当前位置:文档之家› 6.2 无限大功率电源供电系统的三相短路

6.2 无限大功率电源供电系统的三相短路

6.2 无限大功率电源供电系统的三相短路
6.2 无限大功率电源供电系统的三相短路

6.2 无限大功率电源供电系统的三相短路

6.2.1 无限大功率电源的概念

无限大功率电源指的是电源外部有扰动发生时,仍能保持端电压和频率恒定的电源。

在研究电力系统暂态过程时为了简化分析和计算,常常假设某些电源的容量为无限大,并称为无限大功率电源。可以想象,若电源的容量无限大时,外电路发生短路(一种扰动)时引起的功率变化量与电源的容量相比可以忽略不计,系统中的有功功率和无功功率总保持平衡,因而电源的电压和频率保持恒定。

显然,无限大功率电源是一个相对的概念,真正的无限大功率电源在实际电力系统中是不存在的。但当许多个有限容量的发电机并联运行,或电源距短路点的电气距离很远时,就可将其等值电源近似看做无限大功率电源。前一种情况常根据等值电源的内阻抗与短路回路总阻抗的相对大小来判断该电源能否看做无限大功率电源,若等值电源的内阻抗小于短路回路总阻抗的10%时,则可以认为该电源为无限大功率电源;后一种情况则是通过电源与短路点间电抗的标幺值来判断的,若电抗在以电源额定容量作基准容量时的标幺值大于3,则认为该电源是无限大功率电源。

无限大功率电源具有两个特点:①电源的频率和电压保持恒定;②电源的内阻抗为零。

引入无限大功率电源的概念后,在分析网络突然三相短路的暂态过程时,可以忽略电源内部的暂态过程,使分析得到简化,从而推导出工程上适用的短路电流计算公式。用无限大功率电源代替实际的等值电源计算出的短路电流偏于安全。

6.2.2 无限大功率电源供电电路突然三相短路的暂态过程

图6-2是一个由无限大功率电源供电的简单三相电路。短路前处于正常稳态,每相的电阻和电感分别为

和。由于电路对称,可以只写出一相( 相)电压和电流表达式

图6-2 无限大功率电源供电的三相电路突然短路

(6-1)

(6-2)

式中:

,分别为相电压和电流的瞬时值;为短路前的电流幅值;为电源的电压幅值;为电源电压的初相角;为短路前电路的阻抗角。

当电路在f点发生突然三相短路,网络被短路点分成两个相互独立的部分,短路点左侧的部分仍与电源连接,右侧的部分则被短接为无源网络。右侧无源网络中,短路前的电流为,该电路的暂态过程即是电流从这个初始值按指数规律衰减到零的过程,在此过程中,电路中储存的能量将全部转换成为电阻所消耗的热

能。因此,要研究原电路发生突然三相短路的暂态过程,主要是研究短路点左侧电路的电磁暂态过程。而在与电源相连的左侧电路中,每相的阻抗已变为,其电流将要由短路前的数值逐渐变化到由阻抗所决定的的新稳态值。

假定短路在t=0s时发生,因三相短路是对称短路,仍可用一相的研究代替三相。短路点左侧电路相的电磁暂态过程可以用下列微分方程描述

(6-3)

这是一个常系数线性非齐次微分方程,它的解就是短路的全电流,由两部分组成:第一部分是方程(4-3)的特解,代表短路电流的周期分量;第二部分是方程(6-3)对应的齐次方程的通解,代表短路电流的非周期分量。即

(6-4)

式中:

为短路电流的周期分量的幅值;为短路瞬间电源电压的初相角,也称合闸角;为短路回路的阻抗角;C是由初始条件确定的积分常数;为短路电流非周期分量衰减的时间常数。

根据楞次定律,电感电路中的电流不能突变,短路前瞬间(用脚标“[0]”表示)的电流应等于短路后瞬间(用脚标“0”表示)的电流,由此可确定积分常数C。

将t=0分别代入式(4-2)和式(4-4)中,且,则有

得(6-5)

将式(6-5)代入式(4-4),得相短路全电流表达式

(6-6)从式(6-6)可见,无限大功率电源供电的三相电路发生突然三相短路的暂态过程中,短路电流包括两个分量:一个是周期分量,即稳态短路电流,它是短路电流中的强迫分量,其幅值决定于电源电势的幅值和电

路参数;由于是无限大功率电源供电,电源电压幅值恒定,电路参数也不变,所以在整个暂态过程中周期分量的幅值是不衰减的。另一个是非周期分量或称为直流分量,它是短路电流中的自由分量,这个分量是为了在突然短路瞬间维持电感电路中的电流不突变而产生的,由于无外部电源支持和电路中存在电阻,它将以时间常数按指数规律衰减到零。当非周期电流衰减到零,表征暂态过程结束,电路进入稳定短路状态。

由于短路后三相电路仍对称,只要用()和()去代替式(6-6)中的,就可得到

相及c相的短路全电流表达式

(6-7)

图6-3示出了式(6-6)和式(6-7)所表示的三相短路电流波形。从图中看出:短路电流的周期分量(、、)是幅值恒定的对称三相电流;非周期分量(、、)使短路前后瞬间的电流连续,它是短路

