当前位置:文档之家› Structural, magnetic and transport properties in the Pr-doped manganites La0.9-xPrxTe0.1MnO

Structural, magnetic and transport properties in the Pr-doped manganites La0.9-xPrxTe0.1MnO

Structural, magnetic and transport properties in the Pr-doped manganites La0.9-xPrxTe0.1MnO
Structural, magnetic and transport properties in the Pr-doped manganites La0.9-xPrxTe0.1MnO

Structural, magnetic and transport properties in the Pr-doped

manganites La0.9-x Pr x Te0.1MnO3 (9.0

≤x)

0≤

J.Yang 1, W. H. Song1, Y. Q. Ma1, R. L. Zhang1, B. C. Zhao1, Z.G. Sheng1, G. H.

Zheng1, J. M. Dai1, and Y. P. Sun*1 2

1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese

Academy of Sciences, Hefei, 230031, P. R. China

2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing

210008, P. R. China

Abstract

The effect of Pr-doping on structural, magnetic and transport properties in

≤x with fixed carrier electron-doped manganites La0.9-x Pr x Te0.1MnO3()9.0

0≤

concentration are investigated. The room temperature structural transition from rhombohedral (R3) to orthorhombic (Pbnm) symmetry is found in the samples with x by the Rietveld refinement of x-ray powder diffraction patterns. The Curie ≥

.0

36

T of samples decreases and the transition becomes broader with temperature

C

x, there exist insulator-metal

increasing Pr-doping level. For the samples with 36

.0

(I-M) transition. And the low-temperature I-M transition is observed at about 66K for the sample with x = 0.36, which may be related to the opening of a new percolation

x, ρ(T) curves display the semiconducting

channel. For the samples with 54

.0

dT

dρ) in both high-temperature PM phase and low-temperature FM behavior (0

<

phase. The results are discussed in terms of the increased bending of the Mn-O-Mn bond with decreasing the average ionic radius of the A-site element <

r> and the

A tolerance factor t, resulting in the narrowing of the bandwidth, the decrease of the mobility of

e electrons and the weakening o

f DE interaction caused by the

g

substitution of smaller Pr3+ ions for larger La3+ ion.

PACS numbers: 75.30.Kz 75.47.Lx 71.30.+h

*) Auther to whom correspondence should be addressed: e-mail: ypsun@https://www.doczj.com/doc/4a3220468.html,

I. Introduction

Mixed-valent manganites perovskites have attracted considerable attention in

recent years because of the observation of colossal magnetoresistance (CMR) and

more generally due to the unusually strong coupling between their lattice, spin, and

charge degrees of freedom. Although the focus of interest has primarily rested with

the hole-doped manganites Ln 1-x A x MnO 3 (Ln = La-Tb, and A = Ca, Sr, Ba, Pb, etc.)

due to their potential applications such as magnetic reading heads, field sensors and

memories, 1-3 naturally many researches have placed emphasis on electron-doped

compounds such as La 1-x Ce x MnO 3,4-7 La 1-x Zr x MnO 3,8 La 2.3-x Y x Ca 0.7Mn 2O 7,9 and

La 1-x Te x MnO 310-12 because having both electron as well as hole doped ferromagnetic

(FM) manganites may open up very interesting applications in the emerging field of

spintronics. These investigations also suggest that the CMR behavior probably occur

in the mixed-valent state of Mn 2+/Mn 3+. The basic physics in terms of Hund 's rule

coupling between g e electrons and g t 2core electrons and Jahn-Teller (JT) effect due

to Mn 3+ JT ions can operate in the electron-doped manganites as well.

It is well known that for hole-doped manganites, the following two factors have

been shown to mainly affect the DE interaction, i.e., the hole carriers density

controlled by the Mn 3+/Mn 4+ ratio and the average ionic radius of the A-site element

.13-19 From the point of view of being favorable to stabilize the low-temperature

FM metallic phase one would expect an optimum Mn 3+/Mn 4+ ratio to be 2:1. On the

other hand, the optimum Mn 3+/Mn 4+ ratio is favorable to form an ideal cubic

perovskite. Any deviation from the ideal cubic perovskite would lead to a reduction in the Mn-O-Mn bond angle from 180, which directly weakens the DE. Beside the

Mn 3+/Mn 4+ ratio, the average ionic radius of the A-site element has also been

shown to influence the DE. The principal effect of decreasing is to reduce the

Mn-O-Mn bond angle, thereby reducing the matrix element b that described electron

hopping between Mn sites, which is confirmed by Hwang et al.14 and Fonteuberta et

al.15 A salient question to ask is: what is the case in electron-doped manganites? With

this notion in mind, we have examined a series of samples in which the average ionic

radius of the A-site element is systematically varied while keeping the

Mn 2+/Mn 3+ ratio fixed at 1/9. We find that the average ionic radius of the A-site

elemen has strongly affected the structural, magnetic and transport properties in

electron-doped manganites samples La 0.9-x Pr x Te 0.1MnO 3()9.00≤≤x .

II. Experiment

A series of ceramic samples of La 0.9-x Pr x Te 0.1MnO 3()9.00≤≤x were synthesized

by a conventional solid-state reaction method in air. The powders mixed in

stoichiometric compositions of high-purity La 2O 3, Pr 6O 11, TeO 2 and MnO 2 were

ground, then fired in air at 700°C for 24h. The powders obtained were ground,

pelletized, and sintered at 1050°C for 24h with three intermediate grindings, and

finally, the furnace was cooled down to room temperature. The structure and lattice

constant were determined by powder x-ray diffraction (XRD) using αCuK radiation

at room temperature. The resistance as a function of temperature was measured by the

standard four-probe method from 25 to 300K. The magnetic measurements were

performed on a Quantum Design superconducting quantum interference device

(SQUID) MPMS system (2 ≤ T ≤400 K, 0 ≤ H ≤5 T).

III. R esults and discussion

X-ray powder diffraction (XRD) at room temperature shows that all samples are

single phase with no detectable secondary phases. XRD patterns of the samples with x

= 0 and x = 0.18 can be indexed by rhombohedral lattice with space group C R ?

3.

While XRD patterns of the samples with x = 0.36, 0.54, 0.72 and 0.9 can be indexed

by orthorhombic lattice with space group Pbnm . The structural parameters are

refined by the standard Rietveld technique 20 and the fitting between the experimental

spectra and the calculated values is relatively good based on the consideration of

lower R P values as shown in Table I. Figs. 1(a) and 1(b) show experimental and

calculated XRD patterns for the samples with x = 0 and 0.36, respectively. The

structural parameters obtained are listed in Table I. As we can see, for samples

La 0.9-x Pr x Te 0.1MnO 3()9.00≤≤x , the crystal structure at room temperature changes from rhombohedral phase (C R 3, Z = 2, 18.0≤x ) to orthorhombic phase (Pbnm , Z

= 4, 36.0≥x ). The lattice distortion and the bend of Mn-O-Mn bond increase when

the crystal structure varies from rhombohedral lattice to orthorhombic lattice. It is

well known that one of the possible origins of the lattice distortion of perovskites

structures is the deformation of the MnO 6 octahedra originating from JT effect that is

directly related to the concentration Mn 3+ ions. But for the present study samples, the

concentration of Mn 3+ ions is fixed. And thus the observed lattice distortion should be

only caused by the average ionic radius of the A-site element , which is

governed by the tolerance factor t [()O B O A r r r r t ++=2)(], where i r i (=A, B, or

O) represents the average ionic size of each element. As t is close to 1, the cubic

perovskite structure is expected to form. As decreases, so does t , the lattice structure transforms to rhombohedral (R 3), and then to orthorhombic (Pbnm )

structure, in which the bending of the B-O-B bond increases and the bond angle

deviates from 180°. For La 0.9-x Pr x Te 0.1MnO 3 samples, the structural transition at room

temperature mainly originates form the variation of the tolerance factor t induced by

the substitution of smaller Pr 3+ for larger La 3+ ions.

Fig.2 shows the temperature dependence of magnetization M of

La 0.9-x Pr x Te 0.1MnO 3()9.00≤≤x under both zero-field cooling (ZFC) and field

cooling (FC) modes at H = 0.1 T. The Curie temperature C T (defined as the one corresponding to the peak of dT dM in the M vs. T curve) are 239 K, 207 K, 159 K,

120K, 93K and 75K for x = 0, 0.18, 0.36, 0.54, 0.72 and 0.9, respectively, which are

listed in Table II. Obviously, the Curie temperature C T decreases monotonically with

increasing Pr-doping level. We suggest that the C T reduction should be attributed to

the reduction of Mn-O-Mn bond angle with decreasing the average ionic radius of the

r>, and thereby reducing the matrix element b which described A-site element <

A

electron hopping between Mn sites. Thus the DE interaction between Mn2+-O-Mn3+ becomes weakening because of the narrowing of the bandwidth and the decrease of

e electrons due to the increase o

f Mn-O bond length and the decrease the mobility of

g

of Mn-O-Mn bond angle caused by the substitution of smaller Pr3+ ions for larger La3+ ions.

