当前位置:文档之家› 时间序列分析(张能福)第五章 平稳时间序列预测1

时间序列分析(张能福)第五章 平稳时间序列预测1

时间序列分析(张能福)第五章 平稳时间序列预测1
时间序列分析(张能福)第五章 平稳时间序列预测1

学习目标理解平稳时间序列线性最小均方误差预测的含义;熟悉条件期望预测以及预测的三种形式;掌握ARMA 模型差分方程形式的预测;掌握预测的适时修正预测方法。设当前时刻为t,观察值Xt ,Xt-1,Xt-2…已知,则对Xt+l(l>0) 的预测称为以t 为原点,向前步长为l的预测,预测值记为线性预测函数,既预测值为已知观测值的线性组合第一节条件期望预测条件期望的性质用ARMA 模型的传递形式进行预测序列分解用ARMA 模型的逆转形式进行预测用ARMA 模型差分方程形式进行预测例:已知某超市月销售额近似服从AR(2) 模型(单位:万元/每月)今年第一季度该超市月销售额分别为:101 ,96 ,97.2 请确定该超市第二季度每月销售额的95 %的置信区间解:预测值计算四月份:五月份: 六月份: 预测方差的计算GREEN 函数方差95% 的置信区间公式估计结果例:已知某地区每年常驻人口数量近似服从MA(3) 模型(单位:万人):最近3年的常驻人口数量及一步预测数量如下:预测未来5年该地区常住人口的95 %置信区间解:随机扰动项的计算预测值的计算预测方差的计算95% 置信区间的计算例:已知模型为:且预测未来3期序列值的95 %的置信区间。解:预测值的计算预测方差的计算Green 函数方差95% 置信区间的计算第三节实时修正预测实时修正预测的具体方法:式中,第四节指数平滑预测――ARMA 模型特例指数平滑预测指数平滑两个重要公式本章回顾条件期望预测实时修正预测ARMA 模型特例--- 指数平滑预测(-0.049 ,0.251 )103 (0.087 ,0.287 )102 (0.136 ,0.332 )101 95 %置信区间时期随着时间的推移,某些先前需要预测的未来

信息已经变为现实,原来的时间序列预测模型可能没有反应这种现实的变化,此时有两种选择,一种是重新建立预测模型,另一种更好的选择是对原有预测模型进行实时修正。对于一个ARMA 过程,由得:因此:为一步预测误差。结论:新的预测值是在旧的预测值基础上加一个修正项,而这一修正项比例于旧的一步预测误差,比例系数随预测超前步数而变化。例:P138 。预测公式:其中:指数平滑与ARMA 模型的关系指数平滑预测公式:* 第五章平稳时间序列预测预测误差预测误差的均方(方差)最小均方(方差)预测原则上述预测称为线性最小均方(方差)预测时间序列中变量的期望值常用作变量的点预测。在已知的条件下,的条件期望,记为:或性质一:性质二:性质三:性质1表明:条件期望满足线性运算法则;性质2表明:现在或过去观察值的条件期望是其本身,未来取值的条件期望是其预测值;性质3表明:现在或过去的残差的条件期望是它的估计值,未来残差的条件期望则为零。任一ARMA 模型的传递形式:第二节预测的三种形式则预测表达式:预测误差为预测误差预测值预测误差的方差的条件方差的1-α的置信区间从上式可以看出,一定置信水平条件下,l 步预测的区间宽度只和l有关,和t无关,l越大,区间越宽。因此,ARMA 模型适合短期预测。下面证明条件期望预测为最小均方误差预测由ARMA 模型的平稳可逆性,线性预测函数也可以表示为以下形式:预测误差的方差要使上式最小,则上式为无穷求和,由格林函数的指数衰减性,实际中在满足精度要求的条件下,舍弃后面项。可以递推算出。这就是条件期望预测的表达式任一ARMA 模型的逆转形式:预

测表达式:上式也是一无穷求和,由逆函数的指数衰减性,满足精度条件下,舍弃后面无穷项。AR(n) 模型则:式中:预测误差同前:(81.84 ,113.35 )六月份(83.72 ,111.15 )五月份(85.36 ,108.88 )四月份95 %置信区间预测时期MA (m)模型有预测值当l≤m 时当l>m 时MA(m) 序列预测方差109 105 2004 100 108 2003 110 104 2002 预测人数统计人数年份(86 ,114 )2008 (87 ,115 )2007 (86 ,114 )2009 (83 ,109 )2006 (99 ,119 )2005 95 %置信区间预测年份ARMA(n,m) 模型则式中实际计算中可用下式替代预测方差*

