当前位置:文档之家› 温湿度独立控制空调系统作业

温湿度独立控制空调系统作业

温湿度独立控制空调系统作业
温湿度独立控制空调系统作业

温湿度独立控制空调系

统作业

Hessen was revised in January 2021

温湿度独立控制空调系统特点分析1.温湿度独立控制空调系统原理及相关设备组成

温湿度独立控制空调系统的原理

温湿度独立控制空调系统是指在一个空调系统中,采用两种不同蒸发温度的冷源,用高温冷冻水取代传统空调系统中大部分由低温冷冻水承担的热湿负荷,这样可以提高综合制冷效率,进而达到节省能耗的目的。在温湿度独立控制空调中,高温冷源作为主冷源,它承担室内全部的显热负荷和部分的新风负荷,占空调系统总负荷的50%以上;低温冷源作为辅助冷源,它承担室内全部的湿负荷和部分的新风负荷,占空调系统总负荷的50%以下。

相关设备组成

温湿度独立控制系统由4个核心组成部件组成,分别为高温冷水机组、新风处理机组、去除显热的室内末端装置、去除潜热的室内送风末端装置。

除湿系统主要由再生器、储液罐、新风机、输配系统和管路组成。除湿系统中,主要采用分散除湿和集中再生的方式,再生浓缩后的浓溶液被输送到新风机中。储液罐具有存储溶液的作用和蓄存高能力的能量,可以缓解再生器对持续热源的需求,可以降低整个除湿系统的容量。

2. 温湿度独立控制空调系统与传统空调系统(热湿耦合)的比较分析

可以避免过多的能源消耗

从处理空气的过程我们可以知道,为了满足送风温差,一次回风系统需对空气进行再热,然后送入室内。这样的话,这部分加热的量需要用冷量来补偿。而温湿度独立控制空调系统就避免了送风再热,就节省了能耗。传统的空调系统中,显热负荷约占总负荷的比例为50%~70%,潜热负荷约占总负荷的3比例为0%~50%。原本可以采用高温冷源来承担,却与除湿共用7℃冷冻水,造成了利用能源

品位上的浪费,这种现象在湿热的地区表现的尤为突出;经过处理的空气,湿度可以满足要求,但会引起温度过低的情况发生,需要对空气再热处理,进而造成了能耗的进一步增加。

温湿度参数很容易实现

传统的空调系统不能对相对湿度进行有效的控制。夏季,传统的空调系统用同一设备对空气热湿处理,当室内热、湿负荷变化时,通常情况下,我们只能根据需要,调整设备的能力来维持室内温度不变,这时,室内的相对湿度是变化的,因此,湿度得不到有效的控

制,这种情况下的相对湿度,不是过高就是过低,都会对人体产生不适[5]。温湿度独立控制空调系统通过对显热的系统处理来进行降温,温度参数很容易得到保证,精度要求也可以达到[6]。

空气品质良好

温湿度独立控制空调系统的余热消除末端装置以干工况运行,冷凝水及湿表面不会在室内存在,该系统的新风机组也存在湿表面,而新风机组的处理风量很小,室外新风机组的微生物含量小,对于湿表面除菌的处理措施很灵活并很可靠。传统空调系统中,在夏季,由于除湿的需要,而在供冷季,风机盘管与新风机组中的表冷器、凝水盘甚至送风管道,基本都是潮湿的。这些表面就成为病菌等繁殖的最好场所。

不需另设加湿装置

温湿度独立控制空调系统能解决室内空气处理的显热和潜热与室内热湿负荷匹配的问题,而且在冬季不需要另外配备加湿装置[7]。传统空调系统中,冬季没有蒸汽可用,一般常采用电热式等加湿方式,这会使得运行费用过高。如果采用湿膜加湿方式,又会产生细菌污染空气等问题。

温湿度独立控制空调技术简介

温湿度独立控制空调技术简介 2013/4/16 8:14:02 来源:广州恒星发布者:广州恒星 一、常规空调技术存在的问题 从人体的热舒适度与健康出发,要求对室内温度、湿度进行全面控制,夏季人体舒适区为25℃,相对湿度60%,此时露点温度为16.6℃.空调排热排湿的任务可以看成是从25℃的环境中向外排热,在16.6℃的露点温度的环境下向外排湿。目前空调方式的排热排湿都通过空气冷却器对空气进行冷却和冷凝除湿,实现排热排湿的目的。常规温湿度混合处理的空调方式存在如下问题: 1、能源浪费。使用一套系统同时制冷和除湿,为了满足冷凝方法排除室内余湿,冷源的温度需要低于室内的露点温度,考虑传热温差与介质输送温差,实现16.6℃的露点温度需要约7℃的冷源温度,这是现有空调系统采用5~7℃的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5℃的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7℃的低温冷源进行,造成能量利用品位上的浪费。而且经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成能源的进一步浪费与损失。 2、难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。相对湿度过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加。相对湿度过低也将导致由于与室外的焓差增加使处理新风的能耗增加。 3、造成室内空气品质下降。大多数空调依靠空气通过表冷器对空气进行降温除湿,这就导致表冷器表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的理想场所。空调系统繁殖和传播霉菌成为可能引起健康问题的主要因素。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引人的室外空气是维持健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的理想场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 4、传统的室内末端装置有局限性。为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。例如每平方米建筑面积如果有80W/M2显热需要排除,房间设定温度为25℃时,当送风温度为15℃时,所要求循环风量为24M3/HR/M2,这就往往造成室内很大的空气流动,使居住者产生不适的出风感。为减少这种出风感,就要通过改变送风口的位置和形式来改变室内气流组织,这往往要在室内布置风管,从而降低室内净高度或者加大楼层间距。很大的通风量还极容易引起空调噪声,并且很难有效消除,在冬季,为了避免出风感,即使安装了空调系统,也往往不使用热风,而是通过另一套的暖气系统(如采暖散热器)供热。这样就导致室内重复安装两套环境控制系统,分别供冬夏使用。 5、输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、CO2、气味等。在中央空调系统中,风机、水泵消耗了40%~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式,所有的冷量全部用空气来传递,导致输配系统效率很低。相对而言,1M3水所输送的热量和3840M3空气输送的热量是相对的。 此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要,目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调能耗,又可使热电联产正常运行,增加发电能力。这样即可减缓夏季