电流曲线的对称轴。显然,同一时刻三相的非周期分量电流值不相等,非周期分量初值较大的那一相可能出现的短路电流瞬时值较大。

图6-3 三相短路电流波形图

6.2.3 短路冲击电流和短路全电流有效值

1.短路冲击电流

由图6-3可见,由于存在非周期分量(直流分量),短路后将出现比短路电流周期分量幅值还大的短路电流最大瞬时值,此电流称为短路冲击电流。

短路电流可能的最大瞬时值只出现在一种特定条件下的短路故障中。从式(6-6)知,要使具有最大值,由于周期分量电流在暂态过程中幅值恒定,在电路参数一定的情况下(一定),应使非周期分量电流具有最大初始值。从上节推导短路相非周期分量电流初始值为

它是短路前瞬间的正常负荷电流与短路后瞬间的短路电流周期分量之差,要使这个差的值最大,应使其中小项为零,大项具有最大值。显然,短路前的电流幅值比短路后的周期分量电流幅值小得多,因此应有(即短路前空载)且时,最大。同时由于高压电力网络中,可认为

,故又可表示为,即恰好在电源电势过零时发生短路。

综上所述,在接近纯感性的电力网络中当满足、时,短路电流可能出现最大的瞬时值。通

常称满足这些条件的短路叫最恶劣条件下的短路。

将、、代入式(6-6) ,得

(6-8)

图6-4 最恶劣条件下短路的电流波形

这种最恶劣条件下短路的电流波形示于图4-4。从图中可以看出:冲击电流出现在短路后半周期,即

时(电源频率),以代入式(6-8),得冲击电流为

(6-9)

式中称为冲击系数,它表示冲击电流对短路电流周期分量幅值的倍数。显然的大小取决于短路回路中的参数,即的值。的变化范围为时,的变化范围为。在实用计算中,当短路发生在发电机母线时,取;短路发生在发电厂高压侧母线时,取

;在其它地点短路时,取。

冲击电流主要用于检验电气设备和载流导体的电动力稳定度。

2.短路电流的最大有效值

在短路过程中,任一时刻t的短路电流有效值是指以时刻t为中心的一个周期内瞬时电流的均方根值,即

(6-10)

式中,、和分别为时刻短路电流、周期分量和非周期分量的瞬时值。

在短路暂态过程中,短路电流非周期分量的幅值始终是按指数规律衰减的;而短路电流周期分量的幅值只有在无限大功率电源供电时才是恒定的,在一般的情况下也是衰减的。因此利用式(6-10)进行计算相当复杂。

为了简化计算,通常假定:短路电流非周期分量在以时间t为中心的一个周期内恒定不变,即设t秒前后半个周期内非周期分量的大小保持不变,因而它在时刻t的有效值就等于它的瞬时值,即;对于周期分量,也认为它在所计算的周期内幅值是恒定的,其数值等于由周期电流包络线所确定的时刻的幅值,因此t时刻的周期电流有效值应为。

根据上述假设条件,式(6-10)就可以简化为下式

(6-11)

如果短路电流周期分量不衰减,则与时间无关,即;而t时刻非周期分量的瞬时值为

。由式(6-11)可得短路全电流有效值表达式

(6-12)

从图6-4中看出,短路全电流有效值在冲击电流出现的第一个周期中最大,称为短路电流最大有效值,用

表示。而第一个周期的中心为,这时非周期分量的有效值为

将上式代入式(6-12)便得到短路电流最大有效值的计算公式

(6-13)

显然,当周期分量有效值一定时,的值随冲击系数而变化。因的变化范围是,对应的。在近似计算中,当时,;当时,

;当时,。

6.2.4 短路容量

短路容量又称短路功率,它等于短路电流有效值与短路处的正常工作电压(在近似计算中取平均额定电压)的乘积。于是,t时刻的短路容量为

(6-14)

短路容量主要用于校验断路器(开关)的切断能力。把短路容量定义为短路电流和工作电压的乘积是因为一方面开关要能切断这样大的电流;另一方面,在开关断流时其触头应经受住工作电压的作用。

在实用计算中取,用标幺值表示短路容量时

(6-15)

换算为有名值(6-16)

式(6-15)说明在工程中短路容量是个很有用的概念,它反映了网络中某点与无限大功率电源间的电气距离。换句话说,当知道系统中某点的短路容量时,该点与电源点间的等值电抗即可求得。在短路电流的实用计算中,常只用周期分量初始有效值来计算短路容量。

从上述分析可见,为了确定冲击电流、短路电流非周期分量、短路电流的有效值以及短路容量等,都必须计算短路电流的周期分量。实际上,大多数情况下短路计算的任务也只是计算短路电流的周期分量。在给定电源电势时,短路电流周期分量的计算只是一个求解稳态正弦交流电路的问题。

例6-1 在图6-5(a)所示的电力网络中,当降压变电所母线上发生了三相短路时,可将系统视为无限大容量电源,试求此时短路点的冲击电流,短路电流的最大有效值和短路容量。

图6-5 例6-1电力网络

(a)电力网络图;(b)等值电路

解取

首先计算各元件参数的标幺值电抗

取E=1,作等值网络如图(b)所示。

短路回路的等值电抗为

短路电流周期分量的有效值为

若取冲击系数,则冲击电流为

短路电流的最大有效值为

短路功率为

电力系统三相短路电流的计算

能源学院 课程设计 课程名称:电力系统分析 设计题目:电力系统三相短路电流的计算 学院:电力学院 专业:电气工程及其自动化____________ 班级:1203班________________________ 姓名:将________________________ 学号:1310240006__________________