统计基础知识第五章时间序列分析习题及答案

第五章时间序列分析 一、单项选择题 1.构成时间数列的两个基本要素是( C )(2012年1月) A.主词和宾词 B.变量和次数 C.现象所属的时间及其统计指标数值 D.时间和次数 2.某地区历年出生人口数是一个( B )(2011年10月) A.时期数列 B.时点数列 C.分配数列 D.平均数数列 3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10) A.时期指标 B.时点指标 C.前者是时期指标,后者是时点指标 D.前者是时点指标,后者是时期指标 4.累计增长量( A ) (2010年10) A.等于逐期增长量之和 B.等于逐期增长量之积 C.等于逐期增长量之差 D.与逐期增长量没有关系 5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10) 万元万元万元万元 6.下列指标中属于时点指标的是( A ) (2009年10) A.商品库存量 B.商品销售量 C.平均每人销售额 D.商品销售额 7.时间数列中,各项指标数值可以相加的是( A ) (2009年10) A.时期数列 B.相对数时间数列 C.平均数时间数列 D.时点数列 8.时期数列中各项指标数值( A )(2009年1月) A.可以相加 B.不可以相加 C.绝大部分可以相加 D.绝大部分不可以相加 10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月) %+15%+18%%×15%×18% C.(108%+115%+118%)-1 %×115%×118%-1 二、多项选择题 1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月) A.序时平均数 B.动态平均数 C.静态平均数 D.平均发展水平 E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月) A.相邻两个环比发展速度之商等于相应的定基发展速度 B.环比发展速度的连乘积等于定基发展速度

时间序列分析第一章王燕习题解答

时间序列分析习题解答 第一章 P. 7 1.5 习题 1.1 什么是时间序列?请收集几个生活中的观察值序列。 答:按照时间的顺序把随机事件变化发展的过程记录下来就构成一个时间序列。 例1:1820—1869年每年出现的太阳黑子数目的观察值; 年份黑子数年份黑子数年份黑子数年份黑子数年份黑子数1820 16 1830 71 1840 63 1850 66 1860 96 1821 7 1831 48 1841 37 1851 64 1861 77 1822 4 1832 28 1842 24 1852 54 1862 59 1823 2 1833 8 1843 11 1853 39 1863 44 1824 8 1834 13 1844 15 1854 21 1864 47 1825 17 1835 57 1845 40 1855 7 1865 30 1826 36 1836 122 1846 62 1856 4 1866 16 1827 50 1837 138 1847 98 1857 23 1867 7 1828 62 1838 103 1848 124 1858 55 1868 37 1829 67 1839 86 1849 96 1859 94 1869 74 例2:北京市城镇居民1990—1999年每年的消费支出按照时间顺序记录下来,就构成了一个序列长度为10的消费支出时间序列(单位:亿元)。 1686,1925,2356,3027,3891,4874,5430,5796,6217,6796。 1.2 时域方法的特点是什么? 答:时域方法特点:具有理论基础扎实,操作步骤规范,分析结果易于解释的优点,是时间序列分析的主流方法。 1.3 时域方法的发展轨迹是怎样的? 答:时域方法的发展轨迹: 一.基础阶段: 1. G.U. Yule 1972年AR模型 2. G.U.Walker 1931年 MA模型、ARMA模型 二.核心阶段:G.E.P.Box和G.M.Jenkins 1. 1970年,出版《Time Series Analysis Forecasting and Control》 2. 提出ARIMA模型(Box-Jenkins模型) 3. Box-Jenkins模型实际上主要运用于单变量、同方差场合的线性模型 三.完善阶段: 1.异方差场合: a.Robert F.Engle 1982年 ARCH模型

时间序列分析_最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事!

Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。 好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢? 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 ?描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。

时间序列分析 第一章 时间序列分析简介

input time monyy7. price; format time monyy5. ; cards; jan2005 101 feb2005 82 mar2005 66 apr2005 35 may2005 31 jun2005 7 ; run; proc print data=example1_1; run; 实验结果: 实验分析:该程序的到了一个名为sasuser.example1_1的永久数据集。所谓的永久数据库就是指在该库建立的数据集不会因为我们退出SAS系统而丢失,它会永久的保存在该数据库中,我们以后进入SAS系统还可以从该库中调用该数据集。 3.查看数据集 data example1_1; input time monyy7. price; format time monyy5. ; cards; jan2005 101 feb2005 82 mar2005 66 apr2005 35 may2005 31 jun2005 7 ; run; proc print data=example1_1; run; 实验结果:

2.序列变换 data example1_3; input price; logprice=log(price); time=intnx('month','01jan2005'd,_n_-1); format time monyy.; cards; 3.41 3.45 3.42 3.53 3.45 ; proc print data=example1_3; run; 实验结果: 实验分析:在时间序列分析中,我们得到的是观测值序列xt,但是需要分析的可能是这个观察值序列的某个函数变换,例如对数序列lnxt。在建立数据集时,我们可以通过简单的赋值命令实现这个变换。再该程序中,logprice=log(price);是一个简单的赋值语句,将price的对数函数值赋值给一个新的变量logprice,即建立了一个新的对数序列。 3.子集 data example1_4; set example1_3; keep time logprice; where time>='01mar2005'd; proc print data=example1_4; run; 实验结果:

平稳时间序列预测法

第七章 平稳时间序列预测法 基本内容 一、概述 1、 时间序列{}t y 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称 过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。 2、 宽平稳时间序列的定义:设时间序列{}t y ,对于任意的t ,k 和m ,满足: ()()m t t y E y E += ()()k m t m t k t t y y y y ++++=,cov ,cov 则称{}t y 宽平稳。 3、Box-Jenkins 方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA 模型识别、估计和诊断的系统方法。使ARMA 模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。 4、ARMA 模型三种基本形式:自回归模型(AR :Auto-regressive ),移动平均模型(MA : Moving-Average )和混合模型(ARMA :Auto-regressive Moving-Average )。 (1) 自回归模型AR(p):如果时间序列{}t y 满足t p t p t t y y y εφφ+++=-- (11) 其中{}t ε是独立同分布的随机变量序列,且满足: ()0=t E ε,()02>=εσεt Var 则称时间序列{}t y 服从p 阶自回归模型。或者记为()k t t y y B -=φ。 平稳条件:滞后算子多项式()p p B B B φφφ++-=...11的根均在单位圆外,即 ()0=B φ的根大于1。 (2) 移动平均模型MA(q):如果时间序列{}t y 满足q t q t t t y -----=εθεθε...11 则称时间序列{}t y 服从q 阶移动平均模型。或者记为()t t B y εθ=。 平稳条件:任何条件下都平稳。 (3) ARMA(p,q)模型:如果时间序列{}t y 满足 q t q t t p t p t t y y y -------+++=εθεθεφφ (1111) 则称时间序列{}t y 服从(p,q)阶自回归移动平均模型。或者记为()()t t B y B εθφ=。

平稳时间序列预测法

7 平稳时间序列预测法 7.1 概述 7.2 时间序列的自相关分析 7.3 单位根检验和协整检验 7.4 ARMA模型的建模 回总目录 7.1 概述 时间序列取自某一个随机过程,则称: 一、平稳时间序列 过程是平稳的――随机过程的随机特征不随时间变化而变化过程是非平稳的――随机过程的随机特征随时间变化而变化回总目录 回本章目录 宽平稳时间序列的定义: 设时间序列 ,对于任意的t,k和m,满足: 则称宽平稳。 回总目录

回本章目录 Box-Jenkins方法是一种理论较为完善的统计预测方法。 他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方 法。使ARMA模型的建立有了一套完整、正规、结构 化的建模方法,并且具有统计上的完善性和牢固的理 论基础。 ARMA模型是描述平稳随机序列的最常用的一种模型; 回总目录 回本章目录 ARMA模型三种基本形式: 自回归模型(AR:Auto-regressive); 移动平均模型(MA:Moving-Average); 混合模型(ARMA:Auto-regressive Moving-Average)。回总目录 回本章目录 如果时间序列满足 其中是独立同分布的随机变量序列,且满足:

