当前位置:文档之家› 道岔常见故障的分析

道岔常见故障的分析

道岔常见故障的分析
道岔常见故障的分析

道岔常见故障的分析

道岔的原理及常见故障的分析

一、道岔控制电路的原理

1、道岔启动电路应保证实现以下技术条件

⑴道岔区段有车时,道岔不应转换。此种锁闭作用叫做区段锁闭。

⑵进路在锁闭状态时,进路上的道岔都不应转换。此种锁闭作用叫做进路锁闭。

⑶在道岔启动电路已经动作以后,即使有车驶入该道岔区段也应保证道岔继续转换到底。

⑷道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电机故障,以至电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会再转换。

⑸为了便于维修试验,以及在道岔尖轨与基本轨之间夹有障碍物致使道岔转换不到底时应能使道岔转回原位。

2、道岔启动电路构成原理

⑴1DQJ电路励磁电路

①、道岔按钮CA-6接点

道岔按钮CA-61与CA-62接点定位时闭合,在维修转辙机或清扫道岔时,把CA按钮拉出CA-61与CA-62断开对道岔实行单独锁闭。

②、锁闭继电器SJ-8前接点。

在6502电器集中里,SJ吸起反映道岔区段空闲和进路在解

锁状态。当道岔区段有车时或进路在锁闭状态时,SJ落下,SJ81-82断开切断道岔启动电路,对道岔实行进路锁闭和区段锁闭使道岔不能转换。

③、道岔按钮继电器CAJ前接点和条件电源“KF-ZFJ”或“KF-ZDJ”。CAJ-Q是道岔按钮按下DAJ吸起后闭合,是道岔按钮按下闭合接点的复示继电器。条件电源“KF-ZFJ”在道岔总反位继电器吸起后才有电。条件电源“KF-ZDJ”在道岔总定位继电器吸起后才有电。

④、道岔定位操纵继电器和DCJ接点道岔反位操纵继电器FCJ接点。当排列进路时,需要进路上的道岔向定位转动则DCJ吸起,当进路上的道岔需要向反位转动时,FCJ吸起。

⑤道岔第二启动继电器第四组接点(2DQJ141)反映道岔处在什么位置。?141-142闭合,道岔处在定位。141-143闭合道岔处在反位。

⑥向定位单独操纵道岔的操作方法为:?同时按下道岔的单操按钮和总定位按钮,这时CAJ吸起接通电路。ZDJ吸起使“KF-ZDJ”有电。1DQJ的励磁电路为:KZ-CA-SJ-Q-1DQJ3.4线圈-2DQJ141_143-CAJ-KF-ZDJ。

⑦道岔向反位单独操纵的操作方法为:同时按下道岔的单操按钮和总反位按钮,这时CAJ吸起接通电路。ZFJ吸起使“KF-ZFJ”有电。1DQJ的励磁电路为:KZ-CA-SJ-Q-1DQJ3.4线圈-2DQJ141-142-CAJ-KF-ZFJ。

⑵2DQJ电路

1DQJ吸起后,2DQJ跟着吸起。励磁电路为:KZ-1DQJ31-32-2DQJJ3.4线圈CAJ21-22-KF-ZDJ.或KZ-1

DQJ41-42-2DQJ1、2线圈CAJ11-12-KF-ZFJ.

⑶1DQJ自闭电路

①从反位向定位操纵

1DQJ吸起,2DQJ转极后,1DQJ自闭电路为:

(2)DZ220-RD3-1DQJJ1、2线圈1DQJ11-12-2

DQJ111-113-X2-电缆盒2-电动转辙机插接件-2-自动开闭器11-12-电机2、3线圈-05-06-插接件5-电缆盒5-X4-1DQJ21-22-2DQJ121-122-RD1-DF220。

②从定位向反位操纵

1DQJJ吸起,2DQJ转极后,1DQJ自闭电路为:DZ220-RD3-1DQJ1、2线圈1DQJ11-12-2DQJ111-112-X1-电缆盒1-电动转辙机插接件1-自动开闭器41-42-电机-1、3线圈-05-06-插接件5-电缆盒5 --X4--1DQJ21-22-2DQJ121-123-RD2-

DF220。

⑷1DQJ何时落下

电动转辙机转到极处尖轨与基本轨密贴后,检查柱落入检查块缺口内,自动开闭器接点断开,切断道岔启动电路。

3、道岔表示电路的构成原理

⑴DBJ和FBJ

为了实施断线保护而采用两个继电器DBJ和FBJ。为了实施混线保护,DBJ和FBJ采用直流偏极继电器。这种继电器既检查电压极性,又检查是否有电流流过线圈。

⑵DBJ电路

DBJ吸起的电路为:BBⅡ3-R-X3-电缆盒3-插接件3-移位接触器04-03-自动开闭器14-13-34-33-插接件9-12-Z-插接件11-7-自动开闭器32-31-插接件1-电缆盒1-X1-2DQJ112-111-1DQJ11-13-2DQJ131-132-DBJ线圈4-1-BBⅡ4。