In addition, from Fig.2, a sharp FM to paramagnetic (PM) transition is observed

x, the temperature range of FM-PM

.0

.0

x. However, as54

for the samples with36

phase transition become broader with increasing Pr-doping level implying a wider distribution of the magnetic exchange interactions in the Mn-O-Mn network, i.e., the increase of magnetic inhomogeneity. Moreover, It is clear that the ZFC curve does not coincide with the FC curve below a freezing temperature

T for the samples

f

x. With the increase of Pr-doping content, the difference between M-T ≥

with36

.0

curves under FC and ZFC modes becomes greater because of the increase of the magnetic frustration arising from the bending Mn-O-Mn bond, which is in accordance with the structural refinement results. This discrepancy between ZFC and FC magnetization is a characteristic of cluster glass.

The magnetization as a function of the applied magnetic field at 5K is shown in

x, the magnetization reaches Fig.3. It shows that, for the samples with 18

.0

saturation at about 1T and keeps constant up to 5T, which is considered as a result of the rotation of the magnetic domain under the action of applied magnetic field. For the sample with x = 0.36, the magnetization slowly reaches saturation at about 4T, implying the appearance of a small amount of AFM phase at low temperatures.

x, Fig.3 exhibits that the rapid increase of

.0

However, for the samples with 54

magnetization M (H) at low magnetic fields resembles of ferromagnet with a long-range FM ordering corresponding to the rotation of magnetic domains, whereas the magnetization M increases continuously without saturation at higher fields, revealing a superposition of both FM and AFM components. The coexistence of and competition between ferromagnetic and antiferromagnetic interaction would favor the

formation of a cluster glass state, as observed in La 0.9-x Pr x Te 0.1MnO 3)36.0(≥x

samples. In fact, based on the temperature and magnetic field dependence of

magnetization for these samples, the microscopic magnetic structure can be

understood by presence of small sized FM clusters in the samples, as can be clearly

observed from the broad magnetic transition range for the sample with x=0.9.

Moreover, in order to determine the change in volume of the FM phase in respect to

Pr doping level, a liner extrapolation of M (H) to H = 0 for the samples with 54.0≥x

is plotted in dashed line in Fig.3. At 5K, the FM phase of the samples with x = 0.72

and 0.9 decreases by about 23% and 48%, respectively, in volume compared with that

of the sample with x = 0.54. So it can be concluded that Pr-doping induces an

increasing AFM superexchange interaction.

Fig.4 shows the temperature dependence of the inverse magnetic

susceptibility m χ for all samples. For ferromagnet, it is well known that in the PM

region, the relation between m χ and the temperature T should follow the Curie-Weiss law, i.e., )(Θ?=T C m χ, where C is the Curie constant, and Θis the

Weiss temperature. The lines in Fig.4 are the calculated curves deduced from the

Curie-Weiss equation. It can be seen from Fig.4 that the experimental curve in the

whole PM temperature range is well described by the Curie-Weiss law. The Weiss

temperature Θ is obtained to be 241K, 210K, 171K, 130K, 121K and 93K for the

samples with x=0, 0.18, 0.36, 0.54, 0.72 and 0.90, respectively. For the samples with

x = 0 and 0.18, Θvalues almost approach their corresponding C T values. However,

for the samples with x = 0.36, 0.54, 0.72 and 0.9, Θvalues are higher than

corresponding C T values which may be related to the magnetic inhomgeneity. The

Curie constant C deduced from the fitting data is 6.05, 6.22, 6.45, 5.23, 5.21 and

4.40K·cm 3/mol for the samples with x = 0, 0.18, 0.36, 0.54, 0.72 and 0.90,

respectively. And thus the effective magnetic moment eff μ can be obtained as 4.923,

4.988,

5.082, 4.605, 4.566 and 4.198B μ for the samples with x = 0, 0.18, 0.36, 0.54,

0.72 and 0.90, respectively. According to a mean field approximation,21 the expected

effective magnetic moment eff μ can also be calculated as 5B μ for the sample with x

= 0, which is in accordance with x = 0.18 and 0.36 samples relatively well. The

effective magnetic moment as a function of the Pr-doping level is shown in the inset

of Fig.4. It indicates that the experimental eff μ value increases with increasing

Pr-doping content and there exists a maximum value for the sample with x = 0.36, and

then the eff μ value begins to decrease with further increasing Pr-doping level, which

is mainly related to the occurrence of the structural transition. It is worth noting that

the maximum eff μ value appears in the sample with x = 0.36, just corresponding

with the sample that occurs structural phase transition. In addition, for the sample with

x = 0.36, the experimental eff μ value is slightly higher than the expected eff μ value.

This phenomenon is also observed in La 1-δMnO 3, which is considered as the signature

of clusters of Mn 4+ and Mn 3+. 21 Here, we ascribe it to larger magnetic moment of Pr

ions. In addition, the fluctuating valence of Pr 3+/Pr 4+ is also a possible reason.

Fig.5 (a) shows the temperature dependence of resistivity ρ(T) for the samples

with x = 0, 0.18 and 0.36 at zero fields in the temperature range of 30-300K. For

sample with x = 0, it shows that there exists an insulator-metal (I-M) transition at

1P T (= 246 K) which is close to its Curie temperature C T (= 239K). In addition, there

exists a bump shoulder at 2P T (= 223 K) below 1P T , which is similar to the double

peak behavior observed usually in alkaline-earth-metal-doped and alkali-metal-doped

samples of LaMnO 3.22-26 More interesting phenomenon is that double I-M transitions

show significant variation with changing the Pr-doping level. Double peaks (1P T = 210

and 2P T = 186 K) shift to low temperatures for x = 0.18 sample. Compared with the x

= 0 sample, I-M transition at 1P T becomes weak and I-M transition at 2P T becomes

more obvious. It shows that the Pr-doping at La-site can substantially enhance the I-M

transition at 2P T . When Pr-doping level is increased to x = 0.36, I-M transition at

1P T (=153K) is almost invisible and displays an inflexion behavior, as can be seen

from the Ln(ρ) vs. T curve. And I-M transition at 2P T (=105K) becomes more obvious.

In other words, the I-M transition at 1P T has been almost suppressed. Moreover,

there exists a low-temperature I-M transition at T *(= 66K) for the sample with x =

0.36, implying the presence of magnetic inhomogeniety due to the Pr-doping at

La-site. Its real origin will be further explained below. The experimental data

measured at applied field of 0.5 T for samples with x = 0, 0.18 and 0.36 in the

temperature range of 30-300K are also recorded. It can be seen from Fig.5, for the

samples with x = 0 and 0.18, the applied field suppressed the resistivity peak at 1P T

significantly and the resistivity peak shifts towards higher temperatures. Especially for

the sample with 0.36, the resistivity peak at 1P T seems to be suppressed completely

under the applied field. However, for the second I-M transition at 2P T , it is worth

noting that for the sample with x = 0 and 0.18, the applied field change the position of

the resistivity peak at 2P T slightly, whereas for the sample with x = 0.36 the position

of the resistivity peak at 2P T moves to higher temperature greatly under the applied

magnetic field. The difference in the response of the resistivity peak at 2P T for the

applied field in samples between x = 0 and x = 0.18, 0.36 indicate that they may have

different origins. As it can also be seen from Fig.6, for sample with x = 0 and 0.18,

there exist corresponding peaks in the vicinity of 1P T and a small hump at 2P T on

the magnetoresistance (MR) curves, which is similar to the MR behavior observed in

polycrystalline La 1-x Sr x MnO 3 samples.27 Whereas for samples with 0.36, there exist

one corresponding peak in the vicinity of 1P T in the MR curve and the corresponding

peak or hump at 2P T is not observed although the applied field changes the position

of the resistivity peak at 2P T greatly. Moreover, for sample with x = 0.36, the MR

curve also displays a low-temperature peak at about 65K corresponding to the

temperature T *. Here the MR is defined as ()000ρρρρρH ?=?, where 0ρ is the

resistivity at zero field and H ρ is the resistivity at H = 0.5T. Additionally, the

samples with x = 0, 0.18 and 0.36 all have evident MR at low temperatures, similar to

the MR behavior observed usually in polycrystalline samples of hole-doped

manganites, which is considered to be related to spin-dependent scattering at grain

boundaries.24, 28 So we consider the reason that the corresponding peak or hump at

2P T for the sample with x = 0.36 does not appear arises mainly from the MR value

near the temperature 2P T being small compared with the large low-temperature MR.

And thus the corresponding peak or hump at 2P T for the sample with x = 0.36 is

probably suppressed completely by the gradually ascending low-temperature MR.

As to the origin of the low-temperature I-M transition at about 66K for sample

with x = 0.36, we consider it is mainly related to the opening of a new percolative

channel. From Fig.5 (a), one can see that the ρ(T) curve under zero fields exhibits an

upturn from 70K with further cooling, which is indeed the result of the competition

between the AFM interaction and the ferromagnetic DE interaction in the sample.