则称时间序列服从p阶自回归模型。 二、自回归模型 回总目录 回本章目录 自回归模型的平稳条件: 滞后算子多项式 的根均在单位圆外,即 的根大于1。 回总目录 回本章目录 如果时间序列满足 则称时间序列服从q阶移动平均模型。或者记为。 平稳条件:任何条件下都平稳。

三、移动平均模型MA(q) 回总目录 回本章目录 四、ARMA(p,q)模型 如果时间序列 满足: 则称时间序列服从(p,q)阶自回归移动平均模型。 或者记为: 回总目录 回本章目录 q=0,模型即为AR(p); p=0,模型即为MA(q)。 ARMA(p,q)模型特殊情况: 回总目录 回本章目录 例题分析 设 ,其中A与B 为两个独立的零均值随机变量,方差为1;

第五章 时间序列的模型识别

第五章时间序列的模型识别 前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下: 图5.1 建立时间序列模型流程图 在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。 对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关

最新地震处理教程——1 第一章 时间序列分析基础

第一章时间序列分析基础 一维傅里叶变换 首先观察一个实验。将弹簧的一端固定并悬垂,另一端挂一重物。向下拉重物使弹簧拉伸某一距离,比如说0.8个单位,使其振动。现假定弹簧是弹性的,那么它将无休止地上下运动。若将运动起始的平衡位置定为时间零,那么重物的位移量将随着时间函数在极限[+0.8—-0.8]之间变化。如果有一装置能给出位移振幅随时间函数变化的轨迹,就会得到一条正弦波曲线。其相邻两峰值间的时间间隔为0.08秒(80毫秒)。我们称它为弹簧的周期,它取决于所测弹簧刚度的弹性常数。我们说弹簧在一个周期时间内完成了一次上下振动。在1秒的观测时间内记下其周期数,我们发现是12.5周,这个数被称为弹簧振动的频率。你一定会注意到,1/0.08=12.5,这就是说频率为周期的倒数。 我们取另一个刚性较大的弹簧,并重复上面的实验。不过这次弹簧的振幅峰值位移为0.4个单位。它的运动轨迹所显示的是另一条正弦曲线。量其周期和频率分别为0.04秒和25周/秒,为了记下这些测量结果,我们做每个弹簧峰值振幅与频率的关系图,这便是振幅谱。 现在取两个相同的弹簧。一个弹簧从0.8个单位的峰值振幅位移开始松开,并使其振动。这时注意弹簧通过零时平衡位置的时间,就在它通过零时的一刹那,请你将另一弹簧从0.8个单位的同样峰值振幅位移处松开。这样由于起始的最大振幅相同,所以两个正弦时间函数的振幅谱也应该一样。但肯定两者之间是有差别的,特别是当第1个正弦波达到峰值振幅时,另一个的振幅为零。两者的区别为:第2个弹簧的运动相对于第1个弹簧的运动有一个等于四分之一周期的时间延迟。四分之一周期的时间延迟等于90°相位滞后。所以除振幅谱之外,我们还可以作出相位延迟谱,至此,这个实验做完了。那么我们学到了什么呢?这就是弹簧的弹性运动可以用正弦时间函数来描述,更重要的是,可以用正弦波的频率、峰值振幅及相位延迟来全面地描述正弦波运动。这个实验告诉我们弹簧的振动是怎样随时间和频率函数变化的。 现在设想有一组弹簧,每个弹簧的正弦运动都具有特定的频率、峰值振幅和相位延迟。所有弹簧的正弦响应如图1所示。我们可以把该系统的运动“合成”为一个总的波动,来代替该组中的各单个分量的运动。这一合成是直接把所有记录道相加,其结果得到一个与时间相关的信号,在图1中由第一道表示。我们通过这种合成可以把这一运动由频率域变换到时间域。这一变换是可逆的:即给定时间域信号,我们可以把它变换到频率域的正弦分量。在数学上,这种双向过程是由傅里叶变换完成的。在实际应用中,标准的运算是所谓快速傅氏变换。通过傅氏正变换可以把与时间相关的信号分解成它的频率分量,而所有的频率分量合成为时间域信号又是通过反傅氏变换来实现的。图2概括了信号的傅氏变换。振幅谱和相位谱(严格地讲是相位延迟谱)是图1中所显示的正弦波最简单的表示形