模具温度控制方法

模具温度控制方法 模具温度对胶件的成型质量、成型效率有着较大的影响。在温度较高的模具里,熔融胶料的流动性较好,有利于胶料充填型腔,获取高质量的胶件外观表面,但会使胶料固化时间变长,顶出时易变形,对结晶性胶料而言,更有利于结晶过程进行,避免存放及使用中胶件尺寸发生变化;在温度较低的模具里,熔融胶料难于充满型腔,导致内应力增加,表面无光泽,产生银纹、熔接痕等缺陷。 不同的胶料具有不同的加工工艺性,并且各种胶件的表面要求和结构不同,为了在最有效的时间内生产出符合质量要求的胶件,这就要求模具保持一定的温度,模温越稳定,生产出的胶件在尺寸形状、胶件外观质量等方面的要求就越一致。因此,除了模具制造方面的因素外,模温是控制胶件质量高低的重要因素,模具设计时应充分考虑模具温度的控制方法。 1 模具温度控制的原则和方式 1.1 模具温度控制的原则 为了保证在最有效的时间内生产出高外观质量要求、尺寸稳定、变形小的胶件,设计时应清楚了解模具温度控制的基本原则。 (1)不同胶料要求不同的模具温度。参见10.1.3节 (2)不同表面质量、不同结构的模具要求不同的模具温度,这就要求在设计温控系统时具有针对性。 (3)前模的温度高于后模的温度,一般情况下温度差为20~30o左右。 (4)有火花纹要求的前模温度比一般光面要求的前模温度高。当前模须通热水或热油时,一般温度差为40o左右。 (5)当实际的模具温度不能达到要求模温时,应对模具进行升温。因此模具设计时,应充分考虑胶料带入模具的热量能否满足模温要求。 (6)由胶料带入模具的热量除通过热辐射、热传导的方式消耗外,绝大部分的热量需由循环的传热介质带出模外。铍铜等易传热件中的热量也不例外。 (7)模温应均衡,不能有局部过热、过冷。 1.2 模具温度的控制方式 模具温度一般通过调节传热介质的温度,增设隔热板、加热棒的方法来控制。传热介质一般采用水、油等,它的通道常被称作冷却水道。 降低模温,一般采用前模通“机水”(20oC左右)、后模通“冻水”(4oC左右)来实现。当传热介质的通道即冷却水道无法通过某些部位时,应采用传热效率较高的材料(如铍铜等,模具材料的传热系数详见《塑料模具技术手册》第219页),将热量传递到传热介质中去,如图10.1.1,或者采用“热管”进行局部冷却。 升高模温,一般采用在冷却水道中通入热水、热油(热水机加热)来实现。当模温要求较高时,为防止热传导对热量的损失,模具面板上应增加隔热板。 热流道模具中,流道板温度要求较高,须由加热棒加热,为避免流道板的热量传至前模,导致前模冷却困难,设计时应尽量减少其与前模的接触面。 1.3 常用胶料的注射温度与模具温度 下表为胶件表面质量无特殊要求(即一般光面)时常用的胶料注射温度、模具温度,模具温

温湿度控制控制说明

组合式空调机组温湿度控制方案说明 一、设计概述 本控制系统便于提高HVAC设备的性能和工作人员的工作效率。该系统控制器独立运行,保证自动控制过程的安全、可靠性;PID 控制方式提供了良好的控制精度和调节特性,特别适合于暖通空调系统控制。系统提供了消防信号联锁及报警、压差报警,风机启动连锁等多重保护措施,保证系统的安全运行。本系统使用和操作极为简便,控制灵活方便。用户可通过直观的显示监测和控制空调设备,方便的修改温湿度控制设定值,实时监测运行数据。 二、监视及控制内容 1.空调箱温湿度控制原理: 1)温湿度控制 DDC控制器采样回风温T和回风湿度H在DDC内部与设定点比较,其差值△T和△H经比例积分PI控制模块计算后输出调节值至调节压缩机、电加热、加湿器输出,保持室内温度湿度稳定。当回风温度高于设定点温度,控制器输出信号给压缩机启动,降低室内温度。当回风温度低于设定点温度,控制器输出信号给电加热,使其逐级打开,使室内温度升高。当湿度高于设定湿度时,控制器输出信号给压缩机,使其打开,降低温度除湿。 当湿度低于设定湿度时,控制器输出信号给加湿器,让其打开,增大加湿量,保持室内湿度稳定。 2)故障报警 空调机有任何不正常状态, 系统均视为故障讯号, 并立即报警, 报警包括:温度超限报警、湿度超限报警、风机状态异常报警、滤网阻塞报警等。 3)联锁控制 压缩机、电加热、加湿器与风机连锁控制:在冬季和夏季运行模式下,风机启动后,压缩机、电加热、加湿器即根据需要动作,然后根据回风温度、湿度要