With further cooling, the amounts of small sized FM clusters increase and finally

come into being a filament percolative channel. And thus the I-M transition at about

66K can be observed. Moreover, the applied field of 0.5T makes the temperature of

percolation transition shift towards higher temperatures, as evidenced by presence of

the corresponding MR peak at the temperature T * in the MR curve of the x=0.36

sample.

For the samples with x = 0.54, 0.72 and 0.9, ρ(T) curves display the semiconducting behavior (0

low-temperature FM phase and the resistivity maximum increases by six orders of

magnitude compared with that of no-Pr-doping sample implying the enhancement of

the localization of carriers. This FM insulating (FMI) behavior is also found in

La 1-x Sr x MnO 3 29, 30 and La 1-x Li x MnO 3 25 compounds with orthorhombic structure. FMI

behavior cannot be explained based only on the DE model since the model requires

the coexistence of the FM and metallic nature simultaneously. The FM order at low

temperatures for the samples with x = 0.54, 0.72 and 0.9 can be understood by

presence of small sized FM clusters. On the one hand, based on the coexistence of FM

clusters and AFM insulating regions in low temperatures, the resistivity of the

samples may be contributed to mainly from these insulating regions at low

temperatures since the metallic clusters cannot develop into a whole network. On the

other hand, the La 0.9-x Pr x Te 0.1MnO 3 is a system with severe electrical and magnetic

disorder due to the substitution of smaller Pr 3+ for larger La 3+ ions. The disorder may

lead to electron localization and give rise to the high resistivity at low temperatures.

Furthermore, the localization of g e electrons due to the structural transition from rhombohedral (R 3) to orthorhombic (Pbnm ) is also a reason. It is well known that

the orthorhombic structure with space group Pbnm allows three independent Mn-O

bonds as shown in Table I, therefore, it can accommodate a static coherent JT

distortion of the MnO 6 octahedra, which provides an additional charge carrier

localization.31 Moreover, the change of the Mn-O-Mn bond angle has a substantial

effect on the electronic transport due to the change of the bandwidth of g e electron.

Usually the bandwidth of g e electron becomes narrow with the decrease of the θ

value, which results in a charge-transfer insulator. So it can be concluded that FMI

behavior in the orthorhombic samples with x = 0.54, 0.72 and 0.9 may arise mainly

from the combined effects of the presence of FM clusters in low temperatures and the

localization of g e electron caused by the disorder due to the Pr-doping at La-site and

the structural transition.

The resistivity above 1P T (corresponding to C T ) for the samples with x = 0, 0.18

and 0.36 fitted by variable range hopping model (VRH) 32 ()]exp ~[4

10T T ρ is shown in Fig.7 (a). The results show that ρ(T) curves can be well described by VRH

model. Whereas for the samples with x = 0.54, 0.72 and 0.9, the results show that ρ(T)

curves can be well fitted according to VRH model in the whole measurement

temperature with two different fitting parameters of 10)(T and 20)(T in the different

temperature range divided by the temperature denoted in the plot as shown in Fig.7 (b). The fitting parameter 0T , which is a characteristic temperature related to the

localization length ξ and the density of states )(F E N in the vicinity of Fermi energy level, i.e.,)](2130F B E N T k ξ≈, is shown in Table II. From the Table II, it is

found that the 0T value increases obviously with the increase of Pr content, implying

the decrease of the localization length and the reduction of the carrier mobility, which

is intimately related to the localization of carriers and the destruction of DE

interaction arising from Pr-doping at La-site, which is in accordance with the

magnetic and electronic transport properties for the study samples.

Based on the above results, it can be concluded that the tolerance factor t is the

principal factor that strongly influence the structural, magnetic and transport

properties in electron-doped manganites samples La 0.9-x Pr x Te 0.1MnO 3()9.00≤≤x

because the carrier concentration is fixed. Standard ionic radii 33 for different element

are used to calculate t and . The temperature phase diagram as a function of

the tolerance factor t and the average ionic radius of the A-site element is

plotted in Fig.8. As we can see, with the decrease of t and , the Curie

temperature C T of the study samples decreases as well as. It is worth noting that C T

shows a linear dependence upon the tolerance factor t . Similar relation between the

average ionic radius of the A-site element and C T is also observed. As

decreases, so does t , the lattice structure transforms to rhombohedral (C R 3), and

then to orthorhombic (Pbnm ) structure. At the same time, the phase transition also

occurs from PM-FMM to PM-FMI. All these are ascribed to the increase of the

bending of the Mn-O-Mn bond with decreasing the average ionic radius of the A-site

element and the reduction of the tolerance factor t because of the substitution

of smaller Pr 3+ ions for larger La 3+ ion.

IV. Conclusion

The effect of Pr-doping on structural, magnetic and transport properties in

electron-doped manganites La 0.9-x Pr x Te 0.1MnO 3()9.00≤≤x with fixed carrier

concentration has been studied systematically. The room temperature structure transition from rhombohedral (C R 3) to orthorhombic (Pbnm ) symmetry is observed

for the sample with 36.0≥x . All samples undergo PM-FM phase transition and the

Curie temperature C T of samples decreases with increasing the Pr-doping level. The

high temperature peak in double-peak-like ρ(T) curves observed in no Pr-doping

sample is almost suppressed as Pr-doping level x = 0.36. At the same time, there

appear a new peak in the ρ(T) curve of the sample x = 0.36 at 66 K, which may be

originated from the opening of a new percolation channel. For the samples with

54.0≥x , ρ(T) curves display the semiconducting behavior (0

high-temperature PM phase and low-temperature FM phase, which is considered to be

related to the combined effects of the presence of FM clusters in low temperatures and

the localization of g e electron caused by the disorder due to the Pr-doping at La-site

and the structural transition.

ACKNOWLEDGMENTS

This work was supported by the National Key Research under contract

No.001CB610604, and the National Nature Science Foundation of China under

contract No.10174085, Anhui Province NSF Grant No.03046201 and the

Fundamental Bureau, Chinese Academy of Sciences.

References

1 R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993); A. P. Ramirez, J. Phys.:Condens. Matter 9, 8171 (1997); J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999); M. B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

2 K. Chahara, T. Ohno, M. Kasai, and Y. Kosono, Appl. Phys. Lett. 63, 1990 (1993).

3 S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen Science 264, 413 (1994).

4 P. Mandal and S. Das, Phys. Rev. B 56, 15073 (1997).

5 J. R. Gevhardt, S. Roy, and N. Ali, J. Appl. Phys. 85, 5390 (1999).

6 P. Raychaudhuri, S. Mukherjee, A. K. Nigam, J. John, U. D. Vaisnav, R. Pinto, and P. Mandal, J. Appl. Phys. 86, 5718 (1999).

7 J-S Kang, Y J Kim, B W Lee, C G Olson, and B I MIN, J. Phys.: Condens. Matter 13, 3779 (2001).

8 Sujoy Roy and Naushad Ali, J. Appl. Phys. 89, 7425 (2001).

9 P. Raychaudhuri, C. Mitra, A. Paramekanti, R. Pinto, A. K. Nigam, and S. K. Dhar J. Phys.: Condens. Matter 10, L191(1998).

10 G. T. Tan, S. Y. Dai, P. Duan, Y. L. Zhou, H. B. Lu, and Z. H. Chen, J. Appl. Phys. 93, 5480 (2003).

11 G. T. Tan, P. Duan, S. Y. Dai, Y. L. Zhou, H. B. Lu, and Z. H. Chen, J. Appl. Phys. 93, 9920 (2003).

12 G. T. Tan, S. Dai, P. Duan, Y. L. Zhou, H. B. Lu, and Z. H. Chen, Phys. Rev. B 68, 014426 (2003).

13 Lide M. Rodriguez-Martinez, and J. Paul Attfield, Phys. Rev. B 54, R15622 (1996).

14 H. Y. Hwang. S-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).

15 J. Fonteuberta, B. Martinez, A. Seffar, S. Pinol, J. L. Garcia-Munoz, and X. Obradors, Phys. Rev. Lett. 76, 1122 (1996).

16 A. Barnave, A. Maignan, M. Hervieu, F. Damay, C. Martin, and B. Raveau, Appl.

Phys. Lett. 71, 3907 (1997).

17 L. Sheng, D. N. Sheng, and C. S. Ting, Phys. Rev. B 59, 13550 (1999).

18 Lide M. Rodriguez-Martinez, and J. Paul Attfield, Phys. Rev. B 58, 2426 (1998).

19 P. V. Vanitha, P. N. Santhosh, R. S. Singh, C. N. Rao, and J. P. Attfield, Phys. Rev. B 59, 13539 (1999).

20 D. B. Wiles and R. A. Young, J. Appl. Crystallogr. 14, 149 (1981).

21 S. de Brion, F. Ciorcas, G. Chouteau, P. Lejay, P. Radaelli, and C. Chaillout, Phys. Rev. B 59, 1304 (1999).

22 M. Itoh, T. Shimura, J. D. Yu, T. Hayashi, and Y. Inaguma, Phys. Rev. B 52, 12522 (1995).

23 X. L. Wang, S. J. Kennedy, H. K. Liu, and S. X. Dou, J. Appl. Phys. 83, 7177 (1998).

24 N. Zhang, W. P. Ding, W. Zhong, D. Y. Xing, and Y. W. Du, Phys. Rev. B 56, 8138 (1997).

25 S. L. Ye, W. H. Song, J. M. Dai, S. G. Wang, K. Y. Wang, C. L. Yuan and Y. P. Sun, J. Appl. Phys. 88, 5915 (2000).

26 S. L. Ye, W. H. Song, J. M. Dai, K. Y. Wang, S. G. Wang, J. J. Du, Y. P. Sun, J. Fang, J. L. Chen and B. J. Gao, J. Appl. Phys. 90, 2943 (2000).

