当前位置:文档之家› SPI串口通信协议

SPI串口通信协议

SPI串口通信协议

1.1 SPI串口通信介绍

SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。

SPI:高速同步串行口。3~4线接口,收发独立、可同步进行.

SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.

SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。

(1)SDO –主设备数据输出,从设备数据输入

(2)SDI –主设备数据输入,从设备数据输出

(3)SCLK –时钟信号,由主设备产生

(4)CS –从设备使能信号,由主设备控制

其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。

接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。

要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。

在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。

以AT91RM9200为例说明串口通信的全过程。

AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO 是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI总线可以配置成单主单从,单主多从,互为主从。

SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。同步外设接口(SPI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。

SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。SPI 接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。通讯时,数据由SDO 输出,SDI 输入,数据在时钟的上升或下降沿由SDO 输出,在紧接着的下降或上升沿由SDI 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。

1.2 SPI通信

该总线通信基于主-从配置。它有以下4个信号:

MOSI:主出/从入

MISO:主入/从出

SCK:串行时钟

SS:从属选择

芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。

在SPI传输中,数据是同步进行发送和接收的。数据传输的时钟基于来自主处理器的时钟脉冲,摩托罗拉没有定义任何通用SPI的时钟规范。然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA

定义相对于SO-数据位的时钟相位。CPOL和CPHA的设置决定了数据取样的时钟沿。

数据方向和通信速度

SPI传输串行数据时首先传输最高位。波特率可以高达5Mbps,具体速度大小取决于SPI硬件。例如,Xicor公司的SPI串行器件传输速度能达到5MHz。

1.3 SPI总线接口及时序

SPI总线包括1根串行同步时钟信号线以及2根数据线。

SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL="0",串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设音时钟相位和极性应该一致。SPI接口时序如图3、图4所示。

SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。

假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。

那么第一个上升沿来的时候数据将会是sdo=1;寄存器=0101010x。下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。

1.4 例子

假设主机和从机初始化就绪:并且主机的sbuff=0xaa,从机的sbuff=0x55,下面将分步对spi的8个时钟周期的数据情况演示一遍:假设上升沿发送数据

下面是SPI读写协议的移位过程,每个CLK都是按照四种模式要求的边沿触发方式,来移

位的。下表就是每一个CLK,主机SBUFF传输数据的移位过程。

表1.

这样就完成了两个寄存器8位的交换,上面的上表示上升沿、下表示下降沿,sdi、sdo 相对于主机而言的。其中ss引脚作为主机的时候,从机可以把它拉底被动选为从机,作为从机的是时候,可以作为片选脚用。根据以上分析,一个完整的传送周期是16位,即两个字节,因为,首先主机要发送命令过去,然后从机根据主机的名准备数据,主机在下一个8位时钟周期才把数据读回来。

单片机串口通信协议程序

#include #include #define R55 101 #define RAA 202 #define RLEN 203 #define RDATA 104 #define RCH 105 //#define unsigned char gRecState=R55; unsigned char gRecLen; unsigned char gRecCount; unsigned char RecBuf[30]; unsigned char gValue; void isr_UART(void) interrupt 4 using 1 { unsigned char ch; unsigned char i; unsigned char temp; if (RI==1) { ch=SBUF; switch(gRecState) { case R55: // wait 0x55 if (ch==0x55) gRecState=RAA; break;

case RAA: if (ch==0xaa) gRecState=RLEN; else if (ch==0x55) gRecState=RAA; else gRecState=R55; break; case RLEN: gRecLen=ch; gRecCount=0; gRecState=RDATA; break; case RDATA: RecBuf[gRecCount]=ch; gRecCount++; if (gRecCount>=gRecLen) { gRecState=RCH; } break; case RCH: temp=0; for(i=0;i

51串口通信协议(新型篇)

