当前位置:文档之家› 电磁感应中能量问题

电磁感应中能量问题

电磁感应中能量问题
电磁感应中能量问题

电磁感应中的动力学问题

1.题型简述

感应电流在磁场中受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决这类问题需要综合应用电磁感应规律(法拉第电磁感应定律、楞次定律)及力学中的有关规律(共点力的平衡条件、牛顿运动定律、动能定理等).

2.两种状态及处理方法

3.动态分析的基本思路

解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度最大值或最小值的条件.具体思路如下:

例2(2016·全国卷Ⅱ·24)如图4,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为

m、长度为l的金属杆置于导轨上.t=0时,金属杆在水平向右、大小为

F的恒定拉力作用下由静止开始运动.t0时刻,金属杆进入磁感应强度大

小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持

匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g.求:

(1)金属杆在磁场中运动时产生的电动势的大小;

(2)电阻的阻值.

(2017·江淮十校三模)宽为L 的两光滑竖直裸导轨间接有固定电阻R ,导轨(电阻

忽略不计)间Ⅰ、Ⅱ区域中有垂直纸面向里宽为d ,磁感应强度为B 的匀强磁场,

Ⅰ、Ⅱ区域间距为h ,如图5,有一质量为m 、长为L 、电阻不计的金属杆与竖

直导轨紧密接触,从距区域Ⅰ上端H 处由静止释放.若杆在Ⅰ、Ⅱ区域中运动情

况完全相同,现以杆由静止释放为计时起点,则杆中电流随时间t 变化的图象可能正确的是( )

(2017·山东泰安二模)如图3甲所示,间距为L 的光滑导轨水平

放置在竖直向下的匀强磁场中,磁感应强度为B ,轨道左侧连

接一定值电阻R .垂直导轨的导体棒ab 在平行导轨的水平外力

F 作用下沿导轨运动,F 随t 变化的规律如图乙所示.在0~t 0

时间内,棒从静止开始做匀加速直线运动.图乙中t 0、F 1、F 2为已知量,棒和导轨的电阻不计.则

( )

A.在t 0以后,导体棒一直做匀加速直线运动

B.在t 0以后,导体棒先做加速,最后做匀速直线运动

C.在0~t 0时间内,导体棒的加速度大小为2(F 2-F 1)R B 2L 2t 0

D.在0~t 0时间内,通过导体棒横截面的电荷量为(F 2-F 1)t 02BL

如图9-3-1所示,在匀强磁场中竖直放置两条足够长的平行导轨,

磁场方向与导轨所在平面垂直,磁感应强度大小为B 0,导轨上端连接一

阻值为R 的电阻和开关S ,导轨电阻不计,两金属棒a 和b 的电阻都为R ,

质量分别为m a =0.02 kg 和m b =0.01 kg ,它们与导轨接触良好,并可

沿导轨无摩擦地运动,若将b 棒固定,开关S 断开,用一竖直向上的恒

力F 拉a 棒,稳定后a 棒以v 1=10 m/s 的速度向上匀速运动,此时再释放b 棒,b

棒恰能保持静止。(g =10 m/s 2

)

(1)求拉力F 的大小;

(2)若将a 棒固定,开关S 闭合,让b 棒自由下滑,求b 棒滑行的最大速度v 2;

(3)若将a棒和b棒都固定,开关S断开,使磁感应强度从B0随时间均匀增加,经0.1 s后磁感应强度增大到2B0时,a棒受到的安培力大小正好等于a棒的重力,求两棒间的距离

(2017·浙江重点中学测试)如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁

场区域,MN和PQ是匀强磁场区域的水平边界,并与线框

的bc边平行,磁场方向垂直于线框平面向里.现使金属线框

从MN上方某一高度处由静止开始下落,如图乙是金属线框

由开始下落到bc刚好运动到匀强磁场PQ边界的v-t图象,

图中数据均为已知量.重力加速度为g,不计空气阻力.下列说法正确的是() A.金属线框刚进入磁场时感应电流方向沿adcba方向

B.磁场的磁感应强度为

1

v1(t2-t1)

mgR

v1

C.金属线框在0~t3的时间内所发生的热量为mg v1(t2-t1)

D.MN和PQ之间的距离为v1(t2-t1)

电磁感应中的动力学和能量问题

1.题型简述

电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功来实现的.安培力做功的过程,是电能转化为其他形式的能的过程;外力克服安培力做功的过程,则是其他形式的能转化为电能的过程.

2.解题的一般步骤

(1)确定研究对象(导体棒或回路);

(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;

(3)根据能量守恒定律或功能关系列式求解.

3.求解电能应分清两类情况

(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.

(2)若电流变化,则

①利用安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功;

②利用能量守恒求解:若只有电能与机械能的转化,则减少的机械能等于产生的电能.

如图7所示,间距为L 的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直

导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度

为B 的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强

度也为B 的匀强磁场.闭合开关S ,让金属杆MN 从图示位置由静止释放,

已知金属杆MN 运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆MN 两端始终与导轨接触良好,重力加速度为g .求:

(1)金属杆MN 在倾斜导轨上滑行的最大速率v m ;

(2)金属杆MN 在倾斜导轨上运动,速度未达到最大速度v m 前,当流经定值电阻的电流从零增大到I 0的过程中,通过定值电阻的电荷量为q ,求这段时间内在定值电阻上产生的焦耳热Q ;

(3)金属杆MN 在水平导轨上滑行的最大距离x m .

(多选)(2017·山东潍坊中学一模)如图8所示,同一竖直面内的正方形导线框

a 、

b 的边长均为l ,电阻均为R ,质量分别为2m 和m .它们分别系在一跨过两

个定滑轮的轻绳两端,在两导线框之间有一宽度为2l 、磁感应强度大小为B 、

方向垂直竖直面的匀强磁场区域.开始时,线框b 的上边与匀强磁场的下边界重

合,线框a 的下边到匀强磁场的上边界的距离为l .现将系统由静止释放,当线

框b 全部进入磁场时,a 、b 两个线框开始做匀速运动.不计摩擦和空气阻力,重力加速度为g ,则

( )

A.a 、b 两个线框匀速运动时的速度大小为2mgR B 2l 2

B.线框a 从下边进入磁场到上边离开磁场所用时间为3B 2l 3mgR

C.从开始运动到线框a 全部进入磁场的过程中,线框a 所产生的焦耳热为mgl

D.从开始运动到线框a 全部进入磁场的过程中,两线框共克服安培力做功为2mgl

如图9所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质

量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区

域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁

场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度

变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:

(1)MN 刚扫过金属杆时,杆中感应电流的大小I ;

(2)MN 刚扫过金属杆时,杆的加速度大小a ;

(3)PQ 刚要离开金属杆时,感应电流的功率P .