27 H. W. Hwang, S-W. Cheng, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).

28 Hongsuk Yi and Jaejun Yu, Phys. Rev. B 58, 11123 (1998).

29 A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).

30 J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J. D. Jorgensen, and S. D. Bader, Phys. Rev. B 54, 6172 (1996).

31 P. G. Radaelli, M. Marezio, H. Y. Hwang, S.-W. Cheong, and B. Batlogg, Phys. Rev.

B 54, 8992 (1996).

32 G. J. Snyder, R. Hiskes, S. Dicarolis, M. R. Beasley, and T. H. Geballe, Phys. Rev.

B 53, 14103 (1998).

33 R. D. Shannon, Acta Crystallogr. Sec. A 32, 751 (1976).

Tables

TABLE I. Refined structural parameters of La0.9-x Pr x Te0.1MnO3()9.0

0≤

≤x at room temperature. O(1):apical oxygen; O(2): basal plane oxygen.

Parameter x

=0 x

=

0.18 x

=

0.36 x

=

0.54 x

=

0.72 x

=

0.9

a

(?) 5.5241 5.5326 5.5156 5.5179 5.5180 5.5178 b

(?) 5.5241 5.5326 5.4865 5.4937 5.4935 5.4939

c (?) 13.3572 13.3694 7.7811 7.7838 7.7839 7.7851

v (?3) 353.0103 354.4132 235.4668 235.9511 235.9534 235.9612 Mn-O(1)

(?) … … 1.9718 1.9722 1.9990 1.9998 Mn-O(2) (?) … … 1.9906 2.0701 2.1157 2.1167

Mn-O(2)

(?) … … 1.9447 1.9219 1.8956 1.8941 (Mn-O)

(?) 1.9644 1.9718 1.9724 1.9880 2.0034 2.0035 Mn-O(1)-Mn

(o) … … 161.18 157.23 156.42 156.27 Mn-O(2)-Mn

(o) … … 162.55 161.62 161.59 161.43

(o) 163.83 162.63 162.09 160.16 159.87 159.71 R p(%) 8.21 8.43 9.42 9.33 9.51 9.89

TABLE II. C T , P T and the fitting parameter of La 0.9-x Pr x Te 0.1MnO 3()9.00≤≤x

samples.

Parameter x =0 x =0.18 x =0.36 x =0.54 x =0.72 x =0.9

C T (K)

239 207 159 120 93 75 1P T (K)

246 210 153 … … … 2P T (K)

223 186 105 … … … 10)(T

2.36×107 8.65×107 9.38×107 1.97×108 2.08×108

3.09×108 20)(T

… … … 2.04×108 6.39×108 1.17×109

Figure captions

Fig.1. XRD patterns of the compound La0.9-x Pr x Te0.1MnO3, (a) x = 0 and (b) x = 0.36.

Crosses indicate the experimental data and the calculated data is the continuous line overlapping them. The lowest curve shows the difference between experimental and calculated patterns. The vertical bars indicate the expected reflection positions.

Fig.2. Magnetization as a function of temperature for La0.9-x Pr x Te0.1MnO3 (x = 0, 0.18,

0.36, 0.54, 0.72 and 0.9) measured at H = 0.1T under the field-cooled (FC) and

zero-field-cooled (ZFC) modes that are denoted as the filled and open symbols, respectively.

Fig.3. Field dependence of the magnetization in La0.9-x Pr x Te0.1MnO3 (x = 0, 0.18, 0.36,

0.54, 0.72 and 0.9) at 5 K. The dashed lines represent the extrapolation lines

and M0 denotes a linear extrapolation M (H) to H = 0.

Fig.4. The temperature dependence of the inverse of the magnetic susceptibility for La0.9-x Pr x Te0.1MnO3 (x = 0, 0.18, 0.36, 0.54, 0.72 and 0.9) samples. The lines

are the calculated curves according to the Curie-Weiss law. The inset is the

variation of the effective magnetic moment with x and the dashed lines denote

the boundaries between the different crystal structure symmetry.

Fig.5. (a)The temperature dependence of the resistivity of La0.9-x Pr x Te0.1MnO3 (x = 0,

0.18, 0.36) samples at zero (solid lines) and 0.5T fields (dashed lines). (b) The

temperature dependence of the resistivity of La0.9-x Pr x Te0.1MnO3 (x = 0.54,

0.72, 0.9) samples at zero fields.

Fig.6. The temperature dependence of magnetoresistance (MR) ratio of La0.9-x Pr x Te0.1MnO3 at 0.5 T field for the samples with x = 0, 0.18 and 0.36.

Fig.7. The fitting plot of ρ(T) curves of La0.9-x Pr x Te0.1MnO3 with x = 0, 0.18, 0.36, (a) and with 0.54, 0.72 and 0.9, (b) according to VRH model. The dashed lines represent the experimental data.

Fig.8. Phase diagram of temperature vs. tolerance factor t and the average ionic radius of the A-site element <

r> for La0.9-x Pr x Te0.1MnO3 (x = 0, 0.18, 0.36,

A

0.54, 0.72 and 0.9) samples. The mark PMI, FMM and FMI represent

paramagnetic insulator, ferromagnetic metallic and ferromagnetic insulator phase, respectively. The dashed line denotes the boundaries between FMM and FMI

Fig.1 J. Yang et al.

0.00.5

1.0

1.5

2.0 M (μB / f .u .)Temperature (K)

Fig.2 J. Yang et al.

M (μB / f .u .)

H(T)

Fig.3 J. Yang et al.

旧版《标准日本语》初级下 单词

《标准日本语》初级下册 第26课 词汇Ⅰ 空港 (くうこう) (0) [名] 机场 両替する (りょうがえする) (0) [动3] 换钱,兑换 忘れる (わすれる) (0) [动2] 忘记 出迎える (でむかえる) (0) [动2] 迎接 全部 (ぜんぶ) (1) [名] 一共 出迎え (でむかえ) (0) [名] 来迎接 見つける (みつける) (0) [动2] 找,找到 歓迎 (かんげい) (0) [名] 欢迎 訪日 (ほうにち) (0) [名] 访日,访问日本 出口 (でぐち) (1) [名] 出口 背 (せ) (1) [名] 个子 ほか (0) [名] 以外 紹介する (しょうかいする) (0) [动3] 介绍 よろしくお願いします (よろしくおねがいします) (0 + 6) [寒暄] 请多关照楽しみ (たのしみ) (4) [名] 盼望,期待,乐于 言葉 (ことば) (3) [名] 语言,词,话语,词语 覚える (おぼえる) (3) [动2] 记住,学会 来日 (らいにち) (0) [名] 来日,来到日本 目的 (もくてき) (0) [名] 目的 展示場 (てんじじょう) (0) [名] 展览会,展览现场 自動車 (じどうしゃ) (2) [名] 汽车 見学 (けんがく) (0) [名] 参观 ホテル (1) [名] 饭店,旅馆 だいじょうぶだ (3) [形动] 不要紧,没关系 李 (り) (1) [专] 李 ~団 (だん) ~目 (め) ~場 (じょう) 词汇Ⅱ おもしろさ (3) [名] 趣味,乐趣 おもしろみ (0) [名] 趣味,妙趣 苦しい (くるしい) (3) [形] 苦 苦しさ (くるしさ) (3) [名] 痛苦 苦しみ (くるしみ) (0) [名] 痛苦 甘さ (あまさ) (0) [名] 甜味,甜头 甘み (あまみ) (0) [名] 甜味 片づける (かたづける) (4) [动2] 收拾,整理 酒 (さけ) (0) [名] 酒 結婚する (けっこんする) (0) [动3] 结婚 火事 (かじ) (1) [名] 着火,火灾 ストーブ (2) [名] 炉子 消す (けす) (0) [动1] 熄,灭

公路电动栏杆机控制模块维修简述

公路电动栏杆机控制模块维修简述 目前,公路自动栏杆机控制模块主要是Magnetic的自动栏杆机控制模块,这种控制模块采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足公路环境下的应用。 下面简单介绍栏杆机控制模块面板的功能与接线,栏杆机控制模块中的数字代表意义和接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前

(完整版)初级语法总结(标准日本语初级上下册)