应用时间序列分析 第5章

佛山科学技术学院 应用时间序列分析实验报告 实验名称第五章非平稳序列的随机分析 一、上机练习 通过第4章我们学习了非平稳序列的确定性因素分解方法,但随着研究方法的深入和研究领域的拓宽,我们发现确定性因素分解方法不能很充分的提取确定性信息以及无法提供明确有效的方法判断各因素之间确切的作用关系。第5章所介绍的随机性分析方法弥补了确定性因素分解方法的不足,为我们提供了更加丰富、更加精确的时序分析工具。 5.8.1 拟合ARIMA模型 【程序】 data example5_1; input x@@; difx=dif(x); t=_n_; cards; 1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.38 5.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -1 6.22 -19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44 -23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29 -9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80 ; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; estimate p=1 noint; forecast lead=5id=t out=out; proc gplot data=out; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay; symbol1c=black i=none v=star; symbol2c=red i=join v=none; symbol3c=green I=join v=none;

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 - -c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2λ=3λ=

时间序列分析(张能福)第五章 平稳时间序列预测1

学习目标理解平稳时间序列线性最小均方误差预测的含义;熟悉条件期望预测以及预测的三种形式;掌握ARMA 模型差分方程形式的预测;掌握预测的适时修正预测方法。设当前时刻为t,观察值Xt ,Xt-1,Xt-2…已知,则对Xt+l(l>0) 的预测称为以t 为原点,向前步长为l的预测,预测值记为线性预测函数,既预测值为已知观测值的线性组合第一节条件期望预测条件期望的性质用ARMA 模型的传递形式进行预测序列分解用ARMA 模型的逆转形式进行预测用ARMA 模型差分方程形式进行预测例:已知某超市月销售额近似服从AR(2) 模型(单位:万元/每月)今年第一季度该超市月销售额分别为:101 ,96 ,97.2 请确定该超市第二季度每月销售额的95 %的置信区间解:预测值计算四月份:五月份: 六月份: 预测方差的计算GREEN 函数方差95% 的置信区间公式估计结果例:已知某地区每年常驻人口数量近似服从MA(3) 模型(单位:万人):最近3年的常驻人口数量及一步预测数量如下:预测未来5年该地区常住人口的95 %置信区间解:随机扰动项的计算预测值的计算预测方差的计算95% 置信区间的计算例:已知模型为:且预测未来3期序列值的95 %的置信区间。解:预测值的计算预测方差的计算Green 函数方差95% 置信区间的计算第三节实时修正预测实时修正预测的具体方法:式中,第四节指数平滑预测――ARMA 模型特例指数平滑预测指数平滑两个重要公式本章回顾条件期望预测实时修正预测ARMA 模型特例--- 指数平滑预测(-0.049 ,0.251 )103 (0.087 ,0.287 )102 (0.136 ,0.332 )101 95 %置信区间时期随着时间的推移,某些先前需要预测的未来

时间序列分析第五章作业

时间序列分析第五章作业 班级:09数学与应用数学 学号: 姓名: 习题5.7 1、 根据数据,做出它的时序图及一阶差分后图形,再用ARIMA 模型模拟该序列的发展,得出 预测。根据输出的结果,我们知道此为白噪声,为非平稳序列,同时可以得出序列t x 模型 应该用随机游走模型(0,1,0)模型来模拟,模型为:,并可以预测到下一天 的收盘价为296.0898。 各代码: data example5_1; input x@@; difx=dif(x); t=_n_; cards ; 304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271 273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289 ; proc gplot ; plot x*t difx*t; symbol v =star c =black i =join; proc arima data =example5_1; identify Var =x(1) nlag =8 minic p = (0:5) q = (0:5); estimate p =0 q =0 noint; forecast lead =1 id =t out =results; run ; proc gplot data =results; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay ; symbol1 c =black i =none v =star; symbol2 c =red i =join v =none; symbol3 c =green i =join v =none l =32; run ; 时序图:

时间序列分析第五章上机指导

上机指导 第五章 拟合ARIMA模型 由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在了ARIMA过程中。我们已经在第3章进行了ARMA模型拟合时介绍了ARIMA过程的基本命令格式。再次以临时数据集example5_1的数据为例介绍ARIMA模型拟合与ARMA模型拟合的不同之处。 data example5_1; input x@@; difx=dif(x); t=_n_; cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; run; 输出时序图显示这是一个典型的非平稳序列。如图5-49所示