.(多选)(2017·河南三市二模)如图5所示,一根总电阻为R 的导线弯成宽度

和高度均为d 的“半正弦波”形闭合线框.竖直虚线之间有宽度也为d 、磁

感应强度为B 的匀强磁场,方向垂直于线框所在的平面.线框以速度v 向右

匀速通过磁场,ab 边始终与磁场边界垂直.从b 点到达边界开始到a 点离开

磁场为止,在这个过程中( )

A.线框中的感应电流先沿逆时针方向后沿顺时针方向

B.ab 段直导线始终不受安培力的作用

C.平均感应电动势为12

Bd v D.线框中产生的焦耳热为B 2d 3v R

.如图7所示,两平行光滑金属导轨倾斜放置且固定,两导轨间距为L ,与水

平面间的夹角为θ,导轨下端有垂直于轨道的挡板(图中未画出),上端连接

一个阻值R =2r 的电阻,整个装置处在磁感应强度为B 、方向垂直导轨向上

的匀强磁场中,两根相同的金属棒ab 、cd 放在导轨下端,其中棒ab 靠在挡

板上,棒cd 在沿导轨平面向上的拉力作用下,由静止开始沿导轨向上做加速度为a 的匀加速运动.已知每根金属棒质量为m 、长度为L 、电阻为r ,导轨电阻不计,棒与导轨始终接触良好.求:

(1)经多长时间棒ab 对挡板的压力变为零;

(2)棒ab 对挡板压力为零时,电阻R 的电功率;

(3)棒ab 运动前,拉力F 随时间t 的变化关系.

.(2016·全国卷Ⅲ·25)如图8,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、

导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里

的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中

k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)

与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.

某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求

(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;

(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.

如图所示,无限长光滑平行导轨与地面夹角为θ,一质量为m 的导体棒ab 垂直于导轨水平放置,与导轨构成一闭合回路,导轨的宽度为L ,空间内存在大小为B ,方向垂直导轨向上的匀强磁场,已知导体棒电阻为R ,导轨电阻不计,现将导体棒由静止释放,以下说法正确的是: ( )

A 、导体棒中的电流方向从a 到b

B 、导体棒先加速运动,后匀速下滑

C 、导体棒稳定时的速率为22sin mgR B L θ

D 、当导体棒下落高度为h 时,速度为v ,此过程中导体棒上产生的焦耳热等于

212

mgh m v -

如图所示,在匀强磁场的上方有一质量为m 、半径为R 的细导线做成的

圆环,圆环的圆心与匀强磁场的上边界的距离为h 。将圆环由静止释放,

圆环刚进入磁场的瞬间和完全进入磁场的瞬间,速度均为。已知匀强

磁场的磁感应强度为B ,导体圆环的电阻为r ,重力加速度为g ,则下

列说法不正确的是: ( )

A. 圆环刚进入磁场的瞬间,速度

B. 圆环进入磁场的过程中,电阻产生的热量为

C. 圆环进入磁场的过程中,通过导体横截面的电荷量为

D. 圆环进入磁场的过程做的是匀速直线运动

如图所示,在光滑绝缘的水平面上方,有两个方向相反的水平方向匀强磁场,PQ 为两个磁场的边界,磁场范围足够大,磁感应强度的大小分别为B 1=B 、B 2=2B 。一个

竖直放置的边长为a 、质量为m 、电阻为R 的正方形金属线框,以速度v 垂直磁场方向从图中实线位置开始向右运动,当线框运动到分别有一半面积在两个磁场中时,线框的速度为v /2,则下列结论中正确的是: ( )

A .此过程中通过线框截面的电量为2

32Ba R

B .此过程中回路产生的电能为234mv

C .此时线框的加速度为9B 2a 2v 2mR

D .此时线框中的电功率为222

94B a v R

(多选)(2015·苏州模拟)如图5所示,水平放置的粗糙U 形金属框架上接一个阻值为R 0的电阻,放在垂直纸面向里、磁感应强度大小为B 的匀强磁场中,一个半

径为l 、质量为m 的半圆形硬导体AC 在水平恒力F 作用下,由静止开始运动距离d 后速度达到v ,半圆形导体AC 的电阻为r ,其余电阻不计,下列说

法正确的是( )

A .U AC =2Blv

B .U A

C =2R 0Blv R 0+r

C .电路中产生的电热Q =Fd -12

mv 2 D .通过R 0的电荷量q =2Bld R 0+r

如图8所示,正方形闭合导线框的质量可以忽略不计,将它从如图所示的

位置匀速拉出匀强磁场。若第一次用0.3 s 时间拉出,外力所做的功为W 1;第

二次用0.9 s 时间拉出,外力所做的功为W 2,则( )

A .W 1=13

W 2 B .W 1=W 2 C .W 1=3W 2 D .W 1=9W 2

如图11所示,两根相距l =0.4 m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15 Ω的电阻相连。导轨间x >0一侧存在沿x 方向均匀增大

的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5 T/m ,x =0处磁

场的磁感应强度B 0=0.5 T 。一根质量m =0.1 kg 、电阻r =0.05 Ω的

金属棒置于导轨上,并与导轨垂直。棒在外力作用下从x =0处以初速度v 0=2 m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变。求:

(1)回路中的电流;

(2)金属棒在x=2 m处的速度;

(3)金属棒从x=0运动到x=2 m过程中安培力做功的大小。

如图10甲所示,水平面上的两光滑金属导轨

平行固定放置,间距d=0.5 m,电阻不计,左端

通过导线与阻值R=2 Ω的电阻连接,右端通过导

线与阻值R L=4 Ω的小灯泡L连接。在CDFE矩形

区域内有竖直向上的匀强磁场,CE长l=2 m,有一阻值r=2 Ω的金属棒PQ放置在靠近磁场边界CD处(恰好不在磁场中)。CDFE区域内磁场的磁感应强度B随时间变化如图乙所示。在t=0至t=4 s 内,金属棒PQ保持静止,在t=4 s时使金属棒PQ 以某一速度进入磁场区域并

保持匀速运动。已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化。求:

(1)通过小灯泡的电流;

(2)金属棒PQ在磁场区域中运动的速度大小。

如图9-4-1所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m。导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=

0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。

然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒

cd置于导轨上,由静止开始下滑。cd在滑动过程中始终处于区域Ⅱ

的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2。问:

(1)cd下滑的过程中,ab中的电流方向;

(2)ab刚要向上滑动时,cd的速度v多大;

(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中

ab上产生的热量Q是多少。

相距为L =2 m 的足够长的金属直角导轨

如图9-4-5甲所示放置,它们各有一边在同

一水平面内,另一边垂直于水平面。质量均

为m =0.1 kg 的金属细杆ab 、cd 与导轨垂直

接触形成闭合回路,细杆与导轨之间的动摩

擦因数均为μ=0.5,导轨电阻不计,细杆ab 、cd 电阻分别为R 1=0.6 Ω,R 2=0.4 Ω。

整个装置处于磁感应强度大小为B =0.50 T 、方向竖直向上的匀强磁场中。当ab 在平行于水平导轨的拉力F 作用下从静止开始沿导轨匀加速运动时,cd 杆也同时从静止开始沿导轨向下运动。测得拉力F 与时间t 的关系如图乙所示。(g =10 m/s 2)