1.名[场所]名[物/人]力*笳◎去歹/「仮歹 名[物/人]总名[场所]笳◎去歹/「仮歹 意思:“ ~有~ ”“~在~”,此语法句型重点在于助词“心‘ 例:部屋忙机力?笳◎去歹。 机总部屋 2.疑问词+哲+动(否定) 意思:表示全面否定 例:教室忙疋沁o 3?“壁①上”意思是墙壁上方的天棚,“壁才是指墙壁上 例:壁 4. ( 1)名[时间]动 表示动作发生的时间时,要在具体的时间词语后面加上助词“V”,这个一个时间点 例:森总心比7時V 起吉去To 注意:只有在包含具体数字的时间时后续助词“V”,比如“ 3月14 日V, 2008年V”;星期后面可加V,比如“月曜日V” ,也可以不加V;但是“今年、今、昨日、明日、来年、去年”等词后面不能加V。 此外:表示一定时间内进行若干次动作时,使用句型“名[时间]V 名[次数]+动” 例:李1週間V2回7°-^^行吉去T。 (2)名[时间段]动:说明动作、状态的持续时间,不能加“ V” 例:李毎日7時間働^^L^o (PS: “V”的更多用法总结请看初级上第15课) ( 3)名V 【用途】【基准】 表示用途时,前接说明用途的名词,后面一般是使"去T等动词 表示基准时,前名词是基准,后面一般是表示评价的形容词。 例:--乙①写真总何V使"去T力、。「用途」 --申請V使"去T。「用途」 乙①本总大人V易L^^ToL力'L、子供V总難L^^To 「基准」 X —X—力*近乙買⑴物V便利^To 「基准」 (4)动(基本形) OV 【用途】【基准】:使用与上述( 3)一样 例:乙O写真求一卜总申請T^OV 使"去T。 ^OV>^3>^ 買“物T^OV 便利^To (5)小句1 (简体形)OV,小句2:名/形動+肚+OV 表示在“小句1 ”的情况下发生“小句2”的情况不符合常识常理,翻译为“尽管…还是…,虽

栏杆机说明书

MAGSTOP MIB 2O/3O/40 栏杆机 及MAGTRONIC MLC 控制器 操作指导 @1999年马格内梯克控制系统(上海)有限公司 地址:上海浦东新区宁桥路999号二幢底西层邮编:201206 电话:(21)58341717 传真:(21)58991233

目录 1. 系统概述 2 1.1 停车场系统的布局 2 1. 2 系统组件概述 2 2 安全 3 2.1一般安全信息3 2.2 建议用途 3 2.3 本手册中使用的安全标志3 2.4 操作安全 4 2.5 技术发展 4 2.6 质量保证 4 3. 装配及安装 5 3.1 构筑安装地基 5 3.2 安装感应线圈 6 3.3 安装机箱 8 3.4 安装栏杆机臂 8 3.5 基本机械结构 9 3.6 设置及校准弹簧 9 3.7 校准栏杆机臂位置 10 4. 电源连接 10 5. MLC控制器 11 5.1 命令发生器:在不同操作模式下的连接及功能 12 5.2 MLC控制器的操作 14 5.3 MLC控制器显示信息的解释 14 5.4 MLC控制器的复位 14 5.5 栏杆机的操作 15 5.6 编制及读取操作数据 16 5.7 校准感应线圈 18 6. 初始化操作 19 6.1 委托程序 19 6.2 在启动过程中显示的信息 19 7. 技术数据 21 7.1 栏杆机 21 7.2 控制器 21 8. 附录 22 8.1校准角度传感器及优化栏杆机的动作22 8.2 校准安全设备的角度 24 8.3 读取时间计数器 25 8.4 读取操作循环计数器 25 8.5 读取制动设置 25 8.6 复位情况的说明 26 8.7 测试模式 27 8.8 校准传感器 28 9. 技术支持 28 10. 备用零部件 29

新版标准日本语初级下册语法总结

▲ cn^明日会議疋使刁資料(这是明天会议要用的资料) ▲b^L^明日乗召飛行機总中国航空^To (我明天乘坐的飞机是中国航空公司的) ▲中国買二尢CD总友達忙貸L^L^o (我把在中国买的CD借给朋友了)操作力?簡単欲LUPT。(我想要操作简单的个人电脑) ▲自転車忙2人疋乗危肚S^To (骑自行车带人很危险) ▲李絵总力y①力*好吉^T相。(小李你喜欢画画啊) ▲手紙总出TO^忘n去L尢。(我忘了寄信) ▲明日①朝总大雨(明天早晨会下大雨吧) ▲森今日会社总休住力、哲Ln去乜人。(森先生今天也许不来公司上班了) ▲子供O時,大吉肚地震力?笳◎去L尢。(我小的时候,发生过大地震。) ▲李亍"丄总見肚力食事^LT^^To (小李边看电视边吃饭) ▲李^人,明日八一亍彳一忙行(小李,你明天参加联欢会吧。) 森^人、昨日駅前O喫茶店森先生,昨天你在车站附近的咖啡店来着吧? 2.映画总見召時後30席忙座◎去To 看电影时,(我)经常坐在最后 的座位。 ▲馬尢LQ地図^

高速公路自动栏杆机控制模块维修

高速公路自动栏杆机控制模块维修实例【转贴】 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。下面我介绍下栏杆机控制模块面板的功能与接线栏杆机控制模块中的数字代表意义货接法如 下:“1”表示接电源L(火线)220V。“2”表示接电源N (零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容 (4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点 (300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参 考。首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块

新标准日本语初级下册25-48课单词中文对照默写版

1 25 [名]数学 [名]专门 [名]女演员 [名]营业科 [名]市内,市街,繁华街道 [名]道路,马路 [名]交通流量,通行量 [名]机场 [名]高速公路 [名]零件制造厂 [名]电梯 [名]图画书,连环画 [名]大自然 [名]工资 [名]今天晚上 [名]伤 [动1]住,过夜,住宿 [动1]连接,系 [动1]印,记下 [动2]出生,诞生 [动3]倒闭,破产 [动3]堵车,停滞 [动3]确认 [形2]充裕,丰富 [连体]大的 [连体]小的 [副]并不 [专]戴 [专]周 [专]唐 [专]中国航空 [专]天安饭店 [专]三环路 _____________________________________________ 这一带,这附近 26 [名]大雨 [名]樱花 [名]风 [名]月亮 [名]表 [名]握手 [名]习惯 [名]鞠躬 [名]寒暄 [名]手 [名]顾客,客人 [名]一般,普通 [名]这回,下面,下回 [名]超市 [名]费用 [名]会费 [名]降价出售 [名]信用卡 [名]彩色铅笔 [名]丰收 [名]关系,友情,友谊 [名]忘记的东西,遗忘的物品 [动1]防御,防备,防守 [动1]走访;转;绕弯 [动1]跑,奔跑 [动1]吹 [动2]举,举起 [动2]足,够 [动3]素描,写生 [动3]发言 [动3]得冠军 [动3]及格,合格 [副]也许 [动3]约定 [副]不知不觉地,无意中 [副]就要,立刻,马上 [副]大部分,几乎 [连]因此 [专]铃木 [专]杨 [专]加藤 [专]叶子 [专]阳光百货商店 [专]北京猛虎队<棒球队名称> _________________________________________ 寒暄拜访 不行,不好,不可以 社 27 [名]经济 [名]国际关系学 [名]许多,众多 [名]高中

Magnetic TOLL栏杆机中文说明书

9 电气连接 9.1 安全 请参照18页,第2.6节“专业安全和特殊危险”中的安全注意事项。 电压 危险 一般 警告

热的表面 小心 电磁干扰 个人保护装备

在施工过程中,必须穿戴以下几种保护装备: ■工作服 ■保护手套 ■安全鞋 ■保护头盔。 9.2安装电保护设备 根据地区或当地的规定,安全设备需要提供给客户。通常有以下几种:■漏电保护器 ■断路器 ■ EN 60947-3的可锁定的2极开关。 9.3连接电源线 电压 危险 注意! 电源线的导线截面在1.5到4mm2 之间。要遵守国家关于 导线长度和相关电缆截面积的规定.