求打开或者关闭,在正常关机情况下,自控系统在接到关机信号后,关闭电加热、加湿器、压缩机。 机组启停连锁控制: 空调自控系统在得到风机运行状态反馈信号的情况下,根据回风温湿度要求开启电加热、压缩机、电加湿等。 一旦空调系统故障报警,空调自控系统自动关闭电加热、电加湿、压缩机,关闭风机,当压缩机有任何故障,也将关闭压缩机,并显示报警原因,停止其工作。 4)控制参数显示和设定: 空调机各状态参数在就地DDC控制器上显示出来, 参数包括: 回风温 度、湿度,面板温度设定输入(也即面板输出到控制器的温度设定信号)、面板湿度设定输入(也即面板输出到控制器的湿度设定信号)。 另也可对所有DDC控制器的DO和AO点进行超驰控制, 实现对所有不同设备的手动控制。

温湿度独立控制空调系统特点

温湿度独立控制空调系统特点分析 摘要:夏季,空调系统将担任除去室内的余热和余湿的任务,除此之外,还有改善室内空气质量的功能。目前的空调系统还存在着很多问题,例如温湿度控制不独立,湿度控制不合理、夏季湿表面污染等等。本文介绍了温湿度独立控制空调系统的原理以及温湿度独立控制空调系统的相关设备组成,比较分析了温湿度独立控制空调系统与常规空调系统的优缺点,最后对温湿度独立控制空调系统的发展前景进行了展望。 关键词:独立控制;空调系统;原理;前景 abstract: the summer, air conditioning system will remove indoor waste heat and wet. besides, it also improves indoor air quality function. the current air conditioning system also has very many problems, such as temperature and humidity control is not independent, humidity control is not reasonable, summer wet surface pollution and so on. this paper introduces the temperature and humidity of the air conditioning system independent control principle and the temperature and humidity of the air conditioning system independent control related equipment composition, comparing the temperature and humidity control air conditioning system with the general independence and the advantages and disadvantages of the air conditioning system, and finally to independent control temperature and humidity of the air conditioning system development prospect. keywords: independent control; air conditioning system; principle; prospects 1 前言 改革开放以来,我国经济的发展非常迅速,人民生活的水平也迅速提高,这就急切需要增加或者改造建筑来满足人们的物质需求,同时也导致了建筑能耗的增加。有资料显示[1],全国的建筑能耗约占总能耗的30%多。很多因素会影响到建筑能耗,例如,空调系统、空调环境、人员及其它设备等。空调系统能耗非常大,以集中空调系统来说,它的能耗占建筑能耗的50%多[2,3],约占全国总能耗的15%。因此,必须要降低空调系统的能耗,这也是实现国家“节能减排”以及构建资源型、节约型社会的重要途径。温湿度独立控制空调系统是在空调应用方面进行的新的尝试,是其新形式之

仓库温湿度管理办法

1.0目的: 1.1仓库温湿度管理控制的目的就是要在工厂运行的全过程中,每天定期进行二次温 湿度测量,并记录在《温湿度测量记录表》中。采取各种形式的技术措施、组织措施、消除温度升得过高的现象,减少事故发生,确保员工安全健康。 2.0范围 2.1本规范适用于深圳市乐福衡器有限公司包材仓、成品仓、电子仓的温湿度管理。 3.0职责 3.1仓库 3.1.1仓管每天对包材仓,成品仓,电子仓的温湿度进行点检。 3.2品质 3.2.1品质部负责对仓库的点检工作进行稽核确认,发现异常必须在第一时间通知点检人。 4.0内容 4.1.1仓库温湿度的测定,通常使用室内温湿度计测定空气温湿度。 4.1.2仓库每日必须定时对库内的温湿度进行观测、记录,一般在上午8~10时,下 午2~4 各观测一次。记录资料要妥善保存,定期分析,摸出规律,以便掌握物品保管的主动权。 4.2仓库温湿度的调节 4.2.1为了保护仓库原材料的质量,创造适宜于原材料储存的环境,当库内温湿度适宜物品储存时,就要设法防止库外气候对库内产生的不利影响;当库内温湿度不适宜原材料储存时,就要及时采取有效措施调节库内的温湿度。实践证明,采用密封、通风与吸潮相结合的办法,是控制和调节库内温湿度行之有效的办法。 4.2.3密封。就是把物品尽可能严密地封闭起来,减少外界不良气候条件的影响,以达到安全保管的目的。 4.3密封保管应注意以下几点事项。 4.3.1密封前要检查物品质量、温度和含水量是否正常,如发现发霉、生虫、发热、水淞等现象就不能进行密封.发现物品含水量超过安全范围或包装材料过潮,也不宜密封。 4.3.2密封的时间要根据物品的性能和气候情况来决定。怕潮、怕溶化、怕霉的物品,应

空调温湿度控制原理

目录 带信号选择器的室内温、湿度控制 (2) 根据送风温度及露点温度实现送风温、湿度控制 (3) 送、回风温度串级调节的新风温度控制 (3) 按新风温度选择风阀开度的送、回风温度串级调节 (3) 温、湿度串级调节并执行机构的分程控制 (4) 送、回风湿度串级调节和湿度的选择控制 (4) 按新、回风焓值比较控制新风量 (5) 空调系统中的防火安全控制 (7)