(1)求ab 杆的加速度a ;

(2)当cd 杆达到最大速度v 时,求ab 杆的速度大小;

(3)若从开始到cd 杆达到最大速度的过程中拉力F 做了5.2 J 的功,求该过程中ab 杆所产生的焦耳热。

如图3所示,固定的竖直光滑U 型金属导轨,间距为L ,上端接有阻值为R 的

电阻,处在方向水平且垂直于导轨平面、磁感应强度为B 的匀强磁场中,质量为m 、电阻为r 的导体棒与劲度系数为k 的固定轻弹簧相连放在导轨上,导轨

的电阻忽略不计。初始时刻,弹簧处于伸长状态,其伸长量为x 1=mg k

,此时导体棒具有竖直向上的初速度v 0。在沿导轨往复运动的过程中,导体棒始终与导轨垂直

并保持良好接触。则下列说法正确的是( )

A .初始时刻导体棒受到的安培力大小F =

B 2L 2v 0R

B .初始时刻导体棒加速度的大小a =2g +B 2L 2v 0m R +r

C .导体棒往复运动,最终将静止时弹簧处于压缩状态

D .导体棒开始运动直到最终静止的过程中,电阻R 上产生的焦耳热Q =12

mv 02+

2m 2g 2k

如图所示,足够长的固定平行粗糙金属双轨MN 、PQ 相距d =0.5 m ,导轨平面与水平面夹角α=30°,处于方向垂直导轨平面向上、磁感应强度大小B =0.5 T 的匀强磁场中。长也为d 的金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接

触良好,棒的质量m =0.1 kg ,电阻R =0.1 Ω,与导轨之间的动摩擦

因数μ=36

,导轨上端连接电路如图所示。已知电阻R 1与灯泡电阻R 2的阻值均为0.2 Ω,导轨电阻不计,取重力加速度大小g =10 m/s 2。

(1)求棒由静止刚释放瞬间下滑的加速度大小a ;

(2)假若棒由静止释放并向下加速运动一段距离后,灯L 的发光亮度稳定,求此时灯L 的实际功率P 和棒的速率v 。 如图所示,光滑绝缘的水平面上,一个边长为L 的正方形金属框,在

水平恒力F 作用下运动,穿过方向如图的有界匀强磁场区域。磁场

区域的宽度为d(d>L).当ab 边进入磁场时,线框的加速度恰好为

零。则线框进入磁场的过程和从磁场另一侧穿出的过程相比较,下

列分析正确的是( )

A. 两过程所用时间相等

B. 所受的安培力方向相反

C. 线框中产生的感应电流方向相反

D. 进入磁场的过程中线框产生的热量较少

如图所示,在水平桌面上放置两条相距为l 的平行光滑导轨ab 与cd ,阻值为R 的电阻与导轨的a 、c 端相连。质量为m 、电阻也为R 的导体棒垂直于导轨

放置并可沿导轨自由滑动。整个装置放于匀强磁场中,磁场的方向竖

直向上,磁感应强度的大小为B 。导体棒的中点系一不可伸长的轻绳,

绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,

绳处于拉直状态。现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则( )

A.电阻R中的感应电流方向由c到a

B.物块下落的最大加速度为g

C.若h足够大,物块下落的最大速度为2mgR B2l2

D.通过电阻R的电荷量为Blh R

平行水平长直导轨间的距离为L,左端接一耐高压的电容器C。轻质导体杆cd与导轨接触良好,如图所示,在水平力作用下以加速度a从静止到匀加速运动,匀强磁场B 竖直向下,不计摩擦与电阻,求:

(1)所加水平外力F与时间t的关系;

(2)在时间t内有多少能量转化为电场能?

解析:(1)对于导体棒cd,由于做匀加速运动,则有:

v

1

=at,由E=BLv可知:E=BLat

对于电容器,由C=Q

U

可知:Q=CU=CBLat,

对于闭合回路,由I=Q

t

可知:I=CBLa

对于导体棒,由F安=BIL可知:F安=B2L2Ca①

由牛顿第二定律可知:F-F安=ma,F=(m+B2L2C)a,因此对于外力F来说,是一个恒定的外力,不随时间变化。

(2)对于导体棒cd,克服安培力做多少功,就应有多少能量转化为电能,则有:W安=-F安x②

x=1

2

at2③

由①②③式得:W 安=B 2L 2a 2t 2C 2,

所以在t 秒内转化为电场能的能量为:E =B 2L 2a 2t 2C 2。

答案:(1)F =(m +B 2L 2C )a ,为恒力,不随时间t 变化

(2)B 2L 2a 2t 2C 2

如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=

37°的绝缘斜面上,顶部接有一阻值R =3 Ω的定值电阻,

下端开口,轨道间距L =1 m 。整个装置处于磁感应强度B =2

T 的匀强磁场中,磁场方向垂直斜面向上。质量m =1 kg 的

金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1 Ω,电路中其余电阻不计。金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好。不计空气阻力影响。已知金属棒ab 与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2。

(1)求金属棒ab 沿导轨向下运动的最大速度v m ;

(2)求金属棒ab 沿导轨向下运动过程中,电阻R 上的最大电功率P R ;

(3)若从金属棒ab 开始运动至达到最大速度过程中,电阻R 上产生的焦耳热总共为

1.5 J ,求流过电阻R 的总电荷量q 。

如图所示,水平的平行虚线间距为d =60 cm ,其间有沿水平方向的匀强磁场。一个阻值为R 的正方形金属线圈边长l

A.线圈下边缘刚进磁场时加速度最小

B.线圈进入磁场过程中产生的电热为0.6 J

C.线圈在进入磁场和穿出磁场过程中,电流均为逆时针方向

D.线圈在进入磁场和穿出磁场过程中,通过导线截面的电荷量相等

如图所示,水平光滑的平行金属导轨,左端接有电阻R,匀强磁场B竖直向下分布在导轨所在的空间内,质量一定的金属棒PQ垂直导轨放置.今使棒以一定的初速度v

向右运动,当其通过位置a、b时,速率分别为v

a 、v

b

,到位置c时棒刚好静止,设

导轨与棒的电阻均不计,a到b与b到c的间距相等,则金属

棒在由a到b和由b到c的两个过程中

A. 回路中产生的内能相等

B. 棒运动的加速度相等

C. 安培力做功相等

D. 通过棒横截面积的电荷量相等

如图所示,一根阻值为R的金属导体棒从图示位置ab分别以v1、v2的

速度沿光滑导轨(电阻不计)匀速滑到位置,若v1:v2=1:2,则在这两次过程中说法正确的是( )