危险! 电压有致命的危险! 1.断开栏杆机系统电源。确保系统断电。确保机器不会再启动。 接线的准备—剥电缆外皮和铁芯绝缘 2.照下图剥开电源线和磁芯 图37:剥电源供应线。 1 电位 2 零线 3 地线 安置电源线 3.照下图,把电源线正确安装在相应的终端线夹上。也可参照,163页,第17.1节的“接线图”。 ■在机箱中正确安装电源线。此电源线不可连接移动部件。 ■用两个束线带固定电源线。 图38 安置电源线 1 电源线

2 束线带 3 束线带的金属突出物 连接电源线 图39:连接电源线 1 电源线的终端线夹 2 电位L 3 零线 N 4 地线 PE 9.4连接控制线路(信号设备) 以下连接对控制和反馈端有效: ■控制栏杆机的8个数码输入 ■反馈信息的4个数码输出 ■反馈信息的6个继电器输出。3个常开,3个转换触点。 危险! 电压有致命危险! 1.断开栏杆机系统电源。确保系统断电并不会重启。 连接控制线 2.将控制线穿过穿线孔。 ■在机箱中合理的放置控制线。控制线不可进入可移动部件。 ■安装控制线夹和绑线。通过轻微按压或移动,线夹可以在轨道上移动到预期的位置。绑线可以绑扎在金属突出物上。 3. 根据接线图连接控制线。请参照163页,第17.1节的“接线图”。

新版中日交流标准日本语初级上下册

新版中日交流标准日本语初级上下册单词测试

初级上册 第1课 〔名〕中国人〔名〕日本人〔名〕韩国人〔名〕美国人〔名〕法国人〔名〕(大)学生 〔名〕老师〔名〕留学生〔名〕教授〔名〕职员〔名〕公司职员 〔名〕店员〔名〕进修生〔名〕企业〔名〕大学(我)父亲〔名〕科长〔名〕总经理,社长 〔名〕迎接〔名〕那个人〔代〕我〔代〕你〔副〕非常,很 〔叹〕哎,是(应答);是的〔叹〕不,不是 〔叹〕哎,哎 呀 〔专〕李 〔专〕王 〔专〕张 〔专〕森 〔专〕林 〔专〕小野 〔专〕吉田 〔专〕田中 〔专〕中村 〔专〕太郎 〔专〕金 〔专〕迪蓬 〔专〕史密斯 〔专〕约翰逊 〔专〕中国 〔专〕东京大 学 〔专〕北京大 学 〔专〕日中商 社 --------------- ------ 你好 对不起,请问 请 请多关照 初次见面 我才要(请您 ~) 是(这样) 不是 不知道 实在对不起 ~さん∕~ち ゅん∕~君く ん 第2课 〔名〕书 〔名〕包,公 文包 〔名〕笔记本, 本子 〔名〕铅笔 〔名〕伞 〔名〕鞋 〔名〕报纸 〔名〕杂志 〔名〕词典 〔名〕照相机 〔名〕电视机 〔名〕个人电 脑 〔名〕收音机 〔名〕电话 〔名〕桌子, 书桌 〔名〕椅子 〔名〕钥匙, 锁 新版中日交流标准日本语初级上、下册单词汇总

〔名〕钟,表〔名〕记事本〔名〕照片〔名〕车〔名〕自行车〔名〕礼物〔名〕特产,名产 〔名〕丝绸〔名〕手绢〔名〕公司〔名〕(敬称)位,人 〔名〕人〔名〕家人,家属 〔名〕(我)母亲 〔名〕母亲〔名〕日语〔名〕汉语,中文 〔代〕这,这个 〔代〕那,那个 〔代〕那,那个 〔疑〕哪个〔疑〕什么〔疑〕谁〔疑〕哪位〔连体〕这,这个〔连体〕那, 那个 〔连体〕那, 那个 〔连体〕哪个 〔叹〕啊 〔叹〕哇 〔叹〕(应答) 嗯,是 〔专〕长岛 〔专〕日本 〔专〕汕头 〔专〕伦敦 --------------- ------ 谢谢 多大 何なん~∕~ 歳さい 第3课 〔名〕百货商 店 〔名〕食堂 〔名〕邮局 〔名〕银行 〔名〕图书馆 〔名〕(高级) 公寓 〔名〕宾馆 〔名〕便利店 〔名〕咖啡馆 〔名〕医院 〔名〕书店 〔名〕餐馆, 西餐馆 〔名〕大楼, 大厦 〔名〕大楼, 建筑物 〔名〕柜台, 出售处 〔名〕厕所, 盥洗室 〔名〕入口 〔名〕事务所, 办事处 〔名〕接待处 〔名〕降价处 理大卖场 〔名〕自动扶 梯 〔名〕衣服 〔名〕风衣, 大衣 〔名〕数码相 机 〔名〕国,国 家 〔名〕地图 〔名〕旁边 〔名〕附近,

(完整版)《中日交流标准日本语》初级下册_所有课文译文1

《中日交流标准日本语》初级下册所有课文译文 第26课学日语很愉快 (1) 小李说:" 学日语很愉快。" 小李日语说得好。 小李忘记在飞机场换钱了。 (2) 今天,田中在机场迎接中国来的代表团。代表团一共5人。机场里人多而且拥挤。抵达机场的人要马上找到来迎接的人很不容易。田中拿着写有"欢迎中国访日代表团"的大纸,在出口等候。 一位高个子的男人说道:"您是田中先生吗回?我是代表团的,姓李。"小李日语说得好。他用汉语向其他4人介绍了田中。小李用日语对田中说:"请多关照。我们期望学到日本的"先进科学技术." (3) 田中:您日语讲得不错啊,来日本几次了? 李:第一次,是听广播学的日语,学会外语很愉快。 田中:是吗?这次来日本的目的是参观机器人展览会和汽车制造厂吧。 李:对。我们期望学到先进的科学技术。 田中:从明天开始就忙了。今天在饭店好好休息吧。 李:在机场忘了兑换日元,不要紧吧? 田中:不要紧,在饭店也能换。

第27课日本人吃饭时用筷子 (1) 日本人吃饭时用筷子。进屋时脱鞋。 田中说:"边吃边谈好不好,大家肚子都饿了吧。" (2) 今晚,田中领小李一行人去饭店附近的一家日本餐馆。小李还一次也没吃过日本饭菜。 田中说:"这是家有名的餐馆,顾客总是很多。今天大概也很拥挤吧"。 餐馆的服务员一面上菜,一面逐个说明菜的名称和吃法。小李他们边喝啤酒边吃饭。 日本人吃饭前要说:"那我吃了",吃完后说:"我吃好了"。小李他们也按照日本的习惯那样说了。 (3) 田中:饭菜怎么样? 李:很好吃。代表团的各位大概都很满意的。 田中:那太好了。 李:而且餐具非常雅致。 田中:是的,日本饭菜很讲究餐具和装盘。有人说:"是用眼睛欣赏的饭菜。" 李:哎,日本人吃饭时不怎么说话啊。田中:是的,中国的情况如何? 李:平时安安静静地吃。不过,喜庆的时候很热闹。吃饭时大家有说有笑。

标准日本语旧版 初级上册课文

第一課私は田中です 私は田中です。 田中さんは日本人です。 田中さんは会社員です。 私は王です。 王さんは日本人ではありません。 王さんは中国人です。 王さんは会社員ではありません。 王さんは学生です。 王さんは東京大学の留学生です。 田中:初めまして。 王:初めまして。わたしは王です。 田中:わはしは田中です。 王:田中さんは会社員です。 田中:はい,そうです。会社員です。旅行社の社員です。 あなたは会社員ですか? 王:いいえ、そうではありません。

第二課これは本です (1) これは本です。 これは雑誌ではありません。 それは王さんの万年筆です。 それは私の万年筆ではありませうん。 あれは中国語の辞書です。 あれは日本語の辞書ではありません。 (2) この新聞は日本の新聞ですか。 はい、それは日本の新聞です。 その本は科学の本ですか。 いいえ、これは科学の本はありません。歴史の本です。あの人はだれでうか。 あの人は私の友達です。 あの人は張さんです。 (3) 田中:こんにちは。 王:こんにちは。 田中:それは何ですか。 王:これは辞書です。 田中:それは英語の辞書ですか

王:いいえ、英語の辞書ではありません。これはフランス語の辞書です。 田中:その辞書は王さんのですか。 王:いいえ、そうではありません。友達のです。これは張さんの辞書です。 第三課ここは学校です (1) ここは学校です。 ここは王さんの学校です。 そこは教室です。 そこは日本語の教室です。 あそこは体育館です。 あそこは図書館です。 (2) 郵便局はここです。 映画館はそこです。 駅はあそこです。 デパートはどこですか。 デパートはあそこです。 デパートは駅の前です。

标准日本语初级总结下册

1、動詞ます形去ます+ ①方~的方法この漢字の読み方を教えてください。「2」 ②やすい易于~ 秋は天気が変わりやすいです。「2」 ③にくい难于~ 法律の文章はわかりにくいです。「2」 ④すぎます做··过头昨日食べ過ぎて、お腹が痛くなりました。「9」 ⑤出します·出来/·起来 テーブルにぶつけたので、拓哉は泣き出しました。「13」 ⑥始めます开始做··田中さんはスポーツジムに通い始めました。「16」 ⑦続けます坚持做··田中さんは学生のときから日記を書き続けています。「16」 ⑧終わります做完·· 張さんはやっと新製品のマニュアルを書き終わりました。「16」 2、動詞て形+ ①てもいい表示许可,可以··明日の試験は辞書を使ってもいいです。「3」てもかまいません表示许可,·也没关系 わたしのパソコンでゲームをしてもかまいません。「3」②てはいけません 不准··不行··不许テスト中は、話してはいけません。「3」③ても/でも 名词+でも表示同类相中列举出的一项 二次会はカラオケでも行きませんか。「2」 動詞て形+も い形形容詞去い变くて+も な形形容詞詞干でも 名詞でも 表示“即使··也··” 雨が降っても、試合は中止しません。「8」疑问词+でも 无论· 席はどこでもいいです。「7」④てみます。 试着做·· 上海に行ったら、リニアモーターカーに乗ってみます。「9」⑤ておきます 事先做某事或暂且防止不管 友達が来るので、部屋を掃除しておきます。「9」⑥てきます 某动作由远及近会議のとき、虫が会議室に飛んできました。「12」做完某事再回来今からさっそく10箱を買ってきます。「12」某状态从过去发展到现在 最近、中国へ留学に来る外国人留学生がだんだん増えてきました。「12」⑦ていきます 某动作由近及远子供が走っていきました。「12」做完某事再离开毎朝、わたしは駅でサンドイッチを買っていきます。「12」