⑶FBJ电路

FBJ吸起的电路为:BBⅡ-3-R-X3-电缆盒3-插接件3-4-自动开闭器44-43-移位接触器02-01-自动开闭器24-23-插接件10-11-Z-插接件12-8-自动开闭器22-2-11-插接件2-电缆盒2-X2-2DQJ113-111-1DBJ11-13-2FBJ131-133-FBJ线圈1-4-BBⅡ4。

二、道岔的常见故障分析处理方法

道岔出现故障后,应首先根据故障现象分析都哪些地方出现故障才能出现这种现象。其次,应首先在室外分线盘处测量电源送没送出去(启动电路必须在操动道岔的同时测量,只有在操动道岔时才向外送直流220v电)如果分线盘处能量到电压,则电源送出去了否则,是室内故障。

⑴、了解故障情况

首先询问车站值班员故障现象,然后在控制台上操纵道岔试验。

⑵、登记停用设备

⑶、判断是室内还是室外的原因

①、如果是单动道岔,在操动时控制台的电流表有指示,说明动作道岔的电已送至到道岔。如果这时道岔不能操到规定位置,是室外原因。在操动道岔时,如果控制台的电流表没有指示,首先到机械室的室外分线盘测量该道岔有没有电压,如果有电压说明动作道岔的电已送出,是室外故障。

②、如果是双动道岔,在操动时控制台的电流表动一下就不动了,说明动作道岔的电已送到了一动道岔,故障出在一动道岔以后,是室外故障。

③、如果道岔定、反位都能操动,就是没有表示。用万用表交流250v档,在分线盘测量X1(或X2)与X3间有无交流110V左右电压,如果有电压,则是室外故障,否则是室内故障。

电路常见故障及查找方法(以定位1、3闭合为例)

⑴线1断

现象:道岔反位无表示,反位向定位操不动。

处理方法:首先判定是室内、外故障,如果是室外故障,则应马上到出现故障的道岔处。打开转辙机盖,在插接件上用万用表DC250档,红表笔接1号端子,黑表笔接5号端子。接好后让室内操动道岔。如果万用表有电压,则1号端子上的表笔不动,将万用表调整到欧姆档X1档,用另一根表笔量自动开闭器41-42-电机1-3-遮断器

05-06-插接件5。如果量到哪处万用表指针不动,则说明该点与上

一次量的点处断线。

如果在插接件1-5上量不到电压,打开电缆盒,用万用表红表笔接在1上黑表笔接在5上(仍用DC250v档)让室内操动道岔如果量到电压,则说明是电缆盒与插接件之间断线。用欧姆档分别量电缆盒的1到插接件的1,电缆盒的5到插接件的5。

如果在电缆盒的1-5上量不到电压,则说明是电缆盒到室内间断线。需要顺着电缆径路图查找,找到故障点后更换电缆芯线。

(2)线2断

现象:道岔定位无表示,定位向反位操不动。

处理方法:首先判定是室内、外故障,如果是室外故障,则应马上到出现故障的道岔处。打开转辙机盖,在插接件上用万用表DC250档,红表笔接2号端子,黑表笔接5号端子。接好后让室内操动道岔,如果万用表有电压,则1号端子上的表笔不动,将万用表调整到欧姆档乘10档。用另一根表笔量自动开闭器11-12-电机2-3-遮断器05-06-插接件5。如果量到哪处万用表指针不动,则说明该点与上一次量的点处断线。

如果在插接件2-5上量不到电压,打开电缆盒,用万用表红表笔接在2上黑表笔接在5上(仍用Dc250v档)让室内操动道岔如果量到电压,?则说明是电缆盒与插接件之间断线。用欧姆档分别量电缆盒的2到插接件的2,电缆盒的5到插接件的5。如果在电缆盒的2-5上量不到电压,则说明是电缆盒到室内间断线。需要顺着电缆径路图查找,找到故障点后更换电缆芯线。