51串口通信协议(新型篇) C51编程:这是网友牛毅编的一个C51串口通讯程序! //PC读MCU指令结构:(中断方式,ASCII码表示) //帧:帧头标志|帧类型|器件地址|启始地址|长度n|效验和|帧尾标志 //值: 'n' 'y'| 'r' | 0x01 | x | x | x |0x13 0x10 //字节数: 2 | 1 | 1 | 1 | 1 | 1 | 2 //求和: ///////////////////////////////////////////////////////////////////// //公司名称:*** //模块名:protocol.c //创建者:牛毅 //修改者: //功能描述:中断方式:本程序为mcu的串口通讯提供(贞结构)函数接口,包括具体协议部分 //其他说明:只提供对A T89c51具体硬件的可靠访问接口 //版本:1.0 //信息:QQ 75011221 ///////////////////////////////////////////////////////////////////// #include #include //预定义 //帧 #define F_ST1 0x6e //帧头标志n #define F_ST2 0x79 //帧头标志y #define F_R 0x72 //帧类型读r #define F_W 0x77 //帧类型写w #define F_D 0x64 //帧类型数据帧d #define F_B 0x62 //帧类型写回应帧b #define F_C 0x63 //帧类型重发命令帧c #define F_Q 0x71 //帧类型放弃帧q #define F_ADDR 0x31 //器件地址0-9 #define F_END 0x7a //帧尾标志z #define F_SPACE 0x30 //空标志0 #define F_ERR1 0x31 //错误标志1,flagerr 1 #define F_ERR2 0x32 //错误标志2 2 //常数 #define S_MAXBUF 16 //接收/发送数据的最大缓存量 #define FIELD_MAXBUF 48 //最小场缓存,可以大于48字节,因为协议是以20字节为

系统串口通讯协议

ZHET 系统串口通讯协议 通 讯 技 术 手 册 型号:SYRDS1-485 (SYRDSSS1) SYRDL1-485 (SYRLSSS1) 玺瑞国际企业有限公司 SYRIS International Corp.

通讯技术手册 通讯协议(Protocol) 卡片阅读机模块(Reader Module)的通讯协议(Protocol)皆出自于SYRIS 的一种标准通讯协议,这种协议格式如下表: 1.SOH 和 END 都是一个字节的控制字符: SOH 控制器端定义为 <0x09> 模块端定义为 <0x0A> END 控制器及模块端均固定为 <0x0D> 其中 <0x> 为十六进制表示法. 2.TYPE 为模块型式编号,固定为一个字节,本型式编号固定为“A”. 3.ID为模块端的识别代码,这一字节的 ASCII 字符必须是在 1 <0x31> 到 8 <0x38> 的范围内,假如控制器端传送之ID值与模块地址编号相同时, 则该模块将会接收控制器端所传送的数据,而模块响应时,也会传回相同的地址编号.

4.FC是通讯功能码(Function Code)和资料(DATA)有相关性,固定为一个 字节,这些资料请参考通讯协议表及相关说明. 5.错误讯息判断代码(Error Code)为两个字节,第一个字节为固定为 <0x0E> ,第二个字节为错误代码,请参考错误讯息代码表. 6.8 BITS BCC是所有字符的检查字段,为二个字节,有关 8 BITS BCC 的 信息和范例程序,请参考附录A. 7.RS485传输协议请设定为”E,8,1”,速率为”19200”. 错误讯息代码表(Error Code Table) ※ Error Code #1固定为 <0x0E>.

串口通讯—通信协议

串口通讯—通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成

串口通信协议

串口通信协议 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。 什么是RS-232 RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。用于驱动和连线的改进,实际应用中RS-232的传输长度或者速度常常超过标准的值。RS-232只限于PC串口和设备间点对点的通信。RS-232串口通信最远距离是50英尺。 DB-9针连接头 9针串口连接口顺序图 从计算机连出的线的截面。 RS-232针脚的功能: 数据: TXD(pin 3):串口数据输出(Transmit Data) RXD(pin 2):串口数据输入(Receive Data) 握手: RTS(pin 7):发送数据请求(Request to Send) CTS(pin 8):清除发送(Clear to Send) DSR(pin 6):数据发送就绪(Data Send Ready) DCD(pin 1):数据载波检测(Data Carrier Detect) DTR(pin 4):数据终端就绪(Data Terminal Ready) 地线: GND(pin 5):地线 其他 RI(pin 9):铃声指示 什么是RS-422 RS-422(EIA RS-422-AStandard)是Apple的Macintosh计算机的串口连接标准。RS-422使用差分信号,RS-232使用非平衡参考地的信号。差分传输使用两根线

