当前位置:文档之家› 傅里叶变换、拉普拉斯变换、Z变换

傅里叶变换、拉普拉斯变换、Z变换

傅里叶变换、拉普拉斯变换、Z变换
傅里叶变换、拉普拉斯变换、Z变换

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧

Heinrich,生娃学工打折腿

这篇文章的核心思想就是:

要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗会死吗)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

————以上是定场诗————

下面进入正题:

抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多……

一、嘛叫频域

从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了我没有疯,这个静止的世界就叫做频域。

先举一个公式上并非很恰当,但意义上再贴切不过的例子:

在你的理解中,一段音乐是什么呢

这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:

好的!下课,同学们再见。

是的,其实这一段写到这里已经可以结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。

现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。

将以上两图简化:

时域:

频域:

在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。

所(前方高能!~~~~~~~~~~~非战斗人员退散~~~~~~~)

以(~~~~~~~~~~~~~~~前方高能预警~~~~~~~~~~~~~~前方高能~~~~~~~~)

你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。

(众人:鸡汤滚出知乎!)

抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。

而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。

二、傅里叶级数(Fourier Series)

还是举个栗子并且有图有真相才好理解。

如果我说我能用前面说的正弦曲线波叠加出一个带 90 度角的矩形波来,你会相信吗你不会,就像当年的我一样。但是看看下图:

第一幅图是一个郁闷的正弦波 cos(x)

第二幅图是 2 个卖萌的正弦波的叠加 cos(x)+(3x)

第三幅图是 4 个发春的正弦波的叠加

第四幅图是 10 个便秘的正弦波的叠加

随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理

(只要努力,弯的都能掰直!)

随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准 90 度角的矩形波呢不幸的告诉大家,答案是无穷多个。(上帝:我能让你们猜着我)

不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。

还是上图的正弦波累加成矩形波,我们换一个角度来看看:

在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。

这里,不同频率的正弦波我们成为频率分量。

好了,关键的地方来了!!

如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。

对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。

(好吧,数学称法为——基。在那个年代,这个字还没有其他奇怪的解释,后面还有正交基这样的词汇我会说吗)

时域的基本单元就是“1 秒”,如果我们将一个角频率为

的正弦波 cos(

t)看作基础,那么频域的基本单元就是

有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0 频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。

接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。

正弦波就是一个圆周运动在一条直线上的投影。所以频域的基本单元也可以理解为一个始终在旋转的圆

知乎不能传动态图真是太让人惋惜了……

想看动图的同学请戳这里:

File:Fourier series square wave circles

以及这里:

File:Fourier series sawtooth wave circles

点出去的朋友不要被 wiki 拐跑了,wiki 写的哪有这里的文章这么没节操是不是。

介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:这是什么奇怪的东西

这就是矩形波在频域的样子,是不是完全认不出来了教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是——

再清楚一点:

可以发现,在频谱中,偶数项的振幅都是 0,也就对应了图中的彩色直线。振幅为 0 的正弦波。

动图请戳:

File:Fourier series and

老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。

但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗估计好多人对这句话都已经吐槽半天了。想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢

我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是我们自己。我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感觉。说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数……

这三种变换都非常重要!任何理工学科都不可避免需要这些变换。

这三种变换的本质是将信号从时域转换为频域。傅里叶变换的出现颠覆了人类对世界的认知:世界不仅可以看作虽时间的变化,也可以看做各种频率不同加权的组合。举个不太恰当的例子:一首钢琴曲的声音波形是时域表达,而他的钢琴谱则是频域表达。

三种变换由于可以将微分方程或者差分方程转化为多项式方程,所以大大降低了微分(差分)方程的计算成本。

另外,在通信领域,没有信号的频域分析,将很难在时域理解一个信号。因为通信领域中经常需要用频率划分信道,所以一个信号的频域特性要比时域特性重要的多。

具体三种变换的分析(应该是四种)是这样的:

傅里叶分析包含傅里叶级数与傅里叶变换。傅里叶级数用于对周期信号转换,傅里叶变换用于对非周期信号转换。

但是对于不收敛信号,傅里叶变换无能为力,只能借助拉普拉斯变换。(主要用于计算微分方程)

而z变换则可以算作离散的拉普拉斯变换。(主要用于计算差分方程)

从复平面来说,傅里叶分析直注意虚数部分,拉普拉斯变换则关注全部复平面,而z变换则是将拉普拉斯的复平面投影到z平面,将虚轴变为一个圆环。(不恰当的比方就是那种一幅画只能通过在固定位置放一个金属棒,从金属棒反光才能看清这幅画的人物那种感觉。)

我假定楼主对这些变换已有一些了解,至少知道这些变换怎么算。好了,接下来我将从几个不同的角度来阐述这些变换。

一个信号,通常用一个时间的函数来表示,这样简单直观,因为它的函数图像可以看做信号的波形,比如声波和水波等等。很多时候,对信号的处理是很特殊的,比如说线性电路会将输入的正弦信号处理后,输出仍然是正弦信号,只是幅度和相位有一个变化(实际上从数学上看是因为指数函数是线性微分方程的特征函数,就好像矩阵的特征向量一样,而这个复幅度对应特征值)。因此,如果我们将信号全部分解成正弦信号的线性组合(傅里叶变换),那么就可以用一个传递函数来描述这个线性系统。倘若这个信号很特殊,例如,傅里叶变换在数学上不存在,这个时候就引入拉普拉斯变换来解决这个问题。这样一个线性系统都可以用一个传递函数来表示。所以,从这里可以看到将信号分解为正弦函数(傅里叶变换)或者复指数函数(拉普拉斯变换)对分析线性系统至关重要。

如果只关心信号本身,不关心系统,这几个变换的关系可以通过这样一个过程联系起来。首先需要明确一个观点,不管使用时域还是频域(或s域)来表示一个信号,他们表示的都是同一个信号!关于这一点,你可以从线性空间的角度理解。同一个信号,如果采用不同的坐标框架(或者说基向量),那么他们的坐标就不同。例如,采用作为坐标,那么信号就可以表示为,而采用则表示为傅里叶变换的形式。线性代数里面讲过,两个不同坐标框架下,

同一个向量的坐标可以通过一个线性变换联系起来,如果是有限维的空间,则可以表示为一个矩阵,在这里是无限维,这个线性变换就是傅里叶变换。

如果我们将拉普拉斯的域画出来,他是一个复平面,拉普拉斯变换是这个复平面上的一个复变函数。而这个函数沿虚轴的值就是傅里叶变换。到现在,对信号的形式还没有多少假定,如果信号是带宽受限信号,也就是说只在一个小范围内(如)不为0。

根据采样定理,可以对时域采样,只要采样的频率足够高,就可以无失真地将信号还原出来。那么采样对信号的影响是什么呢从s平面来看,时域的采样将沿虚轴方向作周期延拓!这个性质从数学上可以很容易验证。

z变换可以看做拉普拉斯变换的一种特殊形式,即做了一个代换,T是采样的周期。这个变换将信号从s域变换到z域。请记住前面说的那个观点,s域和z域表示的是同一个信号,即采样完了之后的信号。只有采样才会改变信号本身!从复平面上来看,这个变换将与轴平行的条带变换到z平面的一个单叶分支。你会看到前面采样导致的周期延拓产生的条带重叠在一起了,因为具有周期性,所以z域不同的分支的函数值是相同的。换句话说,如果没有采样,直接进行z变换,将会得到一个多值的复变函数!所以一般只对采样完了后的信号做z变换!

这里讲了时域的采样,时域采样后,信号只有间的频谱,即最高频率只有采样频率一半,但是要记录这样一个信号,仍然需要无限大的存储空间,可以进一步对频域进行采样。如果时间有限(这与频率受限互相矛盾)的信号,那么通过频域采样(时域做周期扩展)可以不失真地从采样的信号中恢复原始信号。并且信号长度是有限的,这就是离散傅里叶变换(DFT),它有著名的快速算法快速傅里叶变换(FFT)。为什么我要说DFT呢,因为计算机要有效地对一般的信号做傅里叶变换,都是用DFT来实现的。除非信号具有简单的解析表达式!