⑶线3断

现象:道岔定、反位都无表示,定反位操动正常。

处理方法:首先判定是室内、外故障,如果是室外故障,则应马上到出现故障的道岔处。打开转辙机盖,在插接件上用万用表AC250档,红表笔接1号端子,黑表笔接3号端子(此时道岔应在定位,在反位时接2-3)。接好后如果万用表有电压(100V左右),则1号端子上的表笔不动,用另一根表笔量移位接触器04-03自动开闭器14-13-34-33-插接件9-12-11-7-自动开闭器32-31-41如果量到哪处万用表指针不动,则说明该点与上一次量的点处断线。如果在插接件2-3上量不到电压,打开电缆盒,用万用表红表笔接在2上黑表笔接在3上(仍用Ac250v档)如果量到电压,则说明是电缆盒与插接件之间断线。如果在电缆盒的2-3上量不到电压,则说明是电缆盒到室内间断线。需要顺着电缆径路图查找,找到故障点后更换电缆芯线。

⑷线5断

现象:道岔表示正常,定位、反位都操不动。

处理方法:首先判定是室内、外故障,如果是室外故障,则应马上到出现故障的道岔处。打开转辙机盖,在插接件上用万用表DC250档,红表笔接2号端子,黑表笔接5号端子(此时道岔在定位)。接好后让室内操动道岔,如果万用表有电压,则1号端子上的表笔不动,将万用表调整到欧姆档乘10档。用另一根表笔量自动开闭器11-12-电机2-3-遮断器05-06-插接件5。如果量到哪处万用表指针不动,

则说明该点与上一次量的点处断线。如果在插接件2-5上量不到电压,打开电缆盒,用万用表红表笔接在2上黑表笔接在5上(仍用Dc250v档)让室内操动道岔如果量到电压,则说明是电缆盒与插接件之间断线。用欧姆档量电缆盒的5到插接件的5。如果在电缆盒的2-5上量不到电压,?则说明是电缆盒到室内间断线。需要顺着电缆径路图查找,找到故障点后更换电缆芯线。

2、找到故障点后的处理方法

用上述方法找到故障点后,还要判定故障是如何造成的,以及如何恢复故障。下面就讲几种常见故障的处理方法。

⑴电缆盒至电动转辙机内部插接件之间断线

电缆盒与电动转辙机内的插接件是通过导线连接的,连接线的外部有蛇管保护。如果是电缆盒接线端子处断线,从新作头就可以了。如果是中间断线,哪根断了就换哪根。如果是接头焊接不良,就要从新焊接。

⑵插接件接触不良

插接件插接不良,有可能造成一个或几个接点接触不良。当确定故障点在插接件后,拧下固定螺丝,拔下插接件,看看是什么原因造成的。

⑶插接件过桥线断线

插接件上的过桥如8-9-12、7-10-11、3-4,这些过桥线都是焊在插接件上的。如果哪个断线都得从新焊接。

⑸自动开闭器接点接触不良

自动开闭器静接点的角度要保证动接点打入静接点后两片接点接触深度一致,接点压力一致(不小于3.92N),辅助片作用良好,动接点打入两边静接点的深度均衡,动接点与静接点应擦干净,保证接触良好,否则都可能出现故障。这种故障找到故障点后,应根据实际情况清扫接点或调整接点。

⑹安全接点接触不良

安全接点接触不良同自动开闭器接点接触不良的原因一样处理方法也一样,只是接点接触深度调整不一样。如何调整,在实作教学中讲。

⑺换向器接触不良和换向器的换向片断线

换向器表面应保持清洁、光滑、干净,片间绝缘物不得高出换向器的弧面,碳刷与换向器接触良好。如果换向器表面污物过多,可能造成碳刷与换向器接触不良。换向器的换向片接触不良平时不易发现,只有当电动机停转时,碳刷正好停在该换向片上,这时再操纵道岔时,操不动。如果转动一下电机,又正常了。这种故障比较难查,只有耐心地用用万用表Ω档慢慢地一个换向片一个换向片地测量,才能发现。如果测量出确实是电机换向器断线,就要更换这个电动机。

⑻碳刷接触不良

碳刷接触不良一个是换向器表面有污物,另一个是碳刷压力小,碳刷接触面积小。处理这种故障应把碳刷拿下来,一是看碳刷于刷握内上下是否卡阻,二是看碳刷的长度是否够长,三是看碳刷的接触面是否同换向器呈同心狐面接触。

⑼电机断线

确认电机断线后,切忌用封线封连。如果封连电机接点后操动道岔,就将室内的熔丝烧断。如果是与端子连接的头部断线可以从新作头,否则只有更换电动机。

⑽移位接触器内部接点接触不良

移位接触器内部有一组接点,如果由于某种原因造成接点接触不良而出现道岔表示故障,只有更换移位接触器来处理。处理故障时如果手边没有移位接触器,为了不影响使用,可将移位接触器的两个端子连线临时封连,等到把移位接触器拿来后立即更换,绝不能拖延时间太长,因为移位接触器是监督道岔是否挤岔的装置。