带信号选择器的室内温、湿度控制 带信号选择器的室内温、湿度控制原理如下图 图 1 M M M OA TV1TV2MV MC 01 01 SS TC 01 01 TC MI 01 01 TMT RA SA 冷水热水 蒸汽 温度调节:利用室内温、湿度变送器TMT01检测室内的温度,并经温度调节器TC01控制冷水电动三通调节阀(分流三通)TV1和热水电动分流三通调节阀TV2以满足室内温度调节的需要。进入冬天运行时,将TC01温度调节器上的“冬-夏”季转换开关置于“冬”季档,如果室内温度高于设定值时,TC01温度调节器将控制热水电动调节阀改变分流比例,减少进入空气加热器的热水量,降低室内的温度;反之,则增大分流三通调节阀直流通路的热水量,提高室内温度。夏季运行时,则须将TC01温度调节器上的冬-夏季转换开关切换至“夏”档,此时如果室内检测到的温度高于设定值时,信号经TC01温度调节器和SS01信号选择器后,控制冷水阀TV1使之开大分流三通的直流通路;反之则关小TV1的直流通路。 湿度调节:利用室内温、温度传感变送器TMT01检测空调房间内的湿度信号,并通过调节器MC01控制电动双通调节阀MV或冷水分流三通TV1,以控制空调房间内的相对湿度。冬季运行时,将湿度调节器MC01上的“冬-夏”季转换开关转换为“冬”档,此时房间内湿度低于室内湿度设定值时,调节器则发出指令,驱动电动加湿调节阀开启(或开大),加大进入送风气流中的水蒸汽量以提高室内的相对温度;反之,则关小加湿电动调节阀,减少进入送风气流中的水蒸汽量,降低室内的相对湿度。如果加湿电动阀MV外于全闭状态,室内的相对湿度仍高于室内温度设定时,温度调节器的控制信号将通过信号选择器SS01与TC01控制信号相比较,当除湿信号电压高于湿度控制信号的电压时,则将由湿度调节器MC01控制冷水电动三通调节阀,对空气进行除湿处理,以达到房间内湿度控制的目的。

温湿度独立控制空调系统作业

温湿度独立控制空调系统特点分析 1.温湿度独立控制空调系统原理及相关设备组成 1.1温湿度独立控制空调系统的原理 温湿度独立控制空调系统是指在一个空调系统中,采用两种不同蒸发温度的冷源,用高温冷冻水取代传统空调系统中大部分由低温冷冻水承担的热湿负荷,这样可以提高综合制冷效率,进而达到节省能耗的目的。在温湿度独立控制空调中,高温冷源作为主冷源,它承担室内全部的显热负荷和部分的新风负荷,占空调系统总负荷的50%以上;低温冷源作为辅助冷源,它承担室内全部的湿负荷和部分的新风负荷,占空调系统总负荷的50%以下。 1.2相关设备组成 温湿度独立控制系统由4个核心组成部件组成,分别为高温冷水机组、新风处理机组、去除显热的室内末端装置、去除潜热的室内送风末端装置。

除湿系统主要由再生器、储液罐、新风机、输配系统和管路组成。除湿系统中,主要采用分散除湿和集中再生的方式,再生浓缩后的浓溶液被输送到新风机中。储液罐具有存储溶液的作用和蓄存高能力的能量,可以缓解再生器对持续热源的需求,可以降低整个除湿系统的容量。 2. 温湿度独立控制空调系统与传统空调系统(热湿耦合)的比较分析 2.1可以避免过多的能源消耗 从处理空气的过程我们可以知道,为了满足送风温差,一次回风系统需对空气进行再热,然后送入室内。这样的话,这部分加热的量需要用冷量来补偿。而温湿度独立控制空调系统就避免了送风再热,就节省了能耗。传统的空调系统中,显热负荷约占总负荷的比例为50%~70%,潜热负荷约占总负荷的3比例为0%~50%。原本可以采用高温冷源来承担,却与除湿共用7℃冷冻水,造成了利用能源品位上的浪

费,这种现象在湿热的地区表现的尤为突出;经过处理的空气,湿度可以满足要求,但会引起温度过低的情况发生,需要对空气再热处理,进而造成了能耗的进一步增加。 2.2温湿度参数很容易实现 传统的空调系统不能对相对湿度进行有效的控制。夏季,传统的空调系统用同一设备对空气热湿处理,当室内热、湿负荷变化时,通常情况下,我们只能根据需要,调整设备的能力来维持室内温度不变,这时,室内的相对湿度是变化的,因此,湿度得不到有效的控制,这种

温湿度控制器

MT-TH-A2温湿度控制器 1、适用范围 温湿度控制器广泛适用于0.1-35KV户内开关柜,如:中置柜、手车柜、固定柜、环网柜等多种开关柜,适用于进线柜、出线柜、电容器柜、母联柜、变压器柜、互感器柜、计量柜、电机控制柜等多种形式的主回路控制柜。 2、基本功能 采用进口传感器,带2路控制输出接点,温湿度采用数码管实时显示,用户一目了然。多路显示时,每隔30秒自动切换到1~2路温湿度循环显示,用户对温度、湿度任意进行上下限设置,且掉电不会丢掉该参数。但温度达到一定程度或温度剧增,有可能发生凝露时,控制器驱动加热器工作;当凝露状况消失后,加热器停止加热,控制器恢复到监测状态。当加热器断线时。控制器发出断线报警信号。 3、主要技术指标 3.1、工作环境:温度:-20℃~70℃湿度:0~99%RH 3.2、温度:≤5℃±0.5℃时继电器闭合加热启动;≥15℃±0.5℃时继电器 复位加热退出;≥40℃±0.5℃时继电器闭合排风启动;≤30℃±0.5℃ 时继电器复位加热退出。 3.3、湿度:≥90%RH±1%RH时继电器闭合加热启动;≤70%RH±1%RH时继电 器复位加热退出 3.4、输入电压:AC220V