目录 摘要 (1) 课题 (2) 第一章.短路的概述 (2) 1.1发生短路的原因 (2) 1.2发生短路的类型 (2) 1.3短路计算的目的 (3) 1.4短路的后果 (3) 第二章.给定电力系统进行三相短路电流的计算 (4) 2.1收集已知电力系统的原始参数 (4) 2.2制定等值网络及参数计算 (4) 2.2.1标幺值的概念 (4) 2.2.2计算各元件的电抗标幺值 (5) 2.2.3系统的等值网络图 (5) 第三章.故障点短路电流计算 (6) 第四章.电力系统不对称短路电流计算 (9) 4.1对称分量法 (9) 4.2各序网络的定制 (10) 4.2.1同步发电机的各序电抗 (10) 4.2.2变压器的各序电抗 (10) 4.3不对称短路的分析 (12) 4.3.1不对称短路三种情况的分析 (12) 4.3.2正序等效定则 (14) 心得体会 (15) 参考文献 (16)

电力系统分析是电气工程、电力工程的专业核心课程,通过学习电力系统分析,学生可以了解电力系统的构成,电力系统的计算分析及方法、电力系统常见的故障及其处理方法、电力系统稳定性的判断,为从事电力系统打下必要的基础。 电力系统短路电流的计算是重中之重,电力系统三相短路电流计算主要是短路电流周期(基频)分理的计算,在给定电源电势时,实际上就是稳态交流电路的求解。采用近似计算法,对系统元件模型和标幺参数计算作简化处理,将电路转化为不含变压器的等值电路,这样,就把不同电压等级系统简化为直流系统来求解。 在电力系统中,短路是最常见而且对电力系统运行产生最严重故障的后果之一。

两相短路故障的计算

编号0714141 课程设计 系(部)院:机电工程系 专业:电气工程及其自动化 作者姓名: 学号: 指导教师:职称:讲师 完成日期:年月日 二○一○年十二月

目录 目录 0 摘要 (2) ABSTRACT (3) 1 引言 (4) 1.1短路故障的原因 (4) 1.2短路故障发生的原因 (4) 1.3短路类型 (4) 1.4短路的危害 (4) 2 电力系统自动化的一般概念 (5) 3 本课程设计的主要任务 (6) 4 课程设计的目的 (6) 5 课程设计任务书 (6) 6课程设计内容及过程 (8) 6.1数学模型 (8) 6.1.1架空输电线的等值电路和参数 (8) 6.1.2变压器等值电路和参数 (9) 6.2对称分量法 (11) 6.2.1不对称三相量的分解 (11) 6.2.2变压器的各零序等值电路 (12) 6.3两相短路接地的分析 (13) 6.4算例 (16) 课程设计总结 (19) 参考文献 (20)

摘要 电力系统自动化(automation of power systems)对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。在电力系统的设计和运行中,必须考虑到可能发生的故障和不正常的运行情况,防止其破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,例如短路时电路的电压骤降,严重影响电气设备的正常运行,短路时保护装置动作,如熔断器的保险丝熔断,将短路电路切除,这会造成停电,而且短路点越靠近电源,停电范围越大,造成生活的不便和经济上的损失,严重的短路会影响电力系统运行的稳定性,可使并列运行的发电机组失去同步,造成系统解列,不对称短路,像单相短路和两相短路。因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。这里着重介绍简单不对称故障两相短路接地的常用计算方法。对称分量法是分析不对称故障常用方法,根据对称分量法,一组不对称的三相量可以分解为正序、负序和零序三相对称的三相量。在应用对称分量法分析计算不对称故障时必须首先作出电力系统的各序网络,通过网络化简求出各序网络对短路点的输入电抗以及正序网络的等值电势,再根据不对称短路的不同类型,列出边界方程,以求得短路点电压和电流的各序分量。 关键词:两相短路故障;短路计算;两相短路接地;对称分量法.

电力系统两相接地短路计算与仿真

电力系统两相接地短路计算与仿真

辽宁工业大学《电力系统分析》课程设计(论文) 题目:电力系统两相接地短路计算与仿真(2) 院(系):电气工程学院 专业班级:电气112 学号:110303057 学生姓名:李晓冬 指导教师:孙丽颖 教师职称:教授 起止时间:14-06-30至14-07-11

课程设计(论文)任务及评语 课程设计(论文)任务 原始资料:系统如图 各元件参数如下(各序参数相同): G1、G2:S N =35MVA,V N =10.5kV,X=0.33; T1: S N =31.5MVA,Vs%=10.5,k=10.5/121kV,△Ps=180kW, △ Po=30kW,Io%=0.8;YN/d-11 T2: S N =31.5MVA,Vs%=10, k=10.5/121kV,△Ps=200kW, △Po=33kW,Io%=0.9; YN/d-11 L12:线路长70km,电阻0.2Ω/km,电抗 0.41Ω/km,对地容纳2.78×10-6S/km; L23:线路长75km,电阻0.18Ω/km,电抗 0.38Ω/km,对地容纳2.98×10-6S/km;; L13: 线路长85km,电阻0.18Ω/km,电抗 0.4Ω/km,对地容纳2.78×10-6S/km;; 负荷:S3=45MVA,功率因数均为0.9. 任务要求(节点2发生AC两相金属性接地短路时): 1 计算各元件的参数; 2 画出完整的系统等值电路图; 3 忽略对地支路,计算短路点的A、 B和C三相电压和电流; 4 忽略对地支路,计算其它各个节 点的A、B和C三相电压和支路电流; 5 在系统正常运行方式下,对各种 不同时刻AC两相接地短路进行Matlab仿 真; 6 将短路运行计算结果与各时刻短 路的仿真结果进行分析比较,得出结论。 G G G1 T1 1 L12 2 T2 G2 1:k