3、常见的机械故障及处理方法

⑴道岔动作杆调整螺丝处,因为维规要求道岔应有不少于5mm 的空动距离,所以调整螺丝与袖套之间有5mm左右的空隙。在冬季,由于下雪,袖套下面的雪在道岔动作过程中进入袖套造成道岔空动距离小,影响道岔的走行距离使道岔不能正常转换,检查柱不能落入表示杆缺口内。好象是道岔密贴过紧,电机空转,检查柱不能落入表示杆缺口内。

⑵、由于线路冬季起冻害或春季翻浆冒泥造成岔尖的滑装板高低不平即所说的吊板、轨距变动等使道岔的尖轨不能转至极处密贴或4mm试验不合格、道岔无表示等故障。

⑶道岔尖轨尖端部分密贴而竖切部分不密贴(即只有尖轨尖端的一小段密贴而后面的空隙很大),造成道岔尖轨反弹过大,重者造成

检查柱不能落入检查块缺口内,道岔无表示。

⑷挤切销断

挤切销折断后,移位接触器的接点断开,切断道岔表示电路。

处理方法:将齿条块上的挤切销盖拧开,取出挤切销头。然后将连接动作杆和动作连接杆的销子取下,将动作杆从齿条块中抽出来,将折的冲挤切销出去,再把动作杆安上,将连接动作杆和动作连接杆的销子安上,安上挤切销,拧上盖。

⑸自动开闭器拐轴弯曲

自动开闭器拐轴弯曲后,动接点打入两边静接点的深度都不够,或一边够另一边接触不上。

处理方法:更换自动开闭器。

⑹摩擦电流小

电动转辙机的摩擦电流要求是在2.3-2.9A,如果由于摩擦带进油、摩擦连接器生锈等原因使摩擦电流变小,岔尖的滑装板吊板等原因使尖轨不能密贴。

处理方法:如果经测试是摩擦电流小,增大摩擦电流,但不能超过2.9A。如果是工务原因,找工务解决。

四、道岔室外控制电路混线故障分析

道岔发生室外故障,故障点的不同,表现到控制台上的现象也各有不同,有些故障现象较为特殊。在此,以四线制道岔控制电路,自动开闭器1、3闭合为定位的电路为例,对室外设备的混线故障进行分析。

(一)X1与X2相混

现象:由定位转向反位时,道岔启动后烧断反位DF220的熔断器RD2,道岔停在四开位置,无表示。

分析:X1与X2相混,Xl的DZ220电源经自动开闭器接点4l-42接点接到电机l端子,所以X2的DZ220电源经自动开闭器接点11-12接到电机2端子。

(二)X1与X3相混

现象:道岔原在定位,无位置表示,向反位操纵后,道岔能转换完毕,但在反位密贴处来回窜动,无位置表示。

分析:道岔转换完毕,断开第一、三排接点,接通第二、四排接点,但1DQJ缓放,启动电路尚未断开,于是DZ220V电源经11—21-22--二极管正极--二极管负极--23-24---01-02--43-44--X3--X1---41-42电机1、3、4--05-06--l~DF220接通定位启动电路,道岔转向定位,第二、四排接点断开,第一、三排接点接通,又接通了反位启动电路,使道岔转向反位,如此循环,出现道岔来回窜动的现象。

若道岔原在反位,则有反位表示,向定位操纵,能正常转换但无定位表示,再向反位操纵,则会再次出现上述现象。

(三)X2与X3相混

现象:道岔原在定位,有定位表示;向反位操纵,道岔能转换完毕,无反位表示。

分析:因X3与X2相混,将反位表示电源短路,造成反位无表示,向定位操纵,可转换完毕。因DZ220、DF220被二极管阻断,

故不会出现X1与X3相混时出现的故障现象,原因与上面相同。

(四)Xl与X4相混

分析:道岔原在定位,有定位表示;向反位操纵时,先后熔断定、反位的DF220熔断器RD1、RD2,道岔不能转换完毕,一直无位置表示。

分析:由定位操纵至反位,1DQJ个,2DQJ尚未转极时,将DZ22O、DF220短路,烧定位DF220熔断器RD1;当2DQJ转极后,DZ220和反位DF220正常供出,道岔启动,但当第四排接点接通时,X4的DF220经X1--4l-42,直接接到定子的线圈1上,从而将转子线圈短路,导致反位DF220的熔断器RD2熔断,道岔停止转换,定反位均无表示。