3.5、继电器触点功率:AC220V/7A(常开,有源) 4、温湿度数显及控制 4.1、可带1-2路温湿度传感器及输出接点,可显示现场的温湿度数值,并且用户可根据需要自行设置加热、排风、除湿的上下限值; 4.2、出厂默认:温度上限+15℃,下限+5℃;湿度上限90%RH,下限75%RH; 排风上限+40℃,排风下限+30℃ 4.3、加热启动:当传感器测得的环境温度低于设定的温度下限值,或者测得的湿度值大于设定的湿度上限值时,启动加热; 4.4、加热停止:a)当传感器测得的环境温度高于设定的温度上限值或测得的湿度低于设定的湿度下限值时,停止加热;b)温度高于+40℃无条件停止加热,防止过热损伤。 4.5、排风启动:当传感器测得的环境温度高于设定的排风上限值时启动排风;当传感器测得的环境温度低于设定的排风下限值时停止排风; 4.6、高温报警:当传感器测得的环境温度高于50℃时,高温报警灯亮; 4.7、加热断线报警:当传感器温湿度测量输出均正常,但装置背部加热端子 没有正常接待负载(加热器)或者有接待负载但外接线路本身有断线 时,加热断线指示灯亮; 5、温湿度参数设置 5.1、当前测量显示 开机上电,进入当前状态显示,循环显示A路温度及其相对湿 度、B路温度及其相对湿度、每6秒之后数

仓库温湿度控制管理办法

仓库温湿度控制管理办法 一、目的 本制度对于仓库的温湿度作了规定,以确保入库以后的材料,成品不变质。保证仓库具有良好的仓储条件,达到仓库质量管理体系要求。 二、范围 适用于仓库的温湿度管理。 三、职责 1.仓管员应确保良好的仓储条件,达到仓库质量保证体系要求 2.仓管员(仓库盘点负责人)应定期检查仓库质量管理体系执行情况。 四、管理要点 温湿度管理概述 1、要做好仓库温湿度管理工作,首先要学习和掌握空气温湿度的基本概念以及有关的基本知识。 (1)空气温度 空气温度是指空气的冷热程度。 一般而言,距地面越近气温越高,距地面越远气温越低。 在仓库日常温度管理中,多用摄氏表示,凡0度以下度数,在度数前加一个“-”,即表示零下多少摄氏度。 (2)空气湿度 空气湿度,是指空气中水汽含量的多少或空气干湿的程度。 表示空气湿度,主要有以下几种方法: ①绝对湿度

绝对湿度,是指单位容积的空气里实际所含的水汽量,一般以克为单位。 温度对绝对湿度有着直接影响。一般情况下,温度越高,水汽蒸发得越多,绝对湿度就越大;相反,绝对湿度就小。 ②饱和湿度 饱和湿度,是表示在一定温度下,单位容积空气中所能容纳的水汽量的最大限度。如果超过这个限度,多余的水蒸气就会凝结,变成水滴。些时的空气湿度便称为饱和湿度。 空气的饱湿度不是固定不变的,它随着温度的变化而变化。温度越高,单位容积空气中能容纳的水蒸气就越多,饱和湿度也就越大。 ③相对湿度 相对温度是指空气中实际含有的水蒸气量(绝对湿度)距离饱和状态(饱和湿度)程度的百分比。即,在一定温度下,绝对湿度占饱和湿度的百分比数。相对湿度用百分率来表示。公工为: 相对湿度=绝对湿度/饱和湿度×100% 绝对温度=饱和温度×相对温度 相对湿度越大,表示空气越潮湿;相对湿度越小,表示空气越干燥。 空气的绝对湿度、饱和温度、相对湿度与温度之间有着相应的关系。温度如发生了变化,则各种湿度也随之发生变化。 ④露点 露点,是指含有一定量水蒸气(绝对湿度)的空气,当温度下降到一定程度时所含的水蒸气就会达到饱和状态(饱和湿度)并开始液化成水,这种现象叫做结露。水蒸气开始液化成水时的温度叫做“露点温度”,简称“露点”。如果温

温湿度独立控制空调系统作业

温湿度独立控制空调系 统作业 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

温湿度独立控制空调系统特点分析 1.温湿度独立控制空调系统原理及相关设备组成 温湿度独立控制空调系统的原理 温湿度独立控制空调系统是指在一个空调系统中,采用两种不同蒸发温度的冷源,用高温冷冻水取代传统空调系统中大部分由低温冷冻水承担的热湿负荷,这样可以提高综合制冷效率,进而达到节省能耗的目的。在温湿度独立控制空调中,高温冷源作为主冷源,它承担室内全部的显热负荷和部分的新风负荷,占空调系统总负荷的50%以上;低温冷源作为辅助冷源,它承担室内全部的湿负荷和部分的新风负荷,占空调系统总负荷的50%以下。 相关设备组成 温湿度独立控制系统由4个核心组成部件组成,分别为高温冷水机组、新风处理机组、去除显热的室内末端装置、去除潜热的室内送风末端装置。