串口通信协议程序

串口通信协议程序 主机程序: /* 主机主要处理 : 主—>从 1.给从机发送命令 2.给从机发送数据 3.命令从机向主机发送数据 从—>主由中断程序处理根据从机发送过来的请求类型 0.请求主机发送命令(包括主到从的1,2命令) 1.请求主机接收数据 2,3保留 */ #include #include #define uchar unsigned char #define uint unsigned int #define slav1_addr 0x01 #define slav2_addr 0x02 #define COMEND 0 #define REC_DATE 1 //主机向从机发送多数据命令高四位为1111,所以其他命令高四位不能为1111 #define cmd_X 0x12 #define cmd_rec_data 0x11 sbit signal=P3^2; uchar temp_addr,num,rec,style,re_addr; uchar buf[20]; uchar rec_data[10];

void delay(unsigned int i) { while(i--); } void init_uart(void) { TMOD=0x20; //定时器方式2--8位reload模式 TH1=0xfd; TL1=0xfd; PCON=0; //波特率不加倍 SCON=0xf0; //方式三 TB8=1; //发送地址时第九位为1 SM2=1; //接收到第九位为1时才能接收数据 TR1=1; //要在设置scon后开定时 ES=1; //开中断 EA=1; } //发送命令 void uart_send_cmd(uchar addr,uchar cmd)//uchar *date) { while(signal==0); //检查总线是否被占 signal=0; //占用总线 EA=0;//关中断 do {

串口通信协议程序

主机程序: /* 主机主要处理: 主—>从 1.给从机发送命令 2.给从机发送数据 3.命令从机向主机发送数据 从—>主由中断程序处理根据从机发送过来的请求类型 0.请求主机发送命令(包括主到从的1,2命令) 1.请求主机接收数据 2,3保留 */ #include #include #define uchar unsigned char #define uint unsigned int #define slav1_addr 0x01 #define slav2_addr 0x02 #define COMEND 0 #define REC_DATE 1 //主机向从机发送多数据命令高四位为1111,所以其他命令高四位不能为1111 #define cmd_X 0x12 #define cmd_rec_data 0x11 sbit signal=P3^2; uchar temp_addr,num,rec,style,re_addr; uchar buf[20]; uchar rec_data[10]; void delay(unsigned int i) { while(i--); } void init_uart(void) { TMOD=0x20; //定时器方式2--8位reload模式 TH1=0xfd; TL1=0xfd; PCON=0; //波特率不加倍 SCON=0xf0; //方式三 TB8=1; //发送地址时第九位为1 SM2=1; //接收到第九位为1时才能接收数据

TR1=1; //要在设置scon后开定时 ES=1; //开中断 EA=1; } //发送命令 void uart_send_cmd(uchar addr,uchar cmd)//uchar *date) { while(signal==0); //检查总线是否被占 signal=0; //占用总线 EA=0;//关中断 do { do { SBUF=addr; //发送从机地址 while(TI!=1); TI=0; } while(RI!=1); //一直等待从机响应 //while循环里可加入出错处理temp_addr=SBUF; RI=0; } while(temp_addr!=addr); //一直等到从机回应的地址相同 //while循环里可加入出错处理 TB8=0; //发送数据第9位为0 // SM2=0; // 接收到第九位为1时才置位RI //每次一个数据 SBUF=cmd; while(TI!=1); TI=0; TB8=1; // SM2=1; RI=0; TI=0; //不处理期间发生的中断 EA=1; signal=1; //释放总线 }