若道岔原在反位,向定位操纵时,只要2DQJ转极,直接将DZ220、DF220电源短路,熔断定位的DF220电源熔断器RDl,道岔不能启动,无位置表示。

(五)X2与X4相混

现象:道岔原在定位,向反位操纵时,2DQJ转极后,直接烧反位的DF220熔断器,道岔不能启动,无位置表示;道岔原在反位,向定位操纵时,1DQJ个,直接烧反位D孔20 熔断器,2DQJ转极后,道岔刚一启动,烧定位DF220熔断器,无位置表示。

分析:参照“X1与X4相混”分析。

(六)X3与X4相混

现象:道岔原在定位,操纵至反位时,道岔转换完毕,有反位表

示,但反位的DF220熔断器RD2熔断。

分析:X3与X4相混,当道岔向反位转换完毕后,虽然反位启动电路被切断,但在1DQJ缓放时,X2的DZ220经11—2l-22--二极管正极--二极管负极--23-24—43-44--X3--X4--DF220的构成通路,将DZ220、DF220短路,熔断反位熔断器RD2。

若道岔原在反位,能正常转换到定位,当再次向反位操纵时,出现上述现象。操纵至定位时,之所以不熔断定位熔断器RD1,是因为DZ220、DF220被二极管反向阻断。

以上所分析的故障现象均是在两线完全短路的情况下出现的。当不完全短路时(即有一定的短路电阻)或因电缆较长且短路点较远,其回路有一定的线路电阻时,可能不会熔断室内熔断器,但控制台电流表的读数较大。

五、特殊故障的判断技巧

l、道岔的正常表示电压:交流为70V左右,直流为60V左右。道岔表示电路正常时,无论是第一、三排接点闭合还是第二、四排接点闭合,其极性为:

定位:X1(+) X3(-)

反位:X2(-) X3(+)

若二极管接反,则交直流电压正常,上述极性相反,道岔无定反位位置表示。

2,若自动开闭器32与33或22与23错线,其现象是反位或定位表示正常,定位时X1与X3或反位时X2与X3的极性相反,但交

直流电压正常。

3.若X1与X2错线(软线或电缆在电缆盒内错线),其现象是道岔动作正常,但道岔的转换方向与车站值班员的操纵意图相反,定、反位无表示。若二极管同时也接反,则会出现室内道岔表示与道岔实现位置相反的现象(此情况最危险)。

4.若电机端子1、2接反,则会造成电动机的旋转方向相反,即道岔在定位仍向定位转,道岔在反位仍向反位转,造成道岔不能转换位置(控制台电流表的指示为故障电流的读数)。

5.在分线盘上进行测试,可以确定道岔的故障范围,具体方法如下:

(1)道岔表示正常时,测得交流电压70V左右,直流电压60V左右(视道岔距继电器室的距离),其数值略有变化。

(2)若测得约2V交流电压,无直流电压,则可能是二极管击穿(交流2V电压为电缆线路压降)。

(3)若测得交流接近于0V电压,无直流电压,则可能是室外发生了短路故障。

(4)若测得交流110V左右电压,无直流屯压剧说明室外发生了断线故障。

(5)若测得的交流和直流均为0V,则说明室内断线。

(6)若测得直流150V左右,交流160V左右的电压,则说明表示继电器或有关连线断(系电容器被充电后的峰值电压)。

(7)若测得交流10V左右,直流8V左右的电压,则说明电容器断

线。

(8)若测得交流55V左右电压,直流45V左右电压,则说明电容器短路。

6,若启动电路发生故障,不能操纵道岔,在分线盘即可以直接区分室内外故障,具体方法如下:

(1)将万用表置于电阻R X l挡。

(2)将故障道岔的单独操纵按钮CA拉出,防止因误操纵道岔烧坏万用表或启动熔断器。

(3)在分线盘上测X2、X4(定位转反位时不启动)或Xl、X4(反位转定位时不启动)。

①若电阻值为30Ω左右(此数值为电缆回线电阻、电动机的定子和转子电阻之和,其中电缆回路电阻视其距信号楼的远近而有一定变化,电动机定子电阻约为6Ω,转子电阻约为5Ω),则说明室外正常,室内故障。