除湿系统主要由再生器、储液罐、新风机、输配系统和管路组成。除湿系统中,主要采用分散除湿和集中再生的方式,再生浓缩后的浓溶液被输送到新风机中。储液罐具有存储溶液的作用和蓄存高能力的能量,可以缓解再生器对持续热源的需求,可以降低整个除湿系统的容量。 2. 温湿度独立控制空调系统与传统空调系统(热湿耦合)的比较分析 可以避免过多的能源消耗 从处理空气的过程我们可以知道,为了满足送风温差,一次回风系统需对空气进行再热,然后送入室内。这样的话,这部分加热的量需要用冷量来补偿。而温湿度独立控制空调系统就避免了送风再热,就节省了能耗。传统的空调系统中,显热负荷约占总负荷的比例为50%~70%,潜热负荷约占总负荷的3比例为0%~50%。原本可以采用高温冷源来承担,却与除湿共用7℃冷冻水,造成了利用能源

温湿度控制器设计实验报告 计算机控制技术

课程:院(部):专业:班级: 学生姓名:学号:指导老师:完成时间:

温湿度控制器设计报告 本设计研究单片机数字温湿度控制器,通过全数字型温湿度传感器测量宽范围的温湿度数据,用来满足恒温湿车间控制、大棚温湿度控制等工农业生产领域需要,要求温湿度测量响应时间快、长期稳定性好,抗干扰能力强,具有较高的应用价值。 一、性能特点 ●配用全数字型温湿度传感器DHT11,温度测量范围0℃--100℃,湿度测 量范围0%RH—90%RH,可以满足一般需要。若要求更宽测量范围,只需 更换温湿度传感器型号,硬件电路及软件程序全兼容。 ●温湿度测量响应时间快、长期稳定性好。 ●采用先进的专用微处理器芯片STC89C52,可靠性高,抗干扰能力强。 ●配用EEPROM芯片AT24C04,使存储的温度上下限和湿度上下限可以 掉电永久保存。 ●可以通过四个按键方便地实现温湿度上下限的调整。 ●当温度或湿度超限后,报警信号点亮相应报警灯。 ●配用三极管和继电器,可以通过驱动继电器打开或切断风机、加热器等 外部设备。 二、功能说明 1、实时测量当前温度值和湿度值,在液晶屏动态显示。 2、可以显示当前允许温度范围,在液晶屏显示,如“20-45”表示允许温度范围为20摄氏度至45摄氏度。 3、可以显示当前允许湿度范围,在液晶屏显示,如“15-60”表示允许湿度范围为15%至60%。 4、当温度低于温度下限时,低温报警灯亮,控制继电器动作。 5、当温度高于温度上限时,高温报警灯亮,控制继电器动作。

6、当湿度低于湿度下限时,低湿报警灯亮,控制继电器动作。 7、当湿度高于湿度上限时,高湿报警灯亮,控制继电器动作。 8、可以通过键盘调整温度上下限和湿度上下限,具体方法是连续按设置键直至温度下限、温度上限、湿度下限、湿度上限相应的位置闪烁,再通过Up键和Down键调整数值,调整完毕继续按设置键进入正常状态。 9、可以保存设置参数至EEPROM中,具体方法是按保存键,此时当前设置参数存盘,重新上电显示新的设置值。如果不按保存键,所调整的设置参数只在此次运行有效,关电后恢复原先设定值。 三、硬件设计 1、设计框图 本研究设计的温湿度控制器框图如图1所示。

温湿度独立控制空调系统

摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。 关键词:温湿度独立控制新风高温冷源 1 引言 从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25ºc,相对湿度60%,此时露点温度为16.6ºc。空调排热排湿的任务可以看成是从25ºc 环境中向外界抽取热量,在16.6ºc的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。 (1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6ºc的露点温度需要约7ºc的冷源温度,这是现有空调系统采用5~7ºc的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5ºc的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7ºc的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。 (2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。 (3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 (5)输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、co2、气味等。在中央空调系统中,风机、水泵消耗了40~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。 此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。 综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为: 加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大

温湿度控制管理规定

目录 1、目的 (3) 适用范 围 (3) 职 责 (3)

术语解 释 (3) 温度计的型 号 (4) 温度计的安装条 件 (4) 温湿度异常对人的影 响 (4) 温湿度异常对产品的影 响 (4) 温湿度的规定范 围 (4) 防湿防温处理措 施 (5) 严重情况处理措 施 (5) 温湿度的检测时 间 (5) 检测步 骤 (6) 表格文 件 (6) 1、目的 为了确保掌握温度及湿度变化情况,建立因天气变化对员工的生产、生活健康有影响而采取相应的措施,同时也确保原料、半成品、成品在生产、贮存过程中有良好的环境,以防止损坏或变质。 2、适用范围 本规定适用于XXXXXXXXX限公司所有生产车间和老化房。 3、职责