图5-49 序列x时序图 考虑对该序列进行1阶差分运算,同时考察查分后序列的平稳性,在原程序基础上添加相关命令,程序修改如下: data example5_1; input x@@; difx=dif(x); t=_n_; cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1);

estimate p=1; forecast lead=5 id=t ; run; 语句说明: (1)DATA步中的命令“difx=dif(x);”,这是指令系统对变量x进行1阶差分,差分后的序列值赋值给变量difx。其中dif()是差分函数,假如要差分的变量名为x,常见的几种差分表示为: 1阶差分:dif(x) 2阶差分:dif(dif(x)) k步差分:difk(x) (2)我们在GPLOT过程中添加绘制了一个时序图“difx*t”,这是为了直观考察1阶差分后序列的平稳性。所得时序图如图5-50所示。 图5-50 序列difx时序图 时序图显示差分后序列difx没有明显的非平稳特征。 (3)“identify var=x(1);”,使用该命令可以识别查分后序列的平稳性、纯随机性和适当的拟合模型阶数。其中x(1)表示识别变量x的1阶差分后序列。SAS支持多种形式的差分序列识别: var=x(1),表示识别变量x的1阶查分后序列Δxt;

应用时间序列分析EVIEWS 实验手册(1)

河南财经政法大学应用时间序列分析实验手册 应用时间序列分析 实验手册

目录 目录 (2) 第一章Eviews的基本操作 (3) 第二章时间序列的预处理 (6) 一、平稳性检验 (6) 二、纯随机性检验 (13) 第三章平稳时间序列建模实验教程 (14) 一、模型识别 (14) 二、模型参数估计 (18) 三、模型的显著性检验 (21) 四、模型优化 (23) 第四章非平稳时间序列的确定性分析 (24) 一、趋势分析 (24) 二、季节效应分析 (39) 三、综合分析 (44) 第五章非平稳序列的随机分析 (50) 一、差分法提取确定性信息 (50) 二、ARIMA模型 (63) 三、季节模型 (68)

第一章Eviews的基本操作 The Workfile(工作簿) Workfile 就像你的一个桌面,上面放有许多Objects,在使用Eviews 时首先应该打开该桌面,如果想永久保留Workfile及其中的内容,关机时必须将该Workfile存到硬盘或软盘上,否则会丢失。 (一)、创建一个新的Workfile 打开Eviews后,点击file/new/workfile,弹出一个workfile range对话框(图1)。 图1 该对话框是定义workfile的频率,该频率规定了workfile中包含的所有objects频率。也就是说,如果workfile的频率是年度数据,则其中的objects也是年度数据,而且objects数据范围小于等于workfile的范围。 例如我们选择年度数据(Annual),在起始日(Start date)、终止日(End date)分别键入1970、1998,然后点击OK,一个新的workfile就建立了(图2)。 图2

应用时间序列分析习题答案

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .021102112 12112011φρφρφρφρρφφρφρφρ 解得:???==15 /115/721φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0

时间序列分析第五章上机指导

第五章 拟合ARIMA模型 由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在了ARIMA过程中。我们已经在第3章进行了ARMA模型拟合时介绍了ARIMA过程的基本命令格式。再次以临时数据集example5_1的数据为例介绍ARIMA模型拟合与ARMA模型拟合的不同之处。 data example5_1; input x@@; difx=dif(x); t=_n_; cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; run; 输出时序图显示这是一个典型的非平稳序列。如图5-49所示 图5-49 序列x时序图 考虑对该序列进行1阶差分运算,同时考察查分后序列的平稳性,在原程序基础上添加相关命令,程序修改如下: data example5_1; input x@@; difx=dif(x);

cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; forecast lead=5 id=t ; run; 语句说明: (1)DATA步中的命令“difx=dif(x);”,这是指令系统对变量x进行1阶差分,差分后的序列值赋值给变量difx。其中dif()是差分函数,假如要差分的变量名为x,常见的几种差分表示为: 1阶差分:dif(x) 2阶差分:dif(dif(x)) k步差分:difk(x) (2)我们在GPLOT过程中添加绘制了一个时序图“difx*t”,这是为了直观考察1阶差分后序列的平稳性。所得时序图如图5-50所示。 图5-50 序列difx时序图 时序图显示差分后序列difx没有明显的非平稳特征。 (3)“identify var=x(1);”,使用该命令可以识别查分后序列的平稳性、纯随机性和适当的拟合模型阶数。其中x(1)表示识别变量x的1阶差分后序列。SAS支持多种形式的差分序列识别:var=x(1),表示识别变量x的1阶查分后序列Δxt; var=x(1,1),表示识别变量x的2阶查分后序列Δ2xt; var=x(k),表示识别变量x的k步差分后序列Δkxt;