②若电阻值为无穷大,则说明室外断线故障。

注意:用此方法时,应在控制台上将故障的道岔单独操纵按钮拉出防护,并与车站值班员联系好,严禁在此过程中操纵道岔。

盾构机常见故障分析

盾构机常见故障原因及对策 1.漏油 液压驱动在盾构机部占重要部分,漏油为液压常见故障,漏油多发生在管路接头处,漏油的原因视情况而定。一般有两种原因,一是接头连接处松动,这种情况用对应型号的扳手紧固即可,盾构机管路螺纹均为右旋,扳手顺时针扳为紧固。二是管路螺纹磨损,导致接头配合不紧密,此种情况可以缠一些生胶带在螺纹上。有些管路部有密封圈,可能是密封圈老化、密封圈破损等原因造成,则需更换密封圈。漏油处理完之后,用干抹布擦干净管路及泄露的液压油,隔一段时间再来观察,如果仍然泄露,则需进一步处理。在拆开接头处理漏油故障过程中,注意不要让管路螺纹沾上杂质。 2漏气 漏气一般能通过听声音来辨别,漏气原因与漏油类似,多为接头松动,或螺纹配合不紧密,解决方法可以参照漏油故障解决方法。 3漏水 漏水多发生在管路接头处,解决方法也可以参照漏油的解决方法。有些情况发生在法兰连接处,需紧固法兰连接螺栓;如果紧固无效,请拆开法兰连接面,查看法兰密封垫片有无破损,如有损坏,及时更换。

4螺栓松动 有些螺栓处在经常振动的位置,比如拼装回旋马达机座上的螺栓,加泥泵周围的螺栓,还有电动机的机座等。由于振动,这些螺栓比较容易松动,应定时检查,加以紧固。 5 注浆管路上的控制阀对操作无响应 选中注入口阀,注入口阀通常会在短时间开闭,如果超过一段时间,也没有全闭、全开时,要考虑以下的原因。 (1)空气驱动阀(1-2秒):供给空气圧力、流量的低下,注入口阀处的同步注浆材料凝固。 (2)注入口阀(1秒):注入口开闭用液压泵停止,注入口阀处的同步注浆材料凝固。 (3)电动球阀(9-10秒):注浆材料凝固,电磁阀电源没有合闸。 对于空气压力、流量低下,应启动空压机补充气压;如果压力正常,还不能驱动,则拆开对应的管路,检查注浆材料是否凝固,如果凝固,则应清除管路中的凝固材料,对管路进行清洗,保证管路通畅。 6 注浆管路压力过高或者过低 盾构机有四条注浆管路,每个管路上设一压力传感器,在注浆触摸屏上有注浆压力值显示,不同注入压力其背景颜色不同。 黑色……注入压力正常

电务常见故障的分析与处理讲义#

电务常见故障地分析与处理讲义 一、处理故障应具备地基本素质 业务素质: 1.熟悉管内所有设备地分布情况. 2.掌握管内所有设备地工作原理. 3.掌握管内设备地位置. 4.掌握基本单元电路(单元电路必须能背划)及相应端子号(可看图版,最好是绘制一份小册子). 个人素质: 1.具有一定地处理与分析故障地能力. 2.具有良好地思维判断分析能力. 3.良好地心理素质,处理故障时稳扎稳打,不慌不躁. 二、查找故障地基本方法 1.问:问值班员,弄清故障情况. 2.办:进行办理进路、闭塞、搬动道岔等试验 3.听:听继电器、电话、电铃地动静. 4.看:看表示灯和设备地状态. 5.分:分析是哪一种故障. 6.测:用万能表测出故障位置. 三、故障地应急处理 信号设备发生故障后,决不能因小失大,使故障升级,为

避免发生一般事故而违章作业以致造成重大事故. 首先,加强与车务地合作,采取有效措施,如变更接发车方式等,使故障不影响行车. 其次,在不违章地情况下,可采取紧急措施不让故障导致发生事故.如道岔扳不动时,可摇动道岔密贴后办理进路;如道岔不密贴时,可请工务将道岔钉死在一侧. 再次,千万不能进行封连接点、拍打有极继电器、沟通死区间等违章作业. 四、信号常见故障地主要原因 1.电源: ①电源端电压无,其原因可能是:干电池地连接线断线、 蓄电池地引出线腐蚀断线、端子松脱、交流电停电(元备用电源、时)等; ②电源地端电压不足,其原因可能是:干电池地内电阻增高、端子松动、炭棒接触不好,蓄电池漏电过甚、交流电压(无稳压器时)、电源端子间短路、共用电源窜电等; ③电源地端电压不稳,其原因可能是:端子松动有半接触 地现象; ④电源地极性接反. 2.电路(导线): ①断线,其原因可能是:电路中地熔丝烧断、外线路被切断、轨道引接线碰断、各连接线被拉断等;