3.1 测试员:负责车间的温度、湿度的检查登记及温湿度计的维护管理工作; 3.2 车间主管:监督登记工作及相关问题采取的相应处理措施是否妥当。 4、术语解释 4.1 空气温度:是指空气的冷热程度; 4.2 空气湿度:是指空气中水汽含量的多少或空气干湿的程度; 4.3 表示空气湿度,主要有以下几种: 4.21 绝对湿度:是指单位容积的空气里实际所含的水汽量; 4.22 饱和湿度:是表示在一定温度下,单位容积空气中所能容纳的水汽量的最大限度; 4.23 相对湿度:是指空气中实际含有的水蒸气量(绝对湿度)距离饱和状态(饱和湿 度)程度的百分比。 4.24 计算公式:相对温度=绝对湿度/饱和湿度×100% 绝对温度=饱和温度×相对温度 5、温湿度计的型号 本公司使用的是数字式温湿度计有(HTC-1、LT09013)两种 6、温湿度计的安装条件 6.1温湿度计应安装在离地 1.5~2 米处,且空气流通、不受阳光照射的地方; 7、温湿度异常对人的影响 7.1 温度过高:体温调节功能失调、血压下降、水盐代谢紊乱、心肌损伤、肾脏功能下降; 同时高温作业可引起中暑等; 7.2 温度过低:损伤皮肤,引发呼吸性疾病,使人感到干燥焦渴; 7.3 湿度过高:人会感到无精打采,还容易患风湿性、类风湿性关节炎等湿症; 7.4 湿度过低:会使呼吸道粘膜的水分大量散失,人会感到口干、舌燥,甚至咽喉肿痛、 声音嘶哑和鼻出血等,并易患感冒; 8、温湿度异常对产品的影响 8.1 温度过高:会导致电子元件的性能降低,使用寿命缩短,降低绝缘性能; 8.2 温度过低:会使导致电子元件的参数改变,直接影响设备的稳定工作; 8.3 湿度过高:会使金属材料氧化腐蚀,绝缘材料的绝缘强度减弱,缩短设备使用寿命;

温湿度控制器(上下限继电器)设计报告

温湿度控制器设计报告 本设计研究单片机数字温湿度控制器,通过全数字型温湿度传感器测量宽范围的温湿度数据,用来满足恒温湿车间控制、大棚温湿度控制等工农业生产领域需要,要求温湿度测量响应时间快、长期稳定性好,抗干扰能力强,具有较高的应用价值。 一、性能特点 ●配用全数字型温湿度传感器DHT11,温度测量范围0℃--100℃,湿度测 量范围0%RH—90%RH,可以满足一般需要。若要求更宽测量范围,只需 更换温湿度传感器型号,硬件电路及软件程序全兼容。 ●温湿度测量响应时间快、长期稳定性好。 ●采用先进的专用微处理器芯片STC89C52,可靠性高,抗干扰能力强。 ●配用EEPROM芯片A T24C04,使存储的温度上下限和湿度上下限可以 掉电永久保存。 ●可以通过四个按键方便地实现温湿度上下限的调整。 ●当温度或湿度超限后,报警信号点亮相应报警灯。 ●配用三极管和继电器,可以通过驱动继电器打开或切断风机、加热器等 外部设备。 二、功能说明 1、实时测量当前温度值和湿度值,在液晶屏动态显示。 2、可以显示当前允许温度范围,在液晶屏显示,如“20-45”表示允许温度范围为20摄氏度至45摄氏度。 3、可以显示当前允许湿度范围,在液晶屏显示,如“15-60”表示允许湿度范围为15%至60%。 4、当温度低于温度下限时,低温报警灯亮,控制继电器动作。 5、当温度高于温度上限时,高温报警灯亮,控制继电器动作。

6、当湿度低于湿度下限时,低湿报警灯亮,控制继电器动作。 7、当湿度高于湿度上限时,高湿报警灯亮,控制继电器动作。 8、可以通过键盘调整温度上下限和湿度上下限,具体方法是连续按设置键直至温度下限、温度上限、湿度下限、湿度上限相应的位置闪烁,再通过Up键和Down键调整数值,调整完毕继续按设置键进入正常状态。 9、可以保存设置参数至EEPROM中,具体方法是按保存键,此时当前设置参数存盘,重新上电显示新的设置值。如果不按保存键,所调整的设置参数只在此次运行有效,关电后恢复原先设定值。 三、硬件设计 1、设计框图 本研究设计的温湿度控制器框图如图1所示。 图1 温湿度控制器方框图 图中STC89C52单片机每2秒钟从DHT11温湿度传感器中读入温度和湿度,在液晶屏上即时显示。 液晶屏上同时可以显示温湿度上下限值,该上下限设置值保存外外部EEPROM存储器中,掉电不失,并且可以通过四只按键上调或下调。 当温度或湿度值超过上下限值时,报警信号点亮相应报警灯。同时该报警信号通过三极管驱动继电器,以控制外部风机或加热器。

温湿度独立控制空调系统-江忆

温湿度独立控制空调系统 清华大学建筑学院江亿 摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。 关键词:温湿度独立控制,新风,高温冷源 1引言 从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25oC,相对湿度60%,此时露点温度为16.6oC。空调排热排湿的任务可以看成是从25oC环境中向外界抽取热量,在16.6oC 的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。 (1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6oC的露点温度需要约7oC的冷源温度,这是现有空调系统采用5~7oC的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5oC的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7oC的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。 (2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。 (3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 (4)室内末端装置的问题。为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。例如每平方米建筑面积如果有80W/m2显热需要排除,房间设定温度为25oC,当送风温度为15oC时,所要求循环风量为24m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感。为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织。这往往要在室内布置风道,从而降低室内净高或加大楼层间距。很大的通风量还极容易引起空气噪声,并且很难有效消除。在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而通过另外的暖气系统通过采暖散热器供热。这样就导致室内重复安装两套环境控制系统,分别供冬夏使