串口通信协议

标签:RS232RS485串口协议比较 串口通信协议比较 串口通信协议主要有RS232、RS422 、RS485。下面将从其发展历史、各自特点来介绍各种协议,RS232和RS485的区别和接法。 首先是发展历史。最开始出现的串口通信协议是RS232,1962年发布的。由于其传输速度、单向传递、传输距离短等多方面的制约,因此使用受到限制。于是人们在RS232的基础上做了相应的改进,提高了相应的传输速度、传输距离,于是出现了RS422的雏形,并在工业上得到了相应的应用。但由于任然是单向传输的,使构成的网络只能是单向的。既只能是主机给从机发送指令或数据,从机只能接受并处理相应的消息,不能反映相应的结果。于是人们又做了相应的调整。最后于1983年发布了RS485通信协议。 正如前面所说的。RS232协议是一种简单的串口通信协议,也是最基本的。一般用在实验室等短距离、对传输速度等要求不高的场合,并且与TTL电平不兼容。 RS422有了相应的提高。是一种单机发送,多机接收的平衡通信协议接口,传输速度最高可以达到10Mbps,传输距离最远可达到4000英尺,并且在这条平衡总线上能最多带10个从机,但是任然是单向的传输。 RS485是一种多点,双向通信的平衡通信协议接口。再RS422的基础上增加了网络中接点(多机)的数量和双向通信能力,同时还增加了驱动器的传输能力和冲突保护特性,扩展了总线共模范围。传输速度最高可以达到10Mbps,标准距离可以达到4000英尺,实际能达到3000米,并且在这条线上最多可以带128个收发器。 RS232和RS485的区别: 1.传输速度不同。RS485可以达到10Mbps,高于RS232的速度。 2.电气特性不同。RS485采用的是平衡驱动器和差分接收器的组合。RS485 是输出的是差分信号,抗共模干扰能力强。逻辑“1”是两输出信号的+(2~6)V,“0”是-(2~6)V表示。电气信号低于RS232的电气信号,不容易损坏接口芯片,并且与TTL电平兼容。 3.传输距离不同。RS485标准距离为4000英尺,实际可以达到3000米。远远大于RS232的距离。 4.接收器数量不同。RS485接收器最多可以达到128个,即多站能力。而RS232只能是一个,即单站接点。

单片机C51串口中断接收和发送测试例程(含通信协议的实现)

通信协议:第1字节,MSB为1,为第1字节标志,第2字节,MSB为0,为非第一字节标志,其余类推……,最后一个字节为前几个字节后7位的异或校验和。 测试方法:可以将串口调试助手的发送框写上 95 10 20 25,并选上16进制发送,接收框选上16进制显示,如果每发送一次就接收到95 10 20 25,说明测试成功。 //这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收//和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的 #include #include #define INBUF_LEN 4 //数据长度 unsigned char inbuf1[INBUF_LEN]; unsigned char checksum,count3; bit read_flag= 0 ; void init_serialcomm( void ) { SCON = 0x50 ; //SCON: serail mode 1, 8-bit UART, enable ucvr TMOD |= 0x20 ; //TMOD: timer 1, mode 2, 8-bit reload PCON |= 0x80 ; //SMOD=1; TH1 = 0xF4 ; //Baud:4800 fosc=11.0592MHz IE |= 0x90 ; //Enable Serial Interrupt TR1 = 1 ; // timer 1 run // TI=1; } //向串口发送一个字符 void send_char_com( unsigned char ch) { SBUF=ch; while (TI== 0 ); TI= 0 ; } //向串口发送一个字符串,strlen为该字符串长度 void send_string_com( unsigned char *str, unsigned int strlen) { unsigned int k= 0 ; do {

串口通信协议

VC++ 的串口通讯 代翔 在VC++中有两种方法可以进行串口通讯。一种是利用Microsoft公司提供的ActiveX 控件 Microsoft Communications Control。另一种是直接用VC++访问串口。下面将简述 这两种方法。 一、Microsoft Communications Control Microsoft公司在WINDOWS中提供了一个串口通讯控件,用它,我们可以很简单 的利用串口进行通讯。在使用它之前,应将控件加在应用程序的对话框上。然后再用 ClassWizard 生成相应的对象。现在我们可以使用它了。 该控件有很多自己的属性,你可以通过它的属性窗口来设置,也可以用程序设置 。我推荐用程序设置,这样更灵活。 SetCommPort:指定使用的串口。 GetCommPort:得到当前使用的串口。 SetSettings:指定串口的参数。一般设为默认参数"9600,N,8,1"。这样方便 与其他串口进行通讯。 GetSettings:取得串口参数。 SetPortOpen:打开或关闭串口,当一个程序打开串口时,另外的程序将无法使 用该串口。 GetPortOpen:取得串口状态。 GetInBufferCount:输入缓冲区中接受到的字符数。