实验四平稳时间序列模型预测

实验四平稳时间序列模型预测 一、实验目的 1、掌握平稳时间序列分析模型的分析方法和步骤 2、会求平稳时间序列的自相关函数和偏相关函数 3、掌握模型类别和阶数的确定 二、实验设备 计算机、Matlab软件 三、实验内容与步骤 已知平稳时间序列{}一个长为50的样本数据如下表:number Zi 1-10289 285 289 286 288 287 288 292 291 291 11-20292 296 297 301 304 304 303 307 299 296 21-30293 301 293 301 295 284 286 286 287 284 31-40282 278 281 278 277 279 278 270 268 272 41-50273 279 279 280 275 271 277 278 279 285 51-60301 295 281 278 278 270 286 288 279 279

每个同学以自己的学号为起点,循环计数50重新排序,如:学号为3的学生样本数据为:Z3,Z4……Z50,Z1,Z2,编程计算,并打印下列: 1、 2、 3、利用递推公式计算样本的偏相关系数 4、 5、确定模型的类别和阶数 四、实验原理 平稳时间序列的模型估计与预测原理 样本自协方差函数: 样本自相关函数: 样本偏相关函数 3、利用与的拖尾和截尾性质判定类型和阶数 五、实验报告要求 1、写出详细的计算步骤及设计原理; 2、按实验内容的要求打印图形; 3、附上程序和必要的注解。 六.实验过程 function y = experiment4 close all;clc; % r = [];p1 = [];p = []; % Fai = [];FAI = []; %学号21

统计基础知识第五章时间序列分析习题及答案

A. 140 万元 B.150 万元 6. 下列指标中属于时点指标的是 ( A ) A. 商品库存量 C .平均每人销售额 7. 时间数列中,各项指标数值可以相加的是 A. 时期数列 C. 平均数时间数列 8. 时期数列中各项指标数值( A ) A. 可以相加 C .绝大部分可以相加 10.某校学生人数 2005年比 2004年增长了 8%,2006年比 2005年增长了 15%,2007年比 2006 年增长了 18%,则 2004-2007 年学生人数共增长了( D )( 2008年 10月) A.8 % +15% +18% B.8 %X 15%X 18% C. ( 108% +115% +118%) -1 D.108%X 115%X 118%-1 二、多项选择题 1. 将不同时期的发展水平加以平均而得到的平均数称为 ( ABD ) (2012年1月) A.序时平均数 B.动态平均数 C.静态平均数 D.平均发展水平 E. 一般平均数 2. 定基发展速度和环比发展速度的关系是 ( BD ) (2011年 10月) A. 相邻两个环比发展速度之商等于相应的定基发展速度 、单项选择题 第五章 时间序列分析 1. 构成时间数列的两个基本要素是 ( A.主词和宾词 ) (2012年 1月) B. 变量和次数 C .现象所属的时间及其统计指标数值 2.某地区历年出生人口数是一个 ( A.时期数列 D.时间和次数 2011年 10 月) B. 时点数列 C .分配数列 D .平均数数列 3. 某商场销售洗衣机, 2008 年共销售 (2010年 10) A. 时期指标 C. 前者是时期指标,后者是时点指标 4. 累计增长量 ( A ) ( 2010年 10) A. 等于逐期增长量之和 C.等于逐期增长量之差 5. 某企业银行存款余额 4 月初为 80 万元, 6000 台,年底库存 50 台,这两个指标是 ( C ) B. 时点指标 D. 前者是时点指标,后者是时期指标 B. 等于逐期增长量之积 D ?与逐期增长量没有关系 160 万元,则该企业第二季度的平均存款余额为( 5 月初为 150 万元, 6 月初为 210 万元, 7 月初为 C )( 2009年 10) C. 160 万元 D .170 万元 ( 2009年 10) B. 商品销售量 D .商品销售额 ( A ) (2009年10) B.相对数时间数列 D. 时点数列 2009年1月) B. 不可以相加 D. 绝大部分不可以相加