A. 回路电流I1:I2=1:2

B. 产生的热量Q1:Q2=1:4

C. 通过任一截面的电荷量q1:q2=1:1

D. 外力的功率P1:P2=1:2

如图5所示,足够长的光滑金属框竖直放置,框宽L=0.5 m,框的电阻

不计,匀强磁场的磁感应强度B=1 T,方向与框面垂直,金属棒MN的质量为100 g,电阻为1 Ω,现让MN无初速度释放并与框保持接触良好的竖直下落,从释放直至到最大速度的过程中通过棒某一截面的电荷量为2 C,求此过程中回路产生的电能为多少?(空气阻力不计,g=10 m/s2

如图所示,光滑导轨竖直放置,匀强磁场的磁感应强度为B=0.5 T,磁

场方向垂直于导轨平面向外,导体棒ab的长度与导轨宽度均为L=0.2 m,电阻R=1.0 Ω。导轨电阻不计,当导体棒紧贴导轨匀速下滑时,均标

有“6 V 3 W”字样的两小灯泡恰好正常发光,求:

(1)通过ab 的电流的大小和方向;

(2)ab 运动速度的大小;

(3)电路的总功率。

(多选题)如图所示,足够长的U 形光滑金属导轨所在平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,磁感应强度大小为B 的匀强磁场方向垂直导轨所在平面斜向上,导轨电阻不计,质量为m 的金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,棒ab 接入电路的电阻为R ,当流过棒ab 某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在此下滑过程中( )

A .运动的加速度大小为L

v 22

B .下滑位移大小为BL

qR C .产生的焦耳热为qBLv

D .受到的最大安培力大小为mgsin θ

如图所示,在匀强磁场区域的上方有一半径为R 的导体圆环,将圆环由静止释放,圆环刚进入磁场的瞬间和完全进入磁场的瞬间速度相等.已知圆环的电阻为r ,匀强进场的磁感应强度为B ,重力加速度为g ,则( )

A .圆环进入磁场的过程中,圆环中的电流为逆时针

B .圆环进入磁场的过程可能做匀速直线运动

C .圆环进入磁场的过程中,通过导体某个横截面的电荷量为r

B TR 22 D .圆环进入磁场的过程中,电阻产生的热量为2mgR 89、如图所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L ,右端接有电阻R ,磁感应强度为B ,一根质量为m 、电阻不计的金属棒以v

0的初

速度沿框架向左运动,棒与框架的动摩擦因数为μ,测得棒在整个运动过程中,通过任一截面的电量为q ,求:

(1)棒能运动的距离; (2)R 上产生的热量. 如图,MN 、PQ 两条平行足够长的粗糙金属轨道与水平面成θ=37

°角,轨道间距为L=1m ,质量为m=0.5kg 的金属杆ab 水平放置

在轨道上,其阻值r=0.1Ω.空间存在匀强磁场,磁场方向垂直

于轨道平面向上,磁感应强度为B=0.5T.P、M间接有R=2.4Ω的电阻。杆与轨道间的动摩擦因数为μ=0.5,若轨道足够长且电阻不计,现从静止释放ab。求:(重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)

(1) 当金属杆ab运动的速度为5m/s时,金属杆ab之间的电压和

此时金属杆ab运动的加速度大小。

(2)金属杆ab在下滑过程中的最大速度。

(3)若ab棒滑动x=26m时棒已达到最大速度,求

此过程通过导体棒的电荷量q和导体棒上产生的热量Q。

、如图4所示,两根电阻不计的光滑平行金属导轨倾角为θ,导轨下端接有电阻R,匀强磁场垂直斜面向上.质量为m、电阻不计的金属棒ab在沿斜面与棒垂直的恒力F 作用下沿导轨匀速上滑,上升高度为h,在这个过程中( )

A.金属棒所受各力的合力所做的功等于零

B.金属棒所受各力的合力所做的功等于mgh和电阻R上产生的焦耳热之和

C.恒力F与重力的合力所做的功等于棒克服安培力所做的功与电阻R上产

生的焦耳热之和

D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热

如图3所示,在倾角θ=37°的光滑斜面上存在一垂直斜面

向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁

场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、

电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨

过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:

(1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少?

(2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距

磁场MN边界的距离x多大?

(3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求

整个运动过程中ab边产生的热量为多少?

光滑曲面与竖直平面的交线是抛物线,如图5所示,抛物线的方程

为y =x 2

,其下半部处在一个水平方向的匀强磁场中,磁场的上边界

是y =a 的直线(图中虚线所示),一个质量为m 的小金属块从抛物线y =b (b >a )处以速度v 沿抛物线下滑,假设抛物线足够长,则金属

块在曲面上滑动的过程中产生的焦耳热总量是( )

A .mgb

B.12mv 2 C .mg (b -a ) D .mg (b -a )+12

mv 2

如图所示,两根相距为L =1m 的足够长的平行光滑金属导轨,

位于水平的xOy 平面内,一端接有阻值为R =6Ω的电阻.在

x >0的一侧存在垂直纸面向里的磁场,磁感应强度B 只随t 的

增大而增大,且它们间的关系为B =kt ,其中k =4T/s 。一质

量为m =0.5kg 的金属杆与金属导轨垂直,可在导轨上滑动,

当t =0时金属杆静止于x =0处,有一大小可调节的外力F 作用于金属杆,使金属杆以恒定加速

度a =2m/s 2沿x 轴正向做匀加速直线运动.除电阻R 以外其余电阻都可以忽略不计。求:当t =4s 时施加于金属杆上的外力为多大。

9、如图所示,正方形单匝线框bcde 边长L =0.4 m ,每边电阻相同,总电阻R =

0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形

线框,另一端连接物体P ,手持物体P 使二者在空中保持静止,线框处在竖直面

内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也

为L =0.4 m ,磁感线方向垂直于线框所在平面向里,磁感应强度大小B =1.0 T ,

磁场的下边界与线框的上边eb 相距h =1.6 m .现将系统由静止释放,线框向上

运动过程中始终在同一竖直面内,eb 边保持水平,刚好以v =4.0 m/s 的速度进入

磁场并匀速穿过磁场区,重力加速度g =10 m/s 2,不计空气阻力.

(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb 为多少?

(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q 为多少?

(3)若在线框eb 边刚进入磁场时,立即给物体P 施加一竖直向下的力F ,使

线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F 做功

W F =3.6 J ,求eb 边上产生的焦耳Q eb 为多少?

如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l =0.5 m ,左端接有阻值R =0.3 Ω的电阻.一质量m =0.1 kg ,电阻r =0.1 Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B =0.4 T .金属棒在水

平向右的外力作用下,由静止开始以a =2 m/s 2的加速度做匀加速运动,

当金属棒的位移x =9 m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1.导轨足够长且电阻不计,金属棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:

(1)金属棒在匀加速运动过程中,通过电阻R 的电荷量q ;

(2)撤去外力后回路中产生的焦耳热Q 2;

(3)外力做的功W F .