SetInPutLen:一次读取输入缓冲区的字符数。设置为0时,程序将读取缓冲区的 全部字符。 GetInPut:读取输入缓冲区。 GetOutBufferCount:输出缓冲区中待发送的字符数。 SetOutPut:写入输出缓冲区。 一般而言,使用上述函数和属性就可以进行串口通讯了。以下是一个范例。 #define MESSAGELENGTH 100 class CMyDialog : public CDialog { protected: VARIANT InBuffer; VARIANT OutBuffer; CMSComm m_Com; public: ...... } BOOL CMyDiaLog::OnInitDialog() { CDialog::OnInitDialog(); m_Com.SetCommPort(1); if (!m_Com.GetPortOpen()) { m_Com.SetSettings("57600,N,8,1"); m_Com.SetPortOpen(true); m_Com.SetInBufferCount(0); SetTimer(1,10,NULL); InBuffer.bstrVal=new unsigned short[MESSAGELENGTH]; OutBuffer.bstrVal=new unsigned short[MESSAGELENGTH]; OutBuffer.vt=VT_BSTR; } return true; } void CMyDiaLog::OnTimer(UINT nIDEvent) { if (m_Com.GetInBufferCount()>=MESSAGELENGTH) { InBuffer=m_Com.GetInput();

串口通信协议详解

对单一设备的控制操作比较方便,但是要实现对多个设备的控制就不那么简单了。它需要的时序、接口标准、通信协议等相互配合,才能够实现相互之间的通信。最近开始了《智能化车位指示管理系统》的设计,才体会到设计者的艰辛。设计既是体力劳动,又是脑力劳动。说他是体力劳动是因为在这期间有很多重复性的工作,至于脑力劳动那是不言而喻。作为一个菜鸟级的设计人员来说,多多借鉴前人设计思路不愧是一个“捷径”,毕竟站得高看得远嘛! 串口是计算机上一种非常通用设备通信的协议。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。 一、RS-232串行接口标准 目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯。收、发端的数据信号是相对于信号地。典型的RS-232信号在正负电平之间摆动,在发送数据时,发送端驱动器输出正电平在+5~+15V,负电平在-5~-15V电平。当无数据传输时,线上为TTL,从开始传送数据到结束,线上电平从TTL电平到RS-232电平再返回TTL 电平。接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接收电平的差仅为2V 至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20Kbps。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3kΩ~7kΩ。所以RS-232适合本地设备之间的通信。 二、RS-422串行接口标准 RS-422标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。实际上还有一根信号地线,共5根线。由于接收器采用高输入阻抗和发送驱动器比RS232 更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS-422支持点对多的双向通信。接收器输入阻抗为4k,故发端最大负载能力是10×4k+100Ω(终接电阻)。RS-422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)实现。 RS-422的最大传输距离为4000英尺(约1219米),最大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为1Mb/s。

串口通信协议

常用电平标准 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS23 2、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。 TTL:Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了。也就是后面的L VTTL。LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用就先不讲了。多用在处理器等高速芯片,使用时查看芯片手册就OK了。 TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入。 CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。 Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。 3.3V LVCMOS: Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=0.7V。 2.5V LVCMOS: Vcc:2.5V;VOH>=2V;VOL<=0.1V;VIH>=1.7V;VIL<=0.7V。 CMOS使用注意:CMOS结构内部寄生有可控硅结构,当输入或输入管脚高于VCC 一定值(比如一些芯片是0.7V)时,电流足够大的话,可能引起闩锁效应,导致芯片的烧毁。 ECL:Emitter Coupled Logic 发射极耦合逻辑电路(差分结构) Vcc=0V;Vee:-5.2V;VOH=-0.88V;VOL=-1.72V;VIH=-1.24V;VIL=-1.36V。速度快,驱动能力强,噪声小,很容易达到几百M的应用。但是功耗大,需要负电源。为简化电源,出现了PECL(ECL结构,改用正电压供电)和LVPECL。PECL:Pseudo/Positive ECL Vcc=5V;VOH=4.12V;VOL=3.28V;VIH=3.78V;VIL=3.64V