栏杆机控制器

MLC 580C N ,5131/04.02Phone:+49 7622/695-5Fax:+49 7622/695-602 e-mail:info@ac-magnetic.de https://www.doczj.com/doc/4a3220468.html,

Magnetic Control Systems Sdn.Bhd.No.16, Jalan Kartunis U1/47Temasya Ind.Park, Section U140150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone:(+60) 3 / 55691718eMail: info@https://www.doczj.com/doc/4a3220468.html,.my Magnetic Control Systems (Shanghai) Co. Ltd.999 Ning-qiao Road, Bldg. 2W/1F Pudong New Area Shanghai 201206, China Phone:(+86) 21/ 58 341717eMail: magnetic@https://www.doczj.com/doc/4a3220468.html, Magnetic Automation Pty. Ltd.19 Beverage Drive Tullamarine, Victoria 3043, Australia Phone:(+61) 3 / 93 30 10 33eMail: info@https://www.doczj.com/doc/4a3220468.html, Magnetic Automation Corp.3160 Murrell Road Rockledge, FL 32955, USA Phone:(+1) 321/ 635 85 85eMail: info@https://www.doczj.com/doc/4a3220468.html, Magnetic Autocontrol Pvt.Ltd.Calve Chateau, 2B, IInd Floor Kilpauk 322 Poonamallee High Road IND Chennai, 600010 / India Phone:(+91) 44 6400 443eMail: magneticsales@https://www.doczj.com/doc/4a3220468.html,

【默写版】新版标准日本语单词表

第1课〔名〕中国人 〔名〕日本人 〔名〕韩国人 〔名〕美国人 〔名〕法国人 〔名〕(大)学生 〔名〕老师 〔名〕留学生 〔名〕教授 〔名〕职员 〔名〕公司职员 〔名〕店员 〔名〕进修生 〔名〕企业 〔名〕大学 (我)父亲 〔名〕科长 〔名〕总经理,社长 〔名〕迎接 〔名〕那个人 〔代〕我 〔代〕你 〔副〕非常,很 〔叹〕哎,是(应答);是的〔叹〕不,不是 〔叹〕哎,哎呀〔专〕王 〔专〕张 〔专〕森 〔专〕林 〔专〕小野 〔专〕吉田 〔专〕田中 〔专〕中村 〔专〕太郎 〔专〕金 〔专〕迪蓬 〔专〕史密斯 〔专〕约翰逊 〔专〕中国 〔专〕东京大学 〔专〕北京大学 〔专〕 JC策划公司 〔专〕北京旅行社 〔专〕日中商社 _____________________________________ 你好 对不起,请问 请 请多关照 初次见面 (请您~) (这样)

不知道 实在对不起 ~さん∕~ちゃん∕~君くん 第2课〔名〕书 〔名〕包,公文包 〔名〕笔记本,本子 〔名〕铅笔 〔名〕伞 〔名〕鞋 〔名〕报纸 〔名〕杂志 〔名〕词典 〔名〕照相机 〔名〕电视机 〔名〕个人电脑 〔名〕收音机 〔名〕电话 〔名〕桌子,书桌 〔名〕椅子 〔名〕钥匙,锁 〔名〕钟,表 〔名〕记事本 〔名〕照片 〔名〕车 〔名〕自行车〔名〕特产,名产〔名〕丝绸 〔名〕手绢 〔名〕公司 〔名〕(敬称)位,人〔名〕人 〔名〕家人,家属〔名〕(我)母亲〔名〕母亲 〔名〕日语 〔名〕汉语,中文〔代〕这,这个〔代〕那,那个〔代〕那,那个〔疑〕哪个 〔疑〕什么 〔疑〕谁 〔疑〕哪位 〔连体〕这,这个〔连体〕那,那个〔连体〕那,那个〔连体〕哪个 〔叹〕啊 〔叹〕哇 〔叹〕(应答)嗯,是〔专〕长岛 〔专〕日本

标准日本语初级单词(下册)

标准日本语初级单词(下册) 第25课 すうがく(数学)[名] 数学 せんもん(専門)[名] 专门 じょゆう(女優)[名] 女演员 えいぎょうか(営業課)[名]营业科 しがい(市街)[名]市内,市街,繁华街道 どうろ(道路)[名]道路,马路 こうつうりょう(交通量)[名]交通流量,通行量くうこう(空港)[名]机场 こうそくどうろ(高速道路)[名]高速公路 ぶひんこうじょう(部品工場)[名]零件制造厂エレベーター[名]电梯 えほん(絵本)[名]图画书,连环画 しぜん(自然)[名]大自然 きゅうりょう(給料)[名]工资 こんや(今夜)[名]今天晚上 けが[名]伤 とまります(泊まります)[动1]住,过夜,住宿むすびます(結びます) [动1]连接,系 とります(取ります)[动1]印,记下 うまれます(生まれます)[动2]出生,诞生

とうさんします(倒産~)[动3]倒闭,破产 じゅうたいします(渋滞~)[动3]堵车,停滞チエックします[动3]确认 ゆたか(豊か)[形2]充裕,丰富 おおきな(大きな)[连体]大的 ちいさな(小さな)[连体]小的 べつに(別に)[副]并不 たい(戴)[专]戴 しゅう(周)[专]周 とう(唐)[专]唐 ちゅうごくこうくう(中国航空)[专]中国航空てんあんはんてん(天安飯店)[专]天安饭店さんかんろ(三環路)[专]三环路 このあたり这一带,这附近 第26课 おおあめ(大雨)[名]大雨 さくら(桜)[名]樱花 かぜ(風)[名]风 つき(月)[名]月亮 ひょう(表)[名]表 あくしゅ(握手)[名]握手 しゅうかん(習慣)[名]习惯 おじぎ(お辞儀)[名]鞠躬

德国magnetic栏杆机常见故障分析

德国Magnetic栏杆机的常见故障分析德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: ?黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 ?白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 ?编程时,同时按下黑键和白键后数值下边出现光标。 ?同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: ?同时按下黑键和白键持续四秒钟; ?将圆盘转至F,确认后可恢复到出厂设置; ?详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式 位置1:程序代码 1—8

位置2:转矩时间 1—30秒 位置3:栏杆机开启时间 1—255秒 位置4:感应线圈A灵敏度 O一9 (0最小,9最大) 位置5:感应线圈B灵敏度 0—9(0最小,9最大) 位置6:检测器模式A0—8(见功能说明表) 位置7:检测器模式B0—8(见功能说明表) 位置8:感应线圈A/B频率 1 0,000Hz一90,000Hz 位置9:备用 位置A:计数模式 位置B:备用 位置C:备用 位置D:硬件错误控制器 16进制错误代码 位置E:语种选择德、英、法、西 位置F:出厂设置重设所有操作数据 4、模式设置: 将圆盘转至1,控制器有8种操作模式可供选择;详见中文说明书第16页。 5、控制器编程过程: (1)将圆盘开关转到所需位置; (2)同时按下黑色按键和白色按键; (3)使用黑色按键将数字滚动显示为所需的数值(光标位于正在变化的数字下方); (4)按下白色按键存储选中的数值或者将光标移到右边的一格; (5)按下黑色按键确认最终的数值或者按下白色按键取消输入的数值。 注意:完成编程后,请将圆盘开关转回到“0”位置(即普通操作模式) 6、感应线圈灵敏度设置: 将圆盘转至4或5(设置线圈A转至4,线圈B转至5);一般情况下灵敏度选择4-6,不宜太高或太低。详见中文说明书第16页。 7、检测器A、B的开启和关闭 将圆盘开关转至6和7分别设置检测器A、B的状态,如果A、B线圈都没有使用或只使用了一个检测器,那么就要关闭没有使用的检测器(将检测器A、B的数值设置为0,是关闭状态;检测器开启时数值是应该是1或2,一般用2。) 8、校准传感器/优化栏杆机动作