(多选)在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,如图所示.一个质量为m 、电阻为R 、边长也为L 的正方形线框在t =0时刻以速度v 0进入磁场,恰好做匀速直线运动,若经过时间t 0,线框ab 边到达gg ′与ff ′中间位置时,线框又恰好做匀速运动,则下列说法正确的是( )

A .当ab 边刚越过ff ′时,线框加速度的大小为g sin θ

B .t 0时刻线框匀速运动的速度为v 04

C .t 0时间内线框中产生的焦耳热为32mgL sin θ+1532m v 20

D .离开磁场的过程中线框将做匀速直线运动

如图7所示,相距为d 的两条水平虚线之间有方向垂直纸面向里的匀强磁场,磁感

应强度大小为B ,正方形线圈abec 边长为L (L

在磁场上方h 高处由静止释放,ce 边刚进入磁场时的速度为v 0,刚离开磁场时的

速度也为v 0,重力加速度大小为g ,则线圈穿过磁场的过程中(即从ce 边刚进入磁

场到ab 边离开磁场的过程),有( )

A .产生的焦耳热为mgd

B .产生的焦耳热为mg (d -L )

C .线圈的最小速度一定为22g (h +L -d )

D .线圈的最小速度可能为mgR B 2L

2

2、如图6所示,质量为m 、高为h 的矩形导线框在竖直面内自由下落,其上下两

边始终保持水平,途中恰好匀速穿过一有理想边界的匀强磁场区域,线框在此过

程中产生的内能为( )

A .mgh

B .2mgh

C .大于mgh 而小于2mgh

D .大于2mgh

电磁感应中的能量问题练习

电磁感应中的能量问题练习 一、单项选择题 1.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中() A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变 C.线框所受安培力的合力为零D.线框的机械能不断增大 答案: B 解析: 当线框由静止向下运动时,穿过线框的磁通量逐渐减小,根据楞次定律可得产生的感应电流的方向为顺时针且方向不发生变化,A错误,B正确;因线框上下两边所在处的磁场强弱不同,线框所受的安培力的合力一定不为零,C错误;整个线框所受的安培力的合力竖直向上,对线框做负功,线框的机械能减小,D错误. 2.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表 面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计) 放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与 导轨平面垂直.用水平恒力F把ab棒从静止起向右拉动的过程中 ①恒力F做的功等于电路产生的电能 ②恒力F和摩擦力的合力做的功等于电路中产生的电能 ③克服安培力做的功等于电路中产生的电能 ④恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和 以上结论正确的有() A.①②B.②③C.③④D.②④ 答案: C 解析: 在此运动过程中做功的力是拉力、摩擦力和安培力,三力做功之和为棒ab动能增加量,其中安培力做功将机械能转化为电能,故选项C正确.

3. 一个边长为L 的正方形导线框在倾角为θ的光滑固定斜面上由静止开始沿斜面下滑,随后进入虚线下方方向垂直于斜面 的匀强磁场中.如图所示,磁场的上边界线水平,线框的下边ab 边始终水平,斜面以及下方的磁场往下方延伸到足够远.下列推理判断正确的是( ) A .线框进入磁场过程b 点的电势比a 点高 B .线框进入磁场过程一定是减速运动 C .线框中产生的焦耳热一定等于线框减少的机械能 D .线框从不同高度下滑时,进入磁场过程中通过线框导线横截面的电荷量不同 答案: C 解析: ab 边进入磁场后,切割磁感线,ab 相当于电源,由右手定则可知a 为等效电源的正极,a 点电势高,A 项错.由于线框所受重力的分力mg sin θ与安培力大小不能确定,所以不能确定其是减速还是加速,B 项错;由能量守恒知C 项 对;由q =n ΔΦR 知,q 与线框下降的高度无关,D 项错. 4. 如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导 轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁 场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与 安培力做的功的代数和等于( ) A .棒的机械能增加量 B .棒的动能增加量 C .棒的重力势能增加量 D .电阻R 上放出的热量 答案: A 解析: 由动能定理有W F +W 安+W G =ΔE k ,则W F +W 安=ΔE k -W G ,W G <0,故ΔE k -W G 表示机械能的增加量.选A 项.

电磁感应中的能量问题分析高中物理专题.docx

第 10 课时电磁感应中的能量问题分析 一、知识内容: 1、分析:棒的运动过程→ 运动性质→ 遵从规律; 2、掌握能量的转化方向:哪些能量减少,哪些能量增加; 3、电能→内能 Q:I 恒定→Q I 2 Rt ;I变化:用有效值求,或能量守恒; 4、常用知识点:动能定理、能量守恒、W 、P、Q、等。 二、例题分析: 【例 1】如图所示, PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值为R=8 Ω的电阻,导轨间距为 L=1m ,一质量 m=0.1kg,电阻 r=2 Ω的均匀金属杆水平放在 导轨上,它与导轨的滑动摩擦因数 3 / 5 ,导轨平面倾角300,在垂直导轨平面方向有匀强磁场, B=0.5T ,今让金属杆由静止开始下滑,从杆静止开始到杆 AB恰好匀速运动的过程中经过杆的电量q 1C ,求: (1)当 AB 下滑速度为2m/ s时加速度的大小 (2)AB 下滑的最大速度 (3)从静止开始到 AB 匀速运动过程R 上产生的热量? 【例2】如图所示,两根间距为l 的光滑金属导轨(不计电阻),由 一段圆弧部分与一段无限长的水平段部分组成,其水平段加 有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段 上静止放置一金属棒cd,质量为2m,电阻为2r,另一质量为 m,电阻为 r 的金属棒ab,从圆弧段M 处由静止释放下滑至 N 处进入水平段,圆弧段 MN 半径为 R,所对圆心角为 60°,求: (1) ab 棒在 N 处进入磁场区速度多大?此时棒中电流是多少? (2) cd 棒能达到的最大速度是多大? (3) cd 棒由静止到达最大速度过程中,系统所能释放的热量是多少? 【例 3】用质量为m、总电阻为R 的导线做成边长为l 的正方形线框MNPQ ,并将其放在倾 光磁静角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。线框与导轨之间是滑的,在导轨的下端有一宽度为l(即 ab=l)、磁感应强度为 B 的有界匀强磁场,场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。某一次,把线框从 止状态释放,线框恰好能够匀速地穿过磁场区域。若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度; (2)开始释放时, MN 与 bb′之间的距离; (3)线框在通过磁场的过程中所生的焦耳热。

高中物理复习课:电磁感应中的动力学和能量问题教案

复习课:电磁感应中的动力学和能量问题教案 班级:高二理科(6)班下午第一节授课人:课题电磁感应中的动力学与能量问题第一课时 三维目标1.掌握电磁感应中动力学问题的分析方法 2.理解电磁感应过程中能量的转化情况 3.运用能量的观点分析和解决电磁感应问题 重点1.分析计算电磁感应中有安培力参与的导体的运动及平衡问题 2.分析计算电磁感应中能量的转化与转移 难点1.运用牛顿运动定律和运动学规律解答电磁感应问题 2.运用能量的观点分析和解决电磁感应问题 教具多媒体辅助课型复习课课 时 安 排 2课时 教学过程一、电磁感应中的动力学问题 课前同学们会根据微课视频完成学案上的知识清单:1.安培力的大小 2.安培力的方向判断 3.两种状态及处理方法 状态特征处理方法 平衡态加速度为零根据平衡条件列式分析 非平衡态 加速度不为 零 根据牛顿第二定律进行动态分析或结 合功能关系进行分析 4.力学对象和电学对象的相互关系

