口输出另一信号,用示波器观察两路信号。改变信号参数,观察示波器上信号的变化。 用同样的方法可以产生三角波、方波、脉冲、白噪声等。 III编辑任意波形 ?关闭任何功能按键; ?按下Arb; ?选择“编辑”→“创建”; ?输入所需周期、电压限定值和点数,然后按下“编辑点”,起始两点由仪器定义; ?旋转旋钮选择需要编辑的点,使用“时间”、“电压”定义点,使用“插入点”插入点; ?波形编辑器自动将最后一个点连接到点#1的电压电平,创建一个连续的波

信号发生器基础知识 使用攻略和实战问答

信号发生器基础知识使用攻略和实战问答 【设置字体:大中小】时间:2011年6月9日 信号发生器用来产生振荡信号,且信号的特征参数完全可控,可方便地模拟各种情况下不同特性的信号,对于产品研发和电路实验具有重要作用。信号发生器广泛应用在电子研发、维修、测量、校准等领域,是电子工程师信号仿真实验的最佳工具。本讲从信号发生器的原理、分类与用途等基本知识入手,详细介绍信号发生器的使用与测量单位,并搜罗广大工程师对信号发生器的实战疑难问题解答,以帮助工程师深层次的了解信号发生器,更好的发挥其作用,为产品设计进行全面、真实的测试,保证研发和测试过程的顺利。 信号发生器所产生的信号在电路中常常用来代替前端电路的实际信号,为后端电路提供一个理想信号。在电路测试中,我们可以通过测量、对比输入和输出信号,来判断信号处理电路的功能和特性是否达到设计要求。高精度的信号发生器在计量和校准领域也可以作为标准信号源(参考源),待校准仪器以参考源为标准进行调校。 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。 信号发生器的基本原理 信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。 主振级产生低频正弦振荡信号,经电压放大器放大,达到电压输出幅度的要求,经输出衰减器可直接输出电压,用主振输出调节电位器调节输出电压的大小。 早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。 信号发生器的分类和作用 信号发生器按照产生信号类型可以分为正弦信号发生器、函数信号发生器、脉冲信号发生器、随机信号发生器、专用信号发生器。正弦信号发生器提供最基本的正弦波信号,可以作为参考频率和参考幅度信号,用于增益和灵敏度的测量以及仪器的校准。常见的高频信号发生器和标准信号发生器都属于此类。函数信号发生器可以产生各种函数波形信号,典型的有方波、正弦波、三角波、锯齿波、脉冲等。函数信号发生器一般工作频率不高,频率上限在几兆赫到一二十兆赫,频率下限很低,大多可以低于0.1

信号源的基本介绍

信号源的基本介绍 信号源发展到今天,它的涵盖范围已非常广。我们可以按照频率范围对 它进行分类:超低频(0.1m~1kHz)、音频(20Hz~20kHz)、视频(20kHz~10MHz)、射频及高频(200k~3000MHz)、微波(≥3000MHz)、光波信号源等;按工作原理 可以分为:LC 源、锁相源、合成源等。 经常会看到信号源型号前面有几个字母,你知道他们代表什么意思吗?这些 字母是有说头的,我来解释解释。 音频信号源(AG)、函数信号源(FG)、功率函数发生器(PFG)、脉冲信号源(PG)、任意函数发生器(AFG)、任意波形发生器(AWG)、标准高频信号源(SG)、射频 信号源(RG)、电视信号发生器(TVSG)、噪声信号源(Noise)、调制信号发生器(MSG)、数字信号源(DG)。 一般来说,任意波形发生器(AFG)可提供12 种标准函数波形、脉冲波形、 调制波形、扫频和突发信号等,同时可快速编辑任意波形,在中档信号源中极 具代表性,是一种革命性的数字产品。它的基本技术指标与其他的信号源指标 相同,但也有特殊的要求。下面就任意波形发生器(AFG)相关性能指标进行说 明。 带宽(Fw):带宽是所有测量交流仪器必须考虑的技术指标,指仪器输出或能 测量的信号幅度衰减-3dB 处的最高频率。 输出幅度(Vpp):信号源输出信号的电压范围,一般表示为峰- 峰值。 输出通道(CH):信号源对外界输出的通道数量。 垂直分辨率(DAC):垂直分辨率与仪器数模转换的二进制字长度(单位:位) 有关,位越多,分辨率越高。数模转换的垂直分辨率决定复现波形的幅度精度 和失真。分辨率不足的数模转换会导致量化误差,导致波形生成不理想。

信号与系统基础知识

1文档收集于互联网,如有不妥请联系删除. 第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)为线性系统分析提供了一种简化的方法,在时域分析中需要进行的微分或积分运算,在频域分析中简化成了代数运算。

相关主题
文本预览
相关文档 最新文档