温湿度独立调节系统技术

温湿度独立调节系统技术 一、技术名称:温湿度独立调节系统技术 二、适用范围:公共建筑、住宅建筑等的采暖供冷 三、与该节能技术相关生产环节的能耗现状: 目前,我国约95%的建筑工程采用传统空调采暖供冷,热湿进行分别处理,系统的性能系数仅为3。 四、技术内容: 1.技术原理 温湿度独立调节系统由温度调节系统和湿度调节系统组成。温度调节系统是由干式风机盘管、辐射板等干式末端组成;湿度调节系统是由溶液除湿机组或其他类型新风机组组成。系统将处理后的新风送入房间控制湿度,而高温冷源产生16~18℃冷水被送入干式末端,带走房间显热,控制房间温度。 2.关键技术 温湿度独立调节系统中温度控制系统的干式末端——毛细管辐射产品、湿度控制系统的溶液除湿技术、室内温度、湿度控制与调节技术、防结露技术。 3.工艺流程 工艺流程见图1、图2。 新风处理机组 新风 置换通风口 个性化送风口 ……控制室内湿度与CO 2浓度 夏季:高温冷源水 辐射板(墙) 干式风机盘管 …… 控制室内温度 冬季:低温热源 湿度控制系统 温度控 制系统 空调设备 末端装置 室内环境控制 图1 温湿度独立调节系统技术原理图

下换热器 地 下 换 热 器 辐射末端 回风 温湿度独立调节系统的工艺流程送风 排风 新风 热泵式溶液调湿新风机组 换热器 地下换热器地 下 换 热 器 地 下 换 热 器 冷凝器 高温冷水机组 蒸发器 额 接冷却塔或 地下换热器 图2 温湿度独立调节系统技术工艺流程图 五、主要技术指标: 1)传统空调供冷温度7℃,供热60℃,温湿度独立调节系统供冷温度为16℃以上,供暖温度低于35 ℃; 2)夏季可利用自然界的天然冷源供冷,冬季可利用废热供热; 3)主机COP由常规的5.5提高到8~11.5,整个系统节能40%以上; 4)溶液除湿新风机组COP达5.5以上。 六、技术应用情况: 该技术已在中国东南潮湿地区和西北干燥地区均有实施和应用,运行效果良好,具有节能性与舒适性。 七、典型用户及投资效益: 典型用户:XX国际公寓、XX花园、XX中国总部大楼、天XX庭院别墅等 1)建设规模:3.55万m2新建住宅楼配套。主要技改内容:室内空调系统,主要设备为地源热泵机组、溶液除湿机组和毛细管。节能技改投资额350万元,建设期1.3年。年节能320tce,年节约运行费用100万元,投资回收期3.5年。 2)建设规模:2.5万m2老厂房改造。主要技改内容:室内空调系统,主要设备包括溶液除湿系统、干式风盘和辐射供冷系统。节能技改投资额330万元,建设期1年。年可节电240万kWh,折合900tce,年节约运行费150万元,投资回收期2年。 八、推广前景和节能潜力: 温湿度独立调节系统的节能潜力很大,目前已有约300万m2的建筑采用该系统。预计到2015年,该技术在行业推广比例可达5%,需投资约200亿元人民币,形成年节能能力175万tce。

中央空调温度控制系统

过程控制课程设计报告 ——中央空调温度控制系统 一、课程设计目的 1、熟悉并掌握组态王软件的基本使用; 2、通过组态王软件的使用,进一步掌握了解过程控制理论基础知识; 3、培养自主查找资料、收索信息的能力; 4、培养实践动手能力与合作精神。 二、选题背景 随着计算机技术、信息技术、控制理论的快速发展,人们对生活质量和工作环境的要求也不断增长,智能建筑应运而生。中央空调是智能建筑的重要组成部分,中央空调的能耗占整个建筑能耗的50%~70%,因此中央空调系统的监控是楼宇自动化系统研究的重点。在民航业中,中央空调系统是航站楼内最为重要的系统之一,其系统的性能直接影响到旅客的感受。 三、设计任务 由于中央空调系统非常复杂,本设计选取温度作为主要被控对象,使用组态王设计温度监控画面,能实现被控环境的温度设定并实时监控温度的变化趋势,控制器采用PID控制算法,可以在监控界面上对PID参数进行整定,实现稳态误差小于5%。 四、详细设计 1、监控界面说明 监控界面主要由三部分组成:系统组成部分、PID调节部分和显示部分,如图1所示。 系统组成部分位于画面左上侧,由被控环境、温度传感器、A/D模块、控制器、D/A模块、变频器、风机和管道组成。温度传感器检测被控环境的温度,经过A/D模块传送至控制器,与温度设定值比较,输出控制值,经D/A模块传送至变频器,控制风机的转速。值0-10对应管道流速,0为不流动,10为最快,运行时点击“系统运行”按钮,管道出现流动效果。 PID调节部分位于画面右侧,包括PID控件、环境温度设定显示按钮和PID参数输入按钮。利用系统PID控件内置的PID实现温度的控制,点击相应的按钮可输入值。 显示部分位于画面左下侧和右上侧,包括实时温度曲线、历史温度曲线、报警窗口和实时报表。实时温度曲线显示温度的调节变化过程。

相关主题
文本预览
相关文档 最新文档