教学过程指导学生处理学案上的例题和拓 展训练 例1:如图所示,在磁感应强 度为B,方向垂直纸面向里的 匀强磁场中,金属杆MN放 在光滑平行金属导轨上,现用平行于金属杆的恒力F,使MN从静止开始向右滑动,回路的总电阻为R,试分析MN 的运动情况,并求MN的最大速度。 拓展训练1:如图所示,两根足 够长的平行金属导轨固定在倾 角θ=30°的斜面上,导轨电 阻不计,间距L=0.4 m。导轨 所在空间被分成区域Ⅰ和Ⅱ, 两区域的边界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直 斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2。问: (1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; 例2:如图所示的图中,导体棒ab垂直放在水平导轨上,导轨处在方向垂直于水平面向下的匀强磁场中。导体棒和导轨间接触良好且摩擦不计,导体棒、导轨的电阻均可忽略,今给导体棒ab一个向右的初速度V0。有的同学说电容器断路无电流,棒将一直匀速运动 下去;有的同学认为棒相当于电 源,将给电容器充电,电路中有电 流,所以在安培力的作用下,棒将 减速。关于这个问题你怎么看呢?

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质 设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。 由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

物理 电磁感应中的能量问题 基础篇

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

电磁感应中的能量转换问题_经典

在电磁感应中的动力学问题中有两类常见的模型. 类型“电—动—电”型“动—电—动”型 示 意 图 棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计 分析S闭合,棒ab受安培力F= BLE R ,此 时a= BLE mR ,棒ab速度v↑→感应电 动势BLv↑→电流I↓→安培力F= BIL↓→加速度a↓,当安培力F=0 时,a=0,v最大,最后匀速 棒ab释放后下滑,此时a=gsin α,棒 ab速度v↑→感应电动势E=BLv↑→ 电流I= E R ↑→安培力F=BIL↑→加速 度a↓,当安培力F=mgsin α时,a= 0,v最大,最后匀速 运动 形式 变加速运动变加速运动 最终状态匀速运动vm= E BL 匀速运动vm= mgRsin α B2L2

1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图. (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值.

1、解析 (1)如右图所示,ab 杆受重力mg ,竖直向下;支持力FN ,垂直斜面向上;安培力F ,平行斜面 向上. (2)当ab 杆速度为v 时,感应电动势 E =BLv ,此时电路中电流 I =E R =BLv R ab 杆受到安培力F =BIL =B2L2v R 根据牛顿运动定律,有ma =mgsin θ-F =mgsin θ-B2L2v R a =gsin θ-B2L2v mR . (3)当B2L2v R =mgsin θ时,ab 杆达到最大速度vm =mgRsin θB2L2

电磁感应现象中的能量问题

电磁感应现象中的能量问题邵晓华 目标: 使学生能处理电磁感应规律与能量综合应用的问题,并学会处理能量问题的方法与技巧。提高学生的分析综合能力和解决实际问题的能力,帮助学生树立正确的科学观。 教学过程 【问题概述】电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力。电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必定有“外力”克服安培力做功,此过程中,其它形式的能转化为电能,当电流通过电阻时,电能又转化为其它形式的能量. 【典例赏析】 例1、如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R, 质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒 与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面 垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的 功与安培力做的功的代数和等于() A.棒的机械能增加量 B.棒的动能增加量 C.棒的重力势能增加量 D.电阻R上放出的热量 小结:分析过程中应当牢牢抓住能量守恒这一基本规律,即分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式的能; 针对练习:P189(4)P191(4)两题 分析作业P306(8,9,10) 例2(P189例4) 分析P306(11) 能力提升: 例3.(如图16(甲) 为一研究电磁感应 的装置,其中电流传 感器(相当于一只理 想的电流表)能将各 时刻的电流数据实 时送到计算机,经计 算机处理后在屏幕 上显示出I-t图象。 已知电阻R及杆的 电阻r均为0.5Ω,杆的质量m及悬挂物的质量M均为0.1kg,杆长L=1m。实验时,先断

电磁感应的能量问题

电磁感应的能量问题 电磁感应中的动力学问题 1.安培力的大小 ?? ? ?? 感应电动势:E=Blv 感应电流:I= E R+r 安培力公式:F=BIl ?F= B2l2v R+r 2.安培力的方向 (1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。 (2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。 1.电磁感应中动力学问题的动态分析 联系电磁感应与力学问题的桥梁是磁场对电流的安培力,由于感应电流与导体切割磁感线运动的加速度有着相互制约关系,因此导体一般不是匀变速直线运动,而是经历一个动态变化过程再趋于一个稳定状态,分析这一动态过程的基本思路是: 导体受力运动――→ E=BLv感应电动势错误!感应电流错误!通电导体受安培力→合外力变化――→ F合=ma加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定的临界状态。 2.解题步骤 (1)用法拉第电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向。 (2)应用闭合电路欧姆定律求出电路中的感应电流的大小。 (3)分析研究导体受力情况,特别要注意安培力方向的确定。 (4)列出动力学方程或平衡方程求解。 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态。

处理方法:根据平衡条件——合外力等于零,列式分析。 (2)导体处于非平衡态——加速度不为零。 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析。

4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。 (2)基本思路是: 电磁感应中的能量问题 1.能量的转化 闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力。外力克服安培力做功,将其它形式的能转化为电能,电流做功再将电能转化为其它形式的能。 2.实质 电磁感应现象的能量转化,实质是其它形式的能和电能之间的转化。 1.能量转化分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程。 (2)当磁场不动、导体做切割磁感线的运动时,导体所受安培力与导体运动方向相反,此即电磁阻尼。在这种情况下,安培力对导体做负功,即导体克服安培力做功,将机械能转化为电能,当感应电流通过用电器时,电能又转化为其它形式的能,如通过电阻转化为内能(焦耳热)。 即:其他形式的能如:机械能 ――――――→安培力做负功 电能――――→电流做功 其他形式的能如:内能 (3)当导体开始时静止、磁场(磁体)运动时,由于导体相对磁场向相反方向做切割磁感线

电磁感应中的动力学和能量问题(教师版)

专题 电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态. 2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 其他形式的能如:机械能 ――→安培力做负功电能 ――→电流做功其他形式的能如:内能 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小; (3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL + μmg cos θ I =BL v R 解得v =2.0 m/s (3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒, 有mgs sin θ=12 m v 2+μmgs cos θ+Q 解得Q =0.10 J 突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨

电磁感应中的能量问题

电磁感应中的能量问题 【教学目标】 1、理解电磁感应现象中的能量转化关系。 2、掌握利用功能关系解决电磁感应问题的一般思路和方法。 3、培养学生在电磁感应现象中利用动能定理、能量守恒定律解决实际问题的能力。 【教学重点】 1、通过对电磁感应现象的分析,理解电磁感应现象中各种能量的转化关系。 2、学生归纳利用功能关系解决电磁感应问题的一般思路和方法。 【教学难点】 1、理解电磁感应现象中各种能量的转化关系。 2、利用动能定理、能量守恒定律解决电磁感应现象问题。 【教学方法】 1、学生通过小组合作学习,归纳总结电磁感应现象中的各种能量转化关系。 2、通过自主学习、合作探究、学生展示、教师指导解决学习中存在的疑问。 【活动过程】 活动一:学生自主完成例1,小组合作交流探究成果,教师点拨,学生归纳电磁感应现象中的能量转化关系。 【例1】两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一个匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面、与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高,如图所示,在这一过程中,(D) A.作用于金属棒上的各个力的合力做的功不等于零 B.作用于金属棒上的各个力的合力做的功等于mgh与电阻R 上发出的焦耳热之和 C.恒力F与安培力的合力所做的功等于零 D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热

【互动探究】如果金属导轨不光滑,恒力F 作用下棒加速上滑,能量转化又有什么关系?活动二:完成巩固训练1,总结利用功能关系解决电磁感应问题的一般思路和方法。 【巩固训练1】如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F ,此时( B C D)A .电阻R 1消耗的热功率为F v 3 B .电阻R 2消耗的热功率为 F v 6C .整个装置因摩擦而消耗的热功率为μmg v cos θ D .整个装置消耗的机械功率为(F +μmg cos θ)v 活动小结:电磁感应现象中的能量转化关系: 重力做功重力势能的变化 合外力做功动能的变化 除重力以外其他力做功机械能的变化 摩擦力做功摩擦产生的热量 安培力做功电能的变化 安培力做正功,电能转化为其他形式的能(电动机) 安培力做负功,电能转化为其他形式的能(发电机)

电磁感应中的能量问题

电磁感应中的能量问题 【考点解读】 1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。 2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。 3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图象、动能定理和能量守恒定律等。 【考点精讲】 1.题型简述 电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功来实现的.安培力做功的过程,是电能转化为其他形式的能的过程;外力克服安培力做功的过程,则是其他形式的能转化为电能的过程。 2.解题的一般步骤 (1)确定研究对象(导体棒或回路); (2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化; (3)根据能量守恒定律或功能关系列式求解。 3.求解电能应分清两类情况 (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算。 (2)若电流变化,则 ①利用安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功(理解发电机和电动机能量转化的区别); ②利用能量守恒求解:若只有电能与机械能的转化,则减少的机械能等于产生的电能; ③常用电量求法,R Blx n R S B n R n t I q =?=?Φ=?=,有时会用它求金属杆的位移。 还有时会用动量定理求电量,这两种方法经常结合使用。(一般在高三综合应用中使用) 4.物理术语焦耳热和摩擦热 ①电流通过电阻做功,将电能转化为内能,过程中产生的热量称为焦耳热(Rt I Q 2 =); ②系统克服一对动摩擦力做功,将机械能转化为内能,过程中产生的热量称为摩擦热(x F Q ?=μ)。 例1 如图1所示,间距为L 的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度

(完整word版)电磁感应中的动力学和能量问题(一)

电磁感应中的动力学与能量问题(一) 制卷:田军 审卷:张多升 使用时间:第三周周一 班级: 姓 名: 考点一 电磁感应中的动力学问题分析 1.安培力的大小 由感应电动势E =Blv ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2.安培力的方向判断(如右图) 3.处理此类问题的基本方法: (1)用法拉第电磁感应定律和楞次定律求出感应电动势的大小 和方向; (2)求回路中的电流的大小和方向; (3)分析导体的受力情况(含安培力); (4)列动力学方程或平衡方程求解。 4.电磁感应现象中涉及的具有收尾速度的问题,关键要抓好受力情况和运动情况的动态分析 5.两种状态及处理方法 (1)平衡状态(静止状态或匀速直线运动状态):根据平衡条件(合外力等于零)列式分析; (2)非平衡状态(a 不为零):根据牛顿第二定律进行动态分析或结合功能关系分析。 考点二 电磁感应中的能量问题分析 1.过程分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程. (2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能. (3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能. 2.求解思路 (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算. (2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安 培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减 少量等于产生的电能. 巩固练习 1.如上图所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一定值电阻,ef 为垂直于ab 的一根导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( ) A.ef 将减速向右运动,但不是匀减速 B.ef 将匀减速向右运动,最后停止 C.ef 将匀速向右运动 D.ef 将做往返运动 2.如图所示,匀强磁场存在于虚线框内,矩形线圈竖直下落.如果线圈中受到的磁场 力总小于其重力,则它在1、2、3、4位置时的加速度关系为( ) A.a 1>a 2>a 3>a 4 B.a 1=a 2=a 3=a 4 C.a 1=a 3>a 2>a 4 D.a 4=a 2>a 3>a 1 3.如图所示,两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一质量为m 的金属杆从轨道上 由静止滑下,经过足够长的时间后,金属杆的速度会达到最大值v m ,则( ) A.如果B 增大,v m 将变大 B.如果α增大,v m 将变大 C.如果R 增大,v m 将变大 D.如果m 减小,v m 将变大

电磁感应中的力学问题和能量问题

电磁感应中的力学问题和能量问题

————————————————————————————————作者:————————————————————————————————日期:

四、电磁感应中的力学问题和能量问题 电磁感应中的力学问题与能量转化问题 1.考点分析: 电磁感应的题目往往综合性较强,与前面的知识联系较多,涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。 2.知识储备: (1)计算感应电动势大小的两种表达式: t N ??=φε,θεsin Blv = (2)判断产生的感应电流的方向方法:楞次定律, 右手定则 (3)安培力计算公式:F =BIl 3.基本方法: a. 确定电源( ??→?=+= r R E I E 感应电流 ??→?=BIl F 运动导体受到的安培力?→? 合外力??→?=ma F a 变化情况?→?运动状态的分析?→?临界状 态) b. 在受力分析与运动情况分析的同时,又要抓住能量转化和守恒这一基本规律,分析清楚哪些力做功,就可以知道有哪些形式的能量参与了转换,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式能;然后利用能量守恒列出方程求解. 3.典例分析 一、电磁感应现象中的力学问题 【例1】如图所示,有两根足够长、不计电阻,相距L 的平行光滑金属导轨cd 、ef 与水平面成θ角固定放置,底端接一阻值为R 的电阻,在轨道平面内有磁感应强度为B 的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce 、垂直于导轨、质量为m 、电阻不计的金属杆ab ,在沿轨道平面向上的恒定拉力F 作用下,从底端ce 由静止沿导轨向上运动,当ab 杆速度达到稳定后,撤去拉力F ,最后ab 杆又沿轨道匀速回到ce 端.已知ab 杆向上和向下运动的最大速度相等.求:拉力F 和杆ab 最后回到ce 端的速度v . θ a F b B R c d e f