总结起来说,就是对于一个线性系统,输入输出是线性关系的,不论是线性电路还是光路,只要可以用一个线性方程或线性微分方程(如拉普拉斯方程、泊松方程等)来描述的系统,都可以通过傅里叶分析从频域来分析这个系统的特性,比单纯从时域分析要强大得多!两个著名的应用例子就是线性电路和傅里叶光学(信息光学)。甚至非线性系统,也在很多情况里面使用线性系统的东西!所以傅里叶变换才这么重要!你看最早傅里叶最早也是为了求解热传导方程(那里其实也可以看做一个线性系统)!

傅里叶变换的思想还在不同领域有很多演变,比如在信号处理中的小波变换,它也是采用一组基函数来表达信号,只不过克服了傅里叶变换不能同时做时频分析的问题。

最后,我从纯数学的角度说一下傅里叶变化到底是什么。还记得线性代数中的代数方程吗如果A是对称方阵,可以找到矩阵A的所有互相正交的特征向量和特征值,然后将向量x和b 表示成特征向量的组合。由于特征向量的正交关系,矩阵的代数方程可以化为n个标量代数方程,是不是很神奇!!你会问这跟傅里叶变换有毛关系啊别急,再看非齐次线性常微分方程,可以验证指数函数是他的特征函数,如果把方程改写为算子表示,那么有,这是不是和线性方程的特征向量特征值很像。把y 和 z都表示为指数函数的线性组合,那么经过这种变换之后,常微分方程变为标量代数方程了!!而将y和z表示成指数函数的线性组合的过程就是傅里叶变换(或拉普拉斯变换)。在偏微分方程如波动方程中也有类似结论!这是我

在上数理方程课程的时候体会到的。归纳起来,就是说傅里叶变换就是线性空间中的一个特殊的正交变换!他之所以特殊是因为指数函数是微分算子的特征函数!

一般频域用傅里叶,复数域用拉普拉斯

复变函数表示下的微分方程可以通过laplace变换变成普通方程。

Laplace变换起源于傅立叶变换,只不过是对傅立叶变换进行了拓展,从时间t>0开始进行积分运算,比较适合实际物理模型。

对一个系统进行分析和研究,首先要知道该系统的数学模型,也就是要建立反映该系统特性的数学表达式,即偏微分方程,利用Laplace变换可以将偏微分方程化成常微分方程,将常微分方程化为代数方程,根据这个代数方程求出像函数,然后再取逆变换求出原微分方程的解。

类似于傅利叶变换完成时域和频域转换一样,拉普拉斯变换将一个信号从时域上,转换为复频域。从数学上讲应用拉普拉斯变换将指数关系运算转换乘法关系运算,因此可用来解常变量齐次微分方程,拉普拉斯变换可以将微分方程化为代数方程,使问题得以解决。

拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。

应用拉氏变换:

(1)求解方程得到简化。且初始条件自动包含在变换式里。

(2)拉氏变换将“微分”变换成“乘法”,“积分”变换成“除法”。即将微分方程变成代数方程。

拉氏变换将时域中卷积运算变换成“乘法”运算。

(3)利用系统函数零点、极点分布分析系统的规律。

在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。

现在给你举个例子:

我们学控制的时候,比如一个二阶电路RLC

系统微分方程是:

LC*Uc'' + RC*Uc' + Uc = U

设想你借这个微分方程多费劲,

那么你用laplace变换,微分方程变为

LC*s^2*Uc + RCs*Uc + Uc = U

然后Uc = U/ (LCs^2 + RCs + 1)

然后可以查表直接得出结果(就跟查积分表一样方便),这不比你解微分方程,强多了么!傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。

拉普拉斯变换

定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数

其中,S=σ+jω是复参变量,称为复频率。

左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;

右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。

以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。

如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt

其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。

z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。

相关主题
文本预览
相关文档 最新文档