新版标准日本语

新版标准日本语 《新版中日交流标准日本语初级上、下》(以下简称"新版")于2005年4月出版,是1988年出版的《中日交流标准日本语初级上、下》(以下简称"旧版")的修订本。旧版自发行以来受到了广大读者的喜爱,发行量已逾500万套。为了使这套教材能够充分地体现日语教育以及社会、文化等方面的发展、变化,人民教育出版社与日本光村图书出版株式会社经过3年的努力,策划、编写了这套"新版",此次推出的是初级上、下。 1.李りさんは中国人ちゅうごくじんです。 2.森もりさんは学生がくせいではありません。 3.林はやしさんは日本人にほんじんですか。 4.李りさんはJCジェーシー企画きかくの社員しゃいんです。解析 1.李りさんは中国人ちゅうごくじんです。【名词】は【名词】です。は提示主题,做助词、读作わ。です前为谓语。….是…..。小李是中国人。 2.森もりさんは学生がくせいではありません。【名词】は【名词】ではありません。は同1 。ではありません是です的否定。..不是..。森不是学生。 3.林はやしさんは日本人にほんじんですか。~ですか。~か表示疑问,读作がga 。日语中完整疑问句不用“?”而是用“。”,以“か”表示疑问。は同1 。….吗?小林是日本人吗?3-2疑问句的应答。肯定回复。はい、そうです。(そうです可省略)否定回复。いいえ、ちがいます。(ちがいます可省略)不知道:分かりません。 4.李りさんはJC

ジェーシー企画きかくの社員しゃいんです。は同1(此后不再赘述)【名词】の【名词】表从属,后面的名词是从属于前面机构、国家或者属性的。…的…。小李是JC策划的员工。A甲:わたしは李りです。小野おのさんですか乙:はい、そうです。小野おのです。 B 甲:森もりさんは学生がくせいですか乙:いいえ、学生がくせいではありません。会社員かいしゃいんです。 C 甲:吉田よしださんですか。乙:いいえ、ちがいます。森もりです。 D 甲:李りさんはJCジェーシー企画きかくの社員しゃいんですか。乙:はい、そうです。解析:ABCD四组练习是上述几个基本句子的拓展。重复内容就不赘述了。Aわたしは李りです。小野おのさんですかはい、そうです。小野おのです。【わたし】第一人称,【あなた】第二人称,【あの人】第三人称小野おのさんですか这里省略了主语“あなた”,在日语中可以通过上下文了解到主语,或者出现过一次的内容,为了避免句子累赘,往往会被省略。另外日语中的“あなた”有亲爱的意思,还有直接用“あなた”来称呼对方有时不太礼貌,所以一般不怎么使用这个“あなた”【你】来称呼第二人称,可以用【姓+さん】来表示。在职场也可以用职位来称呼别人。比如課長かちょう、社長しゃちょう。在日语中称呼别人无论男女都用さん,而且只能用于别人名字后面表礼貌,不可用于自己名字后面,所以出现了はい、そうです。小野おのです。(称呼小孩子可以在名字后面+ちゃん。与自己年龄相当、或比自己年轻

标准日本语初级课文词汇(上下册)

第1课 ちゅうごくじん(中国人)〔名〕中国人 にほんじん(日本人)〔名〕日本人 かんこくじん(韓国人)〔名〕韩国人 アメリカじん(~人)〔名〕美国人 フランスじん(~人)〔名〕法国人 がくせい(学生)〔名〕(大)学生 せんせい(先生)〔名〕老师 りゅうがくせい(留学生)〔名〕留学生 きょうじゅ(教授)〔名〕教授 しゃいん(社員)〔名〕职员 かいしゃいん(会社員)〔名〕公司职员 てんいん(店員)〔名〕店员 けんしゅうせい(研修生)〔名〕进修生 きぎょう(企業)〔名〕企业 だいがく(大学)〔名〕大学 ちち(父)〔名〕(我)父亲 かちょう(課長)〔名〕科长 しゃちょう(社長)〔名〕总经理,社长 でむかえ(出迎え)〔名〕迎接 あのひと(あの人)〔名〕那个人 をたし〔代〕我 あなた〔代〕你 どうも〔副〕非常,很 はい〔叹〕哎,是(应答);是的 いいえ〔叹〕不,不是 あっ〔叹〕哎,哎呀 り(李)〔专〕李 おう(王)〔专〕王 ちょう(張)〔专〕张 もり(森)〔专〕森 はやし(林)〔专〕林 おの(小野)〔专〕小野 よしだ(吉田)〔专〕吉田 たなか(田中)〔专〕田中 なかむら(中村)〔专〕中村 たろう(太郎)〔专〕太郎 キム(金)〔专〕金 デュポン〔专〕迪蓬 スミス〔专〕史密斯 ジョンソン〔专〕约翰逊 ちゅうごく(中国)〔专〕中国 とうきょうだいがく(東京大学)〔专〕东京大学ペキンだいがく(北京大学)〔专〕北京大学 ジェーシーきかく(JC企画)〔专〕JC策划公司 ペキンりょこうしゃ(北京旅行社) 〔专〕北京旅行社 にっちゅうしょうじ(日中商事)〔专〕日中商社-------------------------------------------- こんにちは你好 すみません对不起,请问 どうぞ请 よろしくおねがいします(~お願いします) 请多关照はじめまして初次见面 こちらこそ我才要(请您~) そうてす是(这样) ちがいます不是 わかりません(分かりません)不知道 どうもすみません实在对不起 ~さん∕~ちゅん∕~君くん 第2课 ほん(本)〔名〕书 かばん〔名〕包,公文包 ノート〔名〕笔记本,本子 えんぴつ(鉛筆)〔名〕铅笔 かさ(傘)〔名〕伞 くつ(靴)〔名〕鞋 しんぶん(新聞)〔名〕报纸 ざっし(雑誌)〔名〕杂志 じしょ(辞書)〔名〕词典 カメラ〔名〕照相机 テレビ〔名〕电视机 パソコン〔名〕个人电脑 ラジオ〔名〕收音机 でんわ(電話)〔名〕电话 つくえ(机)〔名〕桌子,书桌 いす〔名〕椅子 かぎ〔名〕钥匙,锁 とけい(時計)〔名〕钟,表 てちょう(手帳)〔名〕记事本 しゃしん(写真)〔名〕照片 くるま(車)〔名〕车 じてんしゃ(自転車)〔名〕自行车 おみやげ(お土産)〔名〕礼物 めいさんひん(名産品)〔名〕特产,名产シルク〔名〕丝绸 ハンカチ〔名〕手绢 かいしゃ(会社)〔名〕公司 かた(方)〔名〕(敬称)位,人 ひと(人)〔名〕人 かぞく(家族)〔名〕家人,家属 はは(母)〔名〕(我)母亲 おかあさん(お母さん)〔名〕母亲 にほんご(日本語)〔名〕日语 ちゅうごくご(中国語)〔名〕汉语,中文これ〔代〕这,这个 それ〔代〕那,那个 あれ〔代〕那,那个 どれ〔疑〕哪个 なん(何)〔疑〕什么 だれ〔疑〕谁 どなた〔疑〕哪位 この〔连体〕这,这个 その〔连体〕那,那个 あの〔连体〕那,那个 どの〔连体〕哪个 えっ〔叹〕啊

旧版《中日交流标准日本语-初级》词汇

《标准日本语》初级上册 第1课 词汇I わたし(0) [代] 我 会社員(かいしゃいん) (3) [名] 公司职员 学生(がくせい) (0) [名] 学生(多指高等院校的学生) 留学生(りゅがくせい) (4) [名] 留学生 初めまして(はじめまして) (4) [寒暄] 初次见面(寒暄语) はい(1) [感] 是,是的(应答声或用于回答) そう(1) [副] 那样 旅行社(りょこうしゃ) (2) [名] 旅行社 社員(しゃいん) (1) [名] 职员 あなた(2) [代] 你 いいえ(3) [感] 不,不是(用于回答) 田中(たなか) (0) [专] 田中(姓氏) 日本(にほん) (2) [专] 日本 王(おう) (1) [专] 王 中国(ちゅうごく) (1) [专] 中国 東京大学(とうきょうだいがく) (5) [专] 东京大学 ~は~です~さん~人(じん) ~ではありません~の~か 词汇II 彼(かれ) (1) [代] 他 彼女(かのじょ) (1) [代] 她 山下(やました) (2) [专] 山下(姓氏) スミス(1) [专] 史密斯(姓氏) アメリカ(0) [专] 美国 第2课 词汇I これ(0) [代] 这,这个 本(ほん) (1) [名] 书,书籍 雑誌(ざっし) (0) [名] 杂志 それ(0) [代] 那,那个 万年筆(もんねんひつ) (3) [名] 自来水笔 あれ(0) [代] 那,那个 辞書(じしょ) (1) [名] 词典 この(0) [连体] 这,这个(人或事物) 新聞(しんぶん) (0) [名] 报纸 その(0) [连体] 那,那个(人或事物) 科学(かがく) (1) [名] 科学 歴史(れきし) (0) [名] 历史 あの(0) [连体] 那,那个(人或事物) 人(ひと) (2) [名] 人 だれ(1) [代] 谁 友達(ともだち) (0) [名] 朊友 こんにちは(0) [寒暄] 您好(日间的寒暄语) 何(なん) (1) [代] 什么

相关主题
文本预览
相关文档 最新文档