电磁感应的能量问题完整版

电磁感应的能量问题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电磁感应的能量问题 1.安培力的大小 F= 2.安培力的方向 (1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。 (2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。 1.电磁感应中动力学问题的动态分析 联系电磁感应与力学问题的桥梁是磁场对电流的安培力,由于感应电流与导体切割磁感线运动的加速度有着相互制约关系,因此导体一般不是匀变速直线运动,而是经历一个动态变化过程再趋于一个稳定状态,分析这一动态过程的基本思路是: 导体受力运动感应电动势感应电流通电导体受安培力→合外力变化加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定的临界状态。 2.解题步骤 (1)用法拉第电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向。 (2)应用闭合电路欧姆定律求出电路中的感应电流的大小。 (3)分析研究导体受力情况,特别要注意安培力方向的确定。 (4)列出动力学方程或平衡方程求解。 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态。 处理方法:根据平衡条件——合外力等于零,列式分析。 (2)导体处于非平衡态——加速度不为零。 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析。 4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。 (2) 基本思路是:

题 闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力。外力克服安培力做功,将其它形式的能转化为电能,电流做功再将电能转化为其它形式的能。 2.实质 电磁感应现象的能量转化,实质是其它形式的能和电能之间的转化。 1.能量转化分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程。 (2)当磁场不动、导体做切割磁感线的运动时,导体所受安培力与导体运动方向相反,此即电磁阻尼。在这种情况下,安培力对导体做负功,即导体克服安培力做功,将机械能转化为电能,当感应电流通过用电器时,电能又转化为其它形式的能,如通过电阻转化为内能(焦耳热)。 即: (3)当导体开始时静止、磁场(磁体)运动时,由于导体相对磁场向相反方向做切割磁感线运动而产生感应电流,进而受到安培力作用,这时安培力成为导体运动的动力,此即电磁驱动。在这种情况下,安培力做正功,电能转化为导体的机械能。 综上所述,安培力做功是电能和其他形式的能之间相互转化的桥梁,表示如下: 电能其他形式的能。 2.求解焦耳热Q的三种方法 (1)直接法:Q=I2Rt (2)功能关系法:Q=W克服安培力 (3)能量转化法:Q=ΔE其他能的减少量 ——————————————————— 1电磁感应动力学问题中,要抓好受力情况、运动情况的动态分析。导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,最终加速度为零,导体达到匀速运动的稳定状态。 2这类问题要抓住“速度变化引起安培力变化”这个关系,并从分析物体的受力情况与运动情况入手解决问题,这是解题的关键。 ——————————————————————————————————————

高中物理专题练习电磁感应中的能量问题

电磁感应中的能量问题(2) 例 1.如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场, 竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B.竖直放置的正方形金属线框边长为l,电阻为R,质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平.开始时,线框与物块静止在图中虚线位置且细线水平伸直.将物块由图 中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角θ=30° ,线框刚好有一半处于右侧磁场中.(已知重力加速度g,不计一切摩擦)求: (1)此过程中通过线框截面的电荷量q (2)此时安培力的功率 (3)此过程在线框中产生的焦耳热Q. 例 2.(多选)如图甲所示,在竖直平面内有一单匝正方形线圈和一垂直于竖 直平面向里的有界匀强磁场,磁场的磁感应强度为B,磁场上、下边界AB和CD均水平,线圈的ab边水平且与AB间有一定的距离.现在让线圈无初速自由释放,图乙为线圈从自由释放到cd边恰好离开CD边界过程中的速度一 时间关系图象.已知线圈的电阻为r, 且线圈平面在线圈运动过程中始终处在 竖直平面内,不计空气阻力,重力加速 度为g,则根据图中的数据和题中所给 物理量可得() A.在0~t3时间内,线圈中产生的热量为 B.在t2~t3时间内,线圈中cd两点之间的电势差为零 C.在t3~t4时间内,线圈中ab边电流的方向为从b流向a D.在0~t3时间内,通过线圈回路的电荷量为 例 3.利用超导体可以实现磁悬浮,如图是超导磁悬浮的示意图。在水平桌面 上有一个周长为L的超导圆环,将一块质量为m的永磁铁从圆环的正上方缓 慢下移,由于超导圆环跟磁铁之间有排斥力,结果永磁铁悬浮在超导圆环的 正上方h1高处平衡。 (1)若测得圆环a点磁场如图所示,磁感应强度为B1,方向与水平方向成 θ1角,问此时超导圆环中电流的大小和方向? (2)在接下的几周时间内,人们发现永磁铁在缓慢下移。经过较长时间T 后,永磁铁的平衡位置在离桌面h2高处。有一种观点认为超导体也有很微小 的电阻,只是现在一般仪器无法直接测得,超导圆环内电流的变化造成了永 磁铁下移,并设想超导电流随时间缓慢变化的I2-t图,你认为哪张图相对合 理,为什么? (3)若测得此时a点的磁感应强度变为B2,夹角变为θ2,利用上面你认为 相对正确的电流变化图,求出该超导圆环的电阻? 同步练习: 1.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨 等宽的粗糙金属细杆ab,cd和导轨垂直且接触良好.已知ab,cd杆的质 量,电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场 中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下 运动,以下说法正确的是() A.cd杆一定向下做匀速直线运动 B.cd杆一定向下做匀加速直线运动 C.F做的功等于回路中产生的焦耳热与ab杆克服 摩擦做功之和 D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和 2.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部 进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于 线圈宽度,那么()

电磁感应现象中的能量问题

核心文档 必属精品 电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质

设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e 作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛

2018届人教版 电磁感应中的能量问题 单元测试

课时达标检测(六十二) 电磁感应中的能量问题 (题型研究课) 一、选择题 1.如图所示,在光滑的水平面上,一质量为m ,半径为r ,电阻为R 的均匀金属环,以v 0的初速度向一磁感应强度大小为B 、方向竖直向下 的有界匀强磁场滑去(磁场宽度d >2r )。圆环的一半进入磁场历时t 秒,这 时圆环上产生的焦耳热为Q ,则t 秒末圆环中感应电流的瞬时功率为 ( ) A.4B 2r 2v 02R B.4B 2r 2????v 02-2Q m R C.2B 2r 2????v 02-2Q m R D.B 2r 2π2????v 02-2Q m R 解析:选B t 秒末圆环中感应电动势为E =B ·2r ·v ,由能量守恒知,减少的动能全部 转化为焦耳热,Q =12m v 02-12 m v 2,t 秒末圆环中感应电流的功率为 P =EI =E 2R =4B 2r 2????v 02-2Q m R ,B 正确。 2.(多选)(2017·湖北六校模拟)如图所示,水平的平行虚线间距为d =60 cm ,其间有沿水平方向的匀强磁场。一个阻值为R 的正方形金属线圈边长l

相关主题
文本预览
相关文档 最新文档