avr单片机串口通信协议程序

主机程序 #include #include #include #include #include #define uchar unsigned char #define slav1_addr 0x01 #define slav2_addr 0x02 #define cmd_sub_rec 0x11 //请求从机发送数据命令 //所有的普通命令最高位不能为1 uchar rec,style,rec_addr; volatile uchar rec_buf[20]={0},send_buf[20]={0}; void uart_send_cmd(uchar addr,uchar cmd) { uchar temp; cli();//禁止中断防止其他中断程序的发生打断通信 do { while ( !( UCSRA & (1<

串口通讯通信协议技术

串口通讯一通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做岀统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于 ISO'S OSI七层参考模型中的数据链路层。 目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同 步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率一一波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用 MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与 MODEM或终端进行联络与控制。 2、串行通信接口电路的组成 为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA 与TTL电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART )接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现上面提岀的串行通

串口及通讯协议

串口及通讯协议 1.1概述 新版TUF-2000具有强大的通讯功能,能够同时支持多种不同的协议,包括MODBUS协议、MBUS、海峰FUJI扩展协议、汇中流量计水表兼容协议。 海峰FUJI扩展协议是在日本FIJI超声波流量计协议的基础上扩展实现的,能够兼容FUJI超声波流量计协议,以及海峰第7版超声波流量计协议。 兼容协议还可以兼容海峰水表协议以及汇中水表协议。 位于M63窗口处的设置选项设置为“MODBUS-RTU ONLY”时,用来支持MODBUS-RTU协议。当此选项设置为“MODBUS ASCII+原协议”时,用来支持MODBUS ASCII、Meter-BUS、海峰FUJI扩展协议以及汇中流量计水表兼容协议。 不同的汇中流量计水表兼容协议的选择则也使用M63进行选择。在选择了“MODBUS-RTU”,“MODBUS-ASCII”之后进行选择。 M62菜单用于设置串行口参数。能够支持的波特率有19200,14400, 9600, 4800, 2400, 1200, 600, 300共8种,停止位1比特或2比特。校验位也可以选择。 使用各种组态软件自带的标准的MODBUS驱动程序可以方便地把TUF-2000连接到数据采集中。 通过使用MODBUS-PROFIBUS转换器,也可以方便地把TUF-2000连接到PROFIBUS总线中。 目前还已经有了多家第三方厂商的专门支持TUF-2000系列流量计的数据采集软件供用户选用,其中有些小的软件是免费的,特别方便小用户的组网使用。 §1.2 关于通讯方面问题的问答 (1) 问:为什么连接不上流量计?,接上后它不做任何反应? 答: A. 检查串口参数是否匹配;位于M63窗口的协议选择是否正确 B.检查物理连线是否接好 D.位于M46窗口的地址是否设置正确 C.把流量计重新上电,应该能接收到字符“AT”,否则A和B步存在问题 D.检查命令是否正确。在使用扩展协议时命令后面要紧跟者一个回车符号 (2) 问:为什么MODBUS读出的量值乱七八糟的,和显示值完全不一致? 答:一般来说如果MODBUS协议能够读出数据就表明协议本身没有问题了。乱七八糟的数据是因为存在如下错误: A.数据格式错误; B.寄存器地址有误,导致数据发生了位移而产生错误。 比如REAL4这种实型变量(IEEE754格式的单精度浮点数),按照字和字节共有4种不 同的排列方式,TDS100使用的是最常规的一种,即低word和高byte在前格式。您可 以修改您的软件的数据存放格式解决这个问题。 使用C语言时的数据存放顺序请参考本节的问答(8) 如果使用通用的组态软件,则组态软件一般具有一个选择格式的方法。 (3) 问:我的系统要求每次1小时只发出一次命令然后要求同时收到多个变量,应该使用 那个协议?

相关主题
文本预览
相关文档 最新文档