电力系统分析短路电流的计算

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求: (1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 25 .02=T X 25.02==''X X d 图1-1 1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入

代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1.单相(a 相)接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I = 经过整理后便得到用序量表示的边界条件为: (2)(0)(1)(2)(0)00fa fa fa fa fa fa V V V I I I ? =++=? ??==? 2.两相(b 相和c 相)短路 b 相和c 相短路的边界条件 . 0fa I = ; ..0fb fc I I += ; . . fb fc V V = 经过整理后便得到用序量表示的边界条件为: (0) (1)(2)(1)(2)00fa fa fa fa fa I I I V V ? =??? +=??? =?? 3. 两相(b 相和c 相)短路接地 b 相和 c 相短路接地的边界条件 0fa I = ; 0fb V = ; 0fc V =

电力系统三相短路的分析与计算

电力系统三相短路的分析与计算

2 【例1】在图1所示网络中,设8 .1;;100===M av B B K U U MVA S , 求K 点发生三相短路时的冲击电流、短路电流的最大有效值、短路功率? 解:采用标幺值的近似计算法 ①各元件电抗的标幺值 1008.03.6100 08.05.0222 .13.03.63100 1004100435 .030 1001005.10121.0115100 4.0402 *2**2 *1=? ?==???=?==?==??=L N B R T L X I I X X X ②从短路点看进去的总电抗的标幺值: 7937.1* 2* * * 1* =+++=∑L R T L X X X X X ③短路点短路电流的标幺值,近似认为短路点的开路电压f U 为该段的平均额定电压av U 5575.01* ** * ===∑∑X X U I f f

3 ④短路点短路电流的有名值 kA I I I B f f 113.53 .63100 5575.0* =??=?= ⑤冲击电流 kA I i f M 01.13113.555.255.2=?== ⑥最大有效值电流 kA I I f M 766.7113.552.152.1=?== ⑦短路功率 MVA I I S S S B f B f f 75.551005575.0**=?=?=?= [例2] 电力系统接线如图2(a )所示,A 系统的容量不详,只知断路器B 1的切断容量为3500MV A ,C 系统的容量为100MV A ,电抗X C =0.3,各条线路单位长度电抗均为0.4Ω/km ,其他参数标于图中,试计算当f 1点发生三相短路时短路点的起始次暂态电流''1 f I 及冲击电流i M ,(功率基准值和电压基准值取av B B U U MVA S ==,100)。 50km 40km f 1(3) A 40km 40km B 1 35kV (a) f 2(3)

电力系统两相短路计算与仿真(2)

辽宁工业大学 《电力系统分析》课程设计(论文)题目:电力系统两相短路计算与仿真(2) 院(系):工程技术学院 专业班级:电气工程及其自动化 学号: 学生姓名: 指导教师:王 教师职称 起止时间:15-06-15至15-06-26

课程设计(论文)任务及评语

摘要 目前,随着科学技术的发展和电能需求的日益增长,电力系统规模越来越庞大,电力系统在人民的生活和工作中担任重要的角色,电力系统的稳定运行直接影响人们的日常生活,因此,关于电力系统的短路计算与仿真也越来越重要。 本论文首先介绍有关电力系统短路故障的基本概念及短路电流的基本算法,主要讲解了对称分量法在不对称短路计算中的应用。其次,通过具体的简单环网短路实例,对两相接地短路进行分析和计算。最后,通过MATLAB软件对两相接地短路故障进行仿真,观察仿真后的波形变化,将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。 关键词:电力系统分析;两相接地短路;MATLAB仿真

目录 第1章绪论 (1) 1.1短路的原因、类型及后果 (1) 1.1.1电路系统中的短路 (1) 1.1.1短路的后果 (1) 1.2短路计算的目的 (2) 第2章电力系统不对称短路计算原理 (3) 2.1对称分量法基本原理 (3) 2.2三相序阻抗及等值网络 (3) 2.3 两相不对称短路的计算步骤 (4) 2.4两相(b相和c相)短路 (4) 第3章电力系统两相短路计算 (7) 3.1系统等值电路的化简 (7) 3.2两相短路计算 (9) 第4章短路计算的仿真 (11) 4.1仿真模型的建立 (11) 4.2 仿真结果及分析 (11) 第5章总结 (14) 参考文献 (15)

电力系统三相短路电流计算

单片机系统 课程设计 成绩评定表 设计课题:基于89C51的电机转速计设计学院名称:电气工程学院 专业班级:电气F1302 学生姓名:赵爱钦 学号:201314020323 指导教师:臧海河 设计地点:31-504 设计时间:2015-12-21~2016-01-03

单片机系统 课程设计 课程设计名称:基于89C51的电机转速计设计专业班级:电气F1302 学生姓名:赵爱钦 学号:20131402323 指导教师:臧海河 课程设计地点:31-630 课程设计时间:2015-12-21~2016-01-03 单片机系统课程设计任务书