道岔曲线分析

道岔曲线分析 一、正常的单动道岔电流曲线及多动道岔电流曲线 1、单动道岔动作电流曲线 T1时段看出电机刚启动时,有一个很大的启动电流。 T2时段为道岔的转换过程,在这个过程中电机经过2级减速,带动道岔平稳转换,动作电流曲线平滑,如果动作电流小,表明道岔平稳转换阻力小,如果动作电流大,表明转换阻力大,如果动作曲线波动大,则表明道岔存在电气或机诫方面的问题。 T3就是常说的最大锁闭电流,由于道岔刚密贴,道岔密贴力产生,也就是阻力增大,动作电流有所升高,如果T3很小或等于动作电流,这个道岔锁闭力不足,需要对道岔进行4毫米标调。如果锁闭最大电流大于动作电流0.3安,说明锁闭电流超标。 T4时段一般是0.4秒左右,这一时段是1DQJ缓放产生,如果无T4也是不正常曲线, 2、双动及多动道岔动作电流曲线 双动、三动及四动道岔,其动作过程是串连的,第一动转换完毕,其自动开闭器接点自动切断其动作电流,同时接通第二的动作电流,以此类推,因此其动作 电流曲线是单动的组合

3、双机多动道岔曲线 双机多动道岔曲线是两个单动曲线的叠加、特点是由于B动阻力比较小,转的快、就形成了下台阶曲线、这种曲线属于正常曲线,有时双机锁闭电流稍大一些,也就是同时锁闭时,锁闭电流应该小于0.6A。最后一动为双机牵引,形成下台阶曲线 4、提速道岔曲线 由3条曲线组成,绿色为A相,黑色为B相,红色为C相,也可以单相显示, 分别显示一条黑线或红、绿线等。

电动液压转辙机 二、特殊故障曲线分析(单动道岔故障曲线) 1、动作电流过小曲线 当道岔转换过程中,突然自己停转,控制台无表示,实际道岔在四开状态,此现象有两种原因,一是动作电流过小,小于0.7A 时,是电机特性不良,二是 1DQJ 3-6动作电

ZD6型转辙机故障分析及处理

目录 引言 (2) 道岔控制电路故障分析及处理 (3) 1 区分室内外故障 (3) (1)道岔启动电路的区分 (3) (2)道岔表示电路的区分 (4) 2 混线故障分析 (4) (1)X1与X2相混 (4) (2)x1与x2相混 (4) (3)X2与X3相混 (5) (4)X1与X4相混 (5) (5)X2与X4相混 (6) (6)X3与X4相混 (6) 结论 (7) 参考文献 (7)

引言 电动转辙机是信号的主要基础设备之一。由于安装使用条件的原因容易受各种因素的影响,所以发生故障的机会也就相应增多,如何运用科学的维修方法减少使用电动道岔故障成了电务部门压缩设备、缩短故障延时的关键。 此材料包括故障的分析及处理方法和故障分析。

道岔控制电路故障分析及处理 ————ZD6型转辙机故障分析及处理 ZD6型转辙机故障,从结构上可分为电路故障和机械故障;从电路动作程序上可分为启动电路故障和表示电路故障;从设备位置上可分为室内设备故障和室外设备故障;从故障现象上还可分为道岔不能启动、空转和无表示故障三种故障。 按照道岔电路的动作程序,结合控制台上电流指针摆动、挤岔电流鸣响及道岔位置表示灯的变化进行综合分析,逐步缩小故障范围,稳、准、快地处理好故障。 1 区分室内外故障 道岔控制电路发生故障时,最关键的就是要区分故障点是在室内还是室外,避免来回跑动,耽误处理故障时间。 (1)道岔启动电路的区分 道岔不能启动时,应首先看清控制台现象,必要时还应在分线盘处测回路电阻,以准确区分在室内还是在室外。 当道岔启动电路故障时,可单独操纵道岔,道岔原来位置表示灯不灭,说明1DQJ未励磁;道岔原来位置表示灯熄灭,但是松开单操纵按钮时,单操原来位置表示灯油点亮,说明2DQJ不转极。上述两种故障现象,可判断故障在室内。 当道岔定、反位表示灯均无表示,且发生挤岔报警时,不能单独操纵道岔,应在分线盘有关端子上册启动电路回路电阻,以区分室内、外故障。 对于四线制道岔来说,X1为定位的启动和表示公用线,X2为反位的启动和表示公用线,X3问哦定、反位表示公用线,X4为定、反位启动公用线。因此,道岔在定位,X2与X4之间应该是通的;道岔在反位,X1与X4之间应该是通的。以道岔在定位为例,X2与X4之间不通,说明故障在室外,如果X2与X4之间有电阻,一般可确定为室内电路开路。为可靠起见,可单独操纵道岔,用万用表直流250V 电压挡在分线盘处测X2和X4有无直流电压,如果无电压,肯定故障在室内,如