平稳时间序列模型及其特征

平稳时间序列模型及其特征 第一章平稳时间序列模型及其特征 第一节模型类型及其表示一、自回归模型(AR 由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。用数学模型来描述这种关系就是如下的一阶自回归模型: X t=? X-1 + £ t (2.1.1 )常记作AR(1)。其中{X t}为零均值(即已中心化处理)平稳序列,?为X t对X -1的依赖程度,£ t为随机扰动项序列(外部冲击)。 如果X t与过去时期直到X t-p的取值相关,则需要使用包含X t i ,……X-p 在内的p阶自回归模型来加以刻画。P阶自回归模型的一般形式为:X=? i X t-1+? 2 X t-2+ -------- ? p X t-p+ £ t (2.1.2 )为了简便运算和行文方便,我们引入滞后算子来简记模型。设 B 为滞后算子,即BX=X-1,则B(B k-1X)二B k X二X-k B(C)=C(C 为常数)。利

用这些记号,(2.1.2 )式可化为: X t= ? 1BX+ ? 2BX+ ? 3B‘X +.... +? P BX+£ t 从而有: (1- ? 1B- ? 启- ... -? P B) X t = £ t 记算子多项式?( B) = ( 1- ? 1B- ? 2B- ........... - ? p B),则模型可以表示成 ?( B) X=£ t (2.1.3) 例如,二阶自回归模型X=0.7X t「+0.3X t-2 +0.3X t-3 + £ t可写成 (1-0.7B-0.3B 2) X= £ t 二、滑动平均模型(MA 有时,序列X的记忆是关于过去外部冲击值的记忆,在这种情况下,X可以表示成过去冲击值和现在冲击值的线性组合,即 X = £t- 0 1 £t-1 - 0 2 £t-2 - .............................. - 0 q £t-q (2.1.4) 此模型常称为序列X的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,0 1, 0 2…0 q为参滑动平均的权数。相应的序列X t称为滑动平均序列。 使用滞后算子记号,(2.1.4 )可写成 X t= (1- 0 1B- 0 2W-……-0 q£) q t=0 (B) £t (2.1.5) 三、自回归滑动平均模型 如果序列{X}的当前值不仅与自身的过去值有关,而且还与其以

时间序列分析第五章上机指导

上机指导 第五章 5.8.1 拟合ARIMA模型 由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在了ARIMA过程中。我们已经在第3章进行了ARMA模型拟合时介绍了ARIMA过程的基本命令格式。再次以临时数据集example5_1的数据为例介绍ARIMA模型拟合与ARMA模型拟合的不同之处。 data example5_1; input x@@; difx=dif(x); t=_n_; cards; 1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.38 5.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -1 6.22 -19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44 -23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29 -9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80 proc gplot; plot x*t difx*t; symbol v=star c=black i=join; run; 输出时序图显示这是一个典型的非平稳序列。如图5-49所示 图5-49 序列x时序图 考虑对该序列进行1阶差分运算,同时考察查分后序列的平稳性,在原程序基础上添加相关命令,程序修改如下: data example5_1; input x@@;

difx=dif(x); t=_n_; cards; 1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.38 5.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -1 6.22 -19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44 -23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29 -9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80 proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; forecast lead=5 id=t ; run; 语句说明: (1)DATA步中的命令“difx=dif(x);”,这是指令系统对变量x进行1阶差分,差分后的序列值赋值给变量difx。其中dif()是差分函数,假如要差分的变量名为x,常见的几种差分表示为: 1阶差分:dif(x) 2阶差分:dif(dif(x)) k步差分:difk(x) (2)我们在GPLOT过程中添加绘制了一个时序图“difx*t”,这是为了直观考察1阶差分后序列的平稳性。所得时序图如图5-50所示。 图5-50 序列difx时序图 时序图显示差分后序列difx没有明显的非平稳特征。 (3)“id entify var=x(1);”,使用该命令可以识别查分后序列的平稳性、纯随机性和适当的拟合模型阶数。其中x(1)表示识别变量x的1阶差分后序列。SAS支持多种形式的差分序列识别:

相关主题
文本预览
相关文档 最新文档