目录 1 概述........................................................................................................... . (4) 1.1 研究背景 (4) 1.2 基本功能概述 (5) 2 方案设计.................................................................................................. .. (5) 2.1 霍尔传感器测量方案 (5) 2.2 光电传感器测量方案............................................................................... .. (6) 3 硬件电路设计............................................................................................ . (7) 3.1 单片机及其外围电路设计................................................................. (7) 3.2 时钟电路设计...................................................................................... (11) 3.3 复位电路设计....................................................................................... .. (12) 3.4 显示电路设计..................................................................................... . (14) 3.5 键盘电路设计 (15) 3.6 电机控制与驱动电路设计 (16) 4 系统软件设计............................................................................................ . (17) 4.1 主程序设计.................................................................................. (18) 4.2 中断服务程序设计........................................................................... . (20) 4.3 子程序设计................................................................................ .. (22) 4.3.1 显示子程序设计 (22) 4.3.2 键处理子程序设计 (24) 5 总结...................................................................................................... .. (26) 附录A 系统原理图 (27) 附录B 部分源程序 (28) 一概述

电力系统三相短路的实用计算

第七章电力系统三相短路的实用计算 容要点 电力系统故障计算。可分为实用计算的“手算”和计算机算法。大型电力系统的故障计算,一般均是采用计算机算法进行计算。在现场实用中,以及大学本、专科学生的教学中,常采用实用的计算方法—‘手算’(通过“手算“的教学,可以加深学生对物理概念的理解)。 例题1: 如图7一1所示的输电系统,当k点发生三相短路,作标么值表示的等值电 路并计算三相短路电流。各元件参数已标于图中。 图7一1系统接线图 解:取基准容量Sn=100MVA,基准电压Un=Uav(即各电压级的基准电压用平均额定电压表示)。则各元件的参数计算如下,等值电路如图7一2所示

图7-2 等值电路 例题7-2: 已知某发电机短路前在额定条件下运行,额定电流 3.45 N KA I=,N COS?=

0.8、d X ''=0.125。试求突然在机端发生三相短路时的起始超瞬态电流''I 和冲击电流有名值。(取 1.8=i m p K ) 解:因为,发电机短路前是额定运行状态,取101. 10U =∠? 习题: 1、电力系统短路故障计算时,等值电路的参数是采用近似计算,做了哪些简化? 2、电力系统短路故障的分类、危害、以及短路计算的目的是什么? 3、无限大容量电源的含义是什么?由这样电源供电的系统,三相短路时,短路电流包含几种分量?有什么特点? 4、何谓起始超瞬态电流(I")?计算步骤如何?在近似计算中,又做了哪些简

化假设? 5、冲击电流指的是什么?它出现的条件和时刻如何?冲击系数imp k 的大小与什么有关? 6、在计算1"和imp i 时,什么样的情况应该将异步电动机(综合负菏)作为电源看待?如何计算? 7、什么是短路功率(短路容量)?如何计算?什么叫短路电流最大有效值?如何计算? 8、网络变换和化简主要有哪些方法?转移电抗和电流分布系数指的是什么?他们之间有何关系? 9.运算由线是在什么条件下制作的?如何制作? 10.应用运算曲线法计算短路电流周期分量的主要步骤如何? 11、供电系统如图所示,各元件参数如下:线路L, 50km, X1=0.4km Ω ;变压器T, N S =10MVA, %k u =10.5. T K = 110/11。假定供电点(s)电压为106.5kV 保持恒定不变,当空载运行时变压器低压母线发生三相短路时,试计算:短路电流周期分量起始值、冲击电流、短路电流最大有效值及短路容量的有名值。 12、某电力系统的等值电路如图所示。已知元

电力系统两相短路计算与仿

辽 宁 工 业 大 学
《电力系统计算》课程设计(论文)
题目:
电力系统两相短路计算与仿真(1)
院(系) : 电 气 工 程 学 院 专业班级: 学 号:
学生姓名: 指导教师: 教师职称: 起止时间:13-07-01 至 13-07-12

本科生课程设计(论文)
课程设计(论文)任务及评语
院(系) :电气工程学院 G1
G
教研室:电气工程及其自动化 1 L2 2 T2 k:1 L1 3 L3 G2
G
T1 1:k
原始资料:系统如图
S3
课 程 设 计 ( 论 文 ) 任 务
各元件参数如下(各序参数相同) : G1、G2:SN=30MVA,VN=10.5kV,X=0.26; T1: SN=31.5MVA , Vs%=9.5 , k=10.5/121kV, △ Ps=220kW, △ Po=33kW,Io%=0.9 ; YN/d-11 T2: SN=31.5MVA,Vs%=10.5, k=10.5/121kV,△Ps=180kW, △Po=30kW,Io%=0.8; YN/d-11 -6 L1:线路长 80km,电阻 0.17Ω /km,电抗 0.4Ω /km,对地容纳 2.78×10 S/km; -6 L2:线路长 75km,电阻 0.2Ω /km,电抗 0.42Ω /km,对地容纳 2.88×10 S/km; ; -6 L3: 线路长 80km,电阻 0.17Ω /km,电抗 0.4Ω /km,对地容纳 3.08×10 S/km; ; 负荷:S3=45MVA,功率因数均为 0.9. 任务要求(节点 3 发生 AC 相金属性短路时) : 1 计算各元件的参数; 2 画出完整的系统等值电路图; 3 忽略对地支路,计算短路点的 A、B 和 C 三相电压和电流; 4 忽略对地支路,计算其它各个节点的 A、B 和 C 三相电压和支路电流; 5 在系统正常运行方式下,对各种不同时刻 AC 两相短路进行 Matlab 仿真; 6 将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。
指 导 教 师 评 语 及 成 绩
平时考核: 总成绩:
设计质量:
答辩:
指导教师签字: 年 月 论文质量60%
1

注:成绩:平时20%
答辩20%
以百分制计算

电力系统三相短路电流的计算

银川能源学院 课程设计 课程名称:电力系统分析 设计题目:电力系统三相短路电流的计算 学院:电力学院 专业:电气工程及其自动化____________ 班级:1203班________________________ 姓名:张将________________________ 学号:1310240006__________________

目录 摘要 ............................................................................... 错误!未定义书签。课题 (2) 第一章.短路的概述 (2) 1.1发生短路的原因 (2) 1.2发生短路的类型 (2) 1.3短路计算的目的 (3) 1.4短路的后果 (3) 第二章.给定电力系统进行三相短路电流的计算 (4) 2.1收集已知电力系统的原始参数 (4) 2.2制定等值网络及参数计算 (4) 2.2.1标幺值的概念 (4) 2.2.2计算各元件的电抗标幺值 (5) 2.2.3系统的等值网络图 (5) 第三章.故障点短路电流计算...................................... 错误!未定义书签。第四章.电力系统不对称短路电流计算 (9) 4.1对称分量法 (9) 4.2各序网络的定制 (10) 4.2.1同步发电机的各序电抗 (10) 4.2.2变压器的各序电抗 (10) 4.3不对称短路的分析 (12) 4.3.1不对称短路三种情况的分析 (12) 4.3.2正序等效定则 (14) 心得体会 (15) 参考文献 (16)

电力系统三相短路的分析与计算及三相短路的分类

第一节电力系统故障概述 在电力系统的运行过程中,时常会发生故障,如短路故障、断线故障等。其中大多数是短路故障(简称短路)。 所谓短路,是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。在正常运行时,除中性点外,相与相或相与地之间是绝缘的。表7-1示出三相系统中短路的基本类型。电力系统的运行经验表明,单相短路接地占大多数。三相短路时三相回路依旧是对称的,故称为对称短路;其它几种短路均使三相回路不对称,故称为不对称短路。上述各种短路均是指在同一地点短路,实际上也可能是在不同地点同时发生短路,例如两相在不同地点短路。 产生短路的主要原因是电气设备载流部分的相间绝缘或相对地绝缘被损坏。例如架空输电线的绝缘子可能由于受到过电压(例如由雷击引起)而发生闪络或由于空气的污染使绝缘子表面在正常工作电压下放电。再如其它电气设备,发电机、变压器、电缆等的载流部分的绝缘材料在运行中损坏。鸟兽跨接在裸露的导线载流部分以及大风或导线覆冰引起架空线路杆塔倒塌所造成的短路也是屡见不鲜的。此外,运行人员在线路检修后未拆除地线就加电压等误操作也会引起短路故障。电力系统的短路故障大多数发生在架空线路部分。总之,产生短路的原因有客观的,也有主观的,只要运行人员加强责任心,严格按规章制度办事,就可以把短路故障的发生控制在一个很低的限度内。 表7-1 短路类型 短路对电力系统的正常运行和电气设备有很大的Array 危害。在发生短路时,由于电源供电回路的阻抗减小 以及突然短路时的暂态过程,使短路回路中的短路电 流值大大增加,可能超过该回路的额定电流许多倍。 短路点距发电机的电气距离愈近(即阻抗愈小),短 路电流愈大。例如在发电机机端发生短路时,流过发 电机定子回路的短路电流最大瞬时值可达发电机额定 电流的10~15倍。在大容量的系统中短路电流可达几 万甚至几十万安培。短路点的电弧有可能烧坏电气设 备。短路电流通过电气设备中的导体时,其热效应会 引起导体或其绝缘的损坏。另一方面,导体也会受到 很大的电动力的冲击,致使导体变形,甚至损坏。因 此,各种电气设备应有足够的热稳定度和动稳定度, 使电气设备在通过最大可能的短路电流时不致损坏。图7-1 正常运行和短路故障时各点的电压

电力系统两相断线计算与仿真

辽宁工业大学《电力系统分析》课程设计(论文) 题目:电力系统两相断线计算与仿真(1) 院(系):工程技术学院 专业班级: 学号: 学生姓名: 指导教师: 教师职称: 起止时间:2015-06-15至2015-06-26

课程设计(论文)任务及评语院(系):工程技术学院教研室:电气工程及其自动化

摘要 电力系统故障计算主要研究电力系统中发生故障(包括短路、断线和非正常操作)时故障电流、电压及其在电力网中的分布。 本次课程设计中,根据给出的电力系统,先计算各元件参数,然后采用对称分量法将该网络分解为正序、负序、零序三个对称序网,并且求出戴维南等效电路,再计算当L3支路发生A和C两相断线时系统中每个节点的各相电压和电流,计算每条支路各相的电压和电流,最后在系统正常运行方式下,对各种不同时刻A、C两相断线进行Matlab仿真,将断线运行计算结果与仿真结果进行分析比较。 关键词:电力系统;对称分量法;Matlab仿真

目录 第1章绪论 0 1.1 电力系统概述 0 1.2 本文研究内容 (1) 第2章潮流计算 (2) 2.1等效电路图 (2) 2.2电路的星角变换 (3) 2.3等值电路图的网络参数设定 (5) 2.4功率和节点电压计算 (5) 第3章不对称故障分析与计算 (7) 3.1对称分量法 (8) 3.1.1正序网络 (8) 3.1.2负序网络 (10) 3.1.3零序网络 (11) 3.2两相断线的计算 (12) 3.2.1B相各点电压电流 (15) 3.2.2 A相各点电压电流 (16) 3.2.3 C相各点电压电流 (16) 第4章仿真分析 (18) 4.1仿真模型建立 (18) 4.2仿真结果分析 (20) 第5章课程设计总结 (22) 参考文献 (23)

6.4 电力系统三相短路的实用计算范文

6.4 电力系统三相短路的实用计算 6.4.1 短路电流实用计算的基本假设与基本任务 电力系统短路计算可分为实用的“手算”计算和计算机算法。大型电力系统的短路计算一般均采用计算机算法进行计算。在现场实用中为简化计算,常采用一定假设条件下的“手算”近似计算方法,短路电流实用计算所作的基本假设如下: ①短路过程中发电机之间不发生摇摆,系统中所有发电机的电势同相位。采用该假设后,计算出的短路电流值偏大。 ②短路前电力系统是对称三相系统。 ③不计磁路饱和。这样,使系统各元件参数恒定,电力网络可看作线性网络,能应用叠加原理。 ④忽略高压架空输电线路的电阻和对地电容,忽略变压器的励磁支路和绕组电阻,每个元件都用纯电抗表示。采用该假设后,简化部分复数计算为代数计算。 ⑤对负荷只作近似估计。一般情况下,认为负荷电流比同一处的短路电流小得多,可以忽略不计。计算短路电流时仅需考虑接在短路点附近的大容量电动机对短路电流的影响。 ⑥短路是金属性短路,即短路点相与相或相与地间发生短接时,它们之间的阻抗是零。 在前面已介绍了在突然短路的暂态过程中,定子电流包含有同步频率周期分量、直流分量和二倍频率分量。由于实际的同步发电机具有阻尼绕组或等效阻尼绕组,减小了、轴的不对称,使二倍频率分

量的幅值很小,工程上通常可以忽略不计;定子直流分量衰减的时间常数很小,它很快按指数规律衰减到零。因此,在工程实际问题中,主要是对短路电流同步频率周期分量进行计算,只有在某些情况下,如冲击电流和短路初期全电流有效值的计算中,才考虑直流分量的影响。 短路电流同步频率周期分量的计算,包括周期分量起始值的计算和任意时刻周期分量电流的计算。周期分量起始值的计算并不困难,只需将各同步发电机用其次暂态电动势(或暂态电动势)和次暂态电抗(或暂态电抗)作为等值电势和电抗,短路点作为零电位,然后将网络作为稳态交流电路进行计算即可;而任意时刻周期分量电流要准确计算非常复杂,工程上常常采用的是运算曲线法,运算曲线是按照典型电路得到的的关系曲线,根据各等值电源与短路点的计算电抗和时刻t,即可由运算曲线查得。下面分别予以讨论。 6.4.2 起始次暂态电流的计算 起始次暂态电流就是短路电流周期分量的起始值,在作等值电路时,每个元件都用它的次暂态参数表示,构成次暂态网络,计算出的电流就是次暂态电流,用表示。计算,通常按照以下步骤进行。 1.确定系统各元件的次暂态参数 (1)发电机 在突然短路瞬间,同步发电机的次暂态电势保持着短路前瞬间的数值,用表示,电抗用次暂态电抗,并满足以下关系

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络 X c X T X L X T X d ” C V fa(1) G + + +

电力系统两相接地短路计算与仿真

辽宁工业大学《电力系统计算》课程设计(论文) 题目:电力系统两相接地短路计算与仿真(3) 院(系):电气工程学院 专业班级: 学号: 学生姓名: 指导教师: 教师职称:讲师 起止时间:12-07-02至12-07-13

课程设计(论文)任务及评语

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 目前,随着科学技术的发展和电能需求的日益增长,电力系统规模越来越庞大,电力系统在人民的生活和工作中担任重要的角色,电力系统的稳定运行直接影响人们的日常生活,因此,关于电力系统的短路计算与仿真也越来越重要。 本论文首先介绍有关电力系统短路故障的基本概念及短路电流的基本算法,主要讲解了对称分量法在不对称短路计算中的应用。其次,通过具体的简单环网短路实例,对两相接地短路进行分析和计算。最后,通过MATLAB软件对两相接地短路故障进行仿真,观察仿真后的波形变化,将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。 关键词:电力系统分析;两相接地短路;MATLAB仿真

目录 第1章绪论 (1) 1.1电力系统短路计算概述 (1) 1.1.1 电力系统短路计算的目的 (1) 1.1.2 短路计算的处理方法 (1) 1.2本文设计内容 (2) 第2章电力系统不对称短路计算原理 (3) 2.1对称分量法基本原理 (3) 2.2三相序阻抗及等值网络 (4) 2.3两相接地不对称短路的计算步骤 (5) 第3章电力系统两相短路计算 (8) 3.1系统等值电路及元件参数计算 (8) 3.2系统等值电路及其化简 (9) 3.3两相接地短路计算 (10) 3.4计算其它各个节点的A、B和C三相电压和电流 (14) 3.5计算各条支路的电压和电流 (14) 第4章短路计算的仿真 (16) 4.1仿真模型的建立 (16) 4.2仿真结果比较分析 (18) 第5章总结 (20) 参考文献 (21)

电力系统两相接地短路是计算与仿真

辽宁工业大学 《电力系统计算》课程设计(论文)题目:电力系统两相接地短路计算与仿真(1) 院(系):电气工程学院 专业班级:电气085 学号: 080303 学生姓名: 指导教师: 教师职称: 起止时间:

课程设计(论文)任务及评语

《电力系统计算》课程设计(论文) (1) 第一章绪论 0 1.1电力系统概况 0 1.2 本文研究内容 0 第二章短路计算的意义 0 1.1 短路计算的原因 0 1.2 短路发生的原因 (1) 1.3 短路的类型 (1) 1.4 短路的危害 (1) 1.5 进行短路计算的意义 (1) 第三章数学模型 (2) 3.1 架空输电线的等值电路和参数 (2) 3.1 发电机等值电路 (3) 第四章变压器的零序等值电路及其参数 (4) 4.1 普通变压器的零序等值电路及其参数 (4) 4.2 变压器零序等值电路与外电路的连接 (5) 4.3 中性点有接地阻抗时变压器的零序等值电路 (6) 第五章两相短路接地的计算 (7) 5.1 短路点的计算 (7) 5.2 其他节点电压电流的计算 (11) 第六章计算机网络仿真 (12) 6.1 Matlab简介 (12) 6.2 系统总体设计 (12) 6.3 结果分析 (14) 第七章课程设计总结 (14) 参考文献 (15)

在电力系统的设计和运行中,必须考虑到可能发生的故障和不正常的运行情况,防止其破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。这里着重介绍简单不对称故障两相短路接地的常用计算方法。对称分量法是分析不对称故障常用方法,根据对称分量法,一组不对称的三相量可以分解为正序、负序和零序三相对称的三相量。在应用对称分量法分析计算不对称故障时必须首先作出电力系统的各序网络,通过网络化简求出各序网络对短路点的输入电抗以及正序网络的等值电势,再根据不对称短路的不同类型,列出边界方程,以求得短路点电压和电流的各序分量。 。 关键词:正序分量法;两相接地短路; Matlab软件仿真

电力系统三相短路计算复习课程.doc

电力系统三相短路计 算

辽宁工程技术大学 电力系统分析综合训练三 设计题目电力系统三相短路计算 指导教师刘健辰 院(系、部)电气与控制工程学院 专业班级电网 13-1 学号1305080116 姓名苏小平 日期2016/05/31

智能电网系综合训练标准评分模板 综合设计成绩评定表 学期 2015/2016 第 2 学期 姓名 专业 班级 课程名称 电力系统分析 设计题目 电力系统三相短路计算 成绩 合格 评定 不合格 评定 评分项目 设 1. 独立工作能力 独立完成设计 不能独立完成设计 计 表 2. 上交设计时间 按时 迟交 现 设计思路清晰,结 构方案良好,设计 3. 设计内容 参数选择正确,条 设 理清楚,内容完 计 整,结果正确 说 明 4. 设计书写、字 规范、整洁、有条 书 体、排版 理,排版很好 设计思路不清晰, 结构方案不合理, 关键设计参数选择 有错误,调理清 楚,内容不完整, 有明显错误 不规范、不整洁、 无条理,排版有问 题很大 5. 封面、目录、 完整 不完整 参考文献 6. 绘图效果 满足要求 很差 图 布局 合理 布局混乱 7. 纸 绘图工程标准 符合标准 不符合标准 8. 答 回答问题 回答基本正确或正 回答不正确 9. 确 辩 总评定 评定说明: ( 1)不合格标准 1)设计说明书不合格否决制,即 3、 4 两项达不到要求,不予合格; 2)9 项评分标准中,有 6 项达不到要求,不予合格。 ( 2)合格标准 除设计说明书的 3、4、5 项必须满足要求外,其余 6 项,至少有 4 项满足要求,给予合格。 ( 3)请在评定栏里打“ √”评定,若全部满足要求,不必分项评定,只需在总评定中打“ √”即可,最后给出最终成绩,并签字。 最终成绩: 评定教师签字:

两相接地短路电流的计算

目录 1.前言 (1) 1.1短路电流的危害 (1) 1.2短路电流的限制措施 (1) 1.3短路计算的作用 (2) 2.数学模型 (3) 2.1对称分量法在不对称短路计算中的应用 (3) 2.2电力系统各序网络的制订 (9) 2.3两相接地短路的数学分析 (10) 2.4变压器的零序等值电路及其参数 (10) 3两相接地短路运行算例 (14) 4.结果分析 (18) 5.心得体会 (19) 6.参考文献 (20)

1.前言 电能作为我们日常生活中运用最多的一种能源,不仅有无气体无噪音污染,便于大范围的传送和方便变换,易于控制,损耗小,效率高等特点。 电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。 1.1短路电流的危害 短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。短路也同时引起系统电压大幅度降低,特别是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。网络电压的降低,使供电设备的正常工作受到损坏,也可能导致工厂的产品报废或设备损坏,如电动机过热受损等。电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。 1.2短路电流的限制措施 为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。为此,可采用快速动作的继电保护和断路器,以及发电机装设自动调节励磁装置等。此外,还应考虑采用限制短路电流的措施,如合理选择电气主接线的形式或运行方式,以增大系统阻抗,减少短路电流值;加装限电流电抗器;采用分裂低压绕阻变压器等。主要措施如下: 一是做好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。 二是正确选择继电保护的整定值和熔体的额定电流,采用速断保护装置,以便发生短路时,能快速切断短路电流,减少短路电流持续时间,减少短路所造成的损失。

相关主题
文本预览
相关文档 最新文档