分析指南交流转辙机

目录 第一节道岔动作电流曲线分析说明 第二节交流转辙机道岔动作及采集原理一道岔动作电路原理简述 二 S700K单动多机道岔动作特殊点 三 S700K双动多机道岔动作特殊点 四 ZYJ7道岔同步电路原理简述 五信号集中监测系统采集原理简述第三节交流转辙机正常动作电流曲线剖析一 S700K道岔正常动作曲线剖析 二道岔“小尾巴”形成原理简介 三道岔曲线五条外线判别方法 四 ZYJ7道岔正常动作曲线剖析 第四节典型案例分析 一单机道岔典型案例分析 二多机牵引道岔典型案例分析

交流转辙机动作电流曲线分析 第一节道岔动作电流曲线分析说明 信号集中监测系统记录的道岔动作电流曲线能反映道岔在转换过程中道岔控制电路工作状态、转辙机运用状态,通过对道岔动作曲线的分析,能了解道岔转换时的运用质量,还能在故障时进行辅助判断,指导现场有针对性的进行故障处理。 为了保证道岔动作电流曲线分析效果,应做好以下几点: 1.熟悉《铁路信号维护规则》(以下简称《维规》)中的标准,掌握道岔工作电流大小及道岔转换时间,能及时发现道岔运用过程中特性超标现象。 ⑴S700K型转辙机工作电流不大于2A;ZYJ型电液转辙机的工作电流不大于1 .8A。 ⑵S700K型转辙机当道岔因故不能转换到位时,电流一般不大于3A。 2.了解交流转辙机控制电路工作原理。道岔功率曲线能直观反映道岔机械部分运用质量,而道岔动作电流曲线更侧重于记录道岔动作电路的工作状态。因此要做好道岔动作曲线,特别是道岔故障曲线的分析,必须掌握道岔控制电路工作原理。 3.掌握正常情况下的标准动作曲线及标准功率曲线。道岔检修完毕后将正常状态下的电流曲线在监测系统上设置为该组道岔的参考曲线。平时按规定周期调看电流曲线及功率曲线,并与参考曲线对比,发现动作时间、电流、功率与参考曲线偏差较大的及时判断处理。发现道岔动作电流曲线记录不良或电流监测不准确时记录并处理,确保监测设备运用良好。 4.当道岔发生故障后,及时将故障曲线存储,便于今后调看参考。 下面将以现场运用较多的S700K、ZYJ7两种转辙机为例,介绍交流转辙机

(完整版)盾构机的维护保养及常见故障

盾构机的维护保养及故障率控制 盾构是一种集机械、电气、液压、测量和控制等多学科技术于一体、专用于地下隧道工程开挖的重大工程装备。它具有开挖速度快、质量高、人员劳动强度小、安全性高、对地表沉降和环境影响小等优点,与传统的钻爆法隧道施工相比更具有明显的优势, 尤其在地质条件复杂、地下水位高而隧道埋深较大时,只能依赖盾构。由于其机械化、自动化程度高,科技含量高,也相对提高了设备管理的难度。 盾构机管理和维护保养采用日常保养、每周保养和强制保养相结合的方式。除了在盾构机工作中进行“日检”和“周检”保养外,每两周停机8~12 h进行强制性集中维修保养。在强制保养日,由机电工程师组织专业技术人员对其进行全面的保养和维护。 设备进行认真细致的维修、保养,可防止设备零部件非正常磨损与损坏,减缓磨损程度,延长修理间隔期,减少维修费用。目前,在施工单位主要存在两种形式的维修浪费:一是设备的失修。由于设备检查的漏项,预测不准确或经费不足,对设备不重视,造成的设备失修现象,使本来较好的设备、较完善的功能由于某一零件或部件的失修而造成其他零件与功能的连锁性急速损坏,设备性能状况恶化。二是过剩维修。这是由于对设备进行过多的维修,以及过分追求设备性能的完好,如要求修旧如新等,造成的维修浪费。 只要正确操作并谨慎维护,盾构机就能够达到如下要求: (1)通过正确操作和维护、使用适宜的润滑剂进行充分润滑、密切注意设备的运行状态,就可以防止功能不正常; (2)维护工作必须严谨实施,确保盾构机能够安全可靠地运行,减少故障和停机次数。 1.盾构机机械部分的维护保养: 机械保养必须贯彻“养修并重,预防为主”的原则,严格强调以保为主,以保代修,并严格执行保养、清洁、坚固、调整、润滑、防腐“十字作业法”。保养可分为例行保养和定期保养。例行保养在机械每班作业前后及运转中进行。定期保养,除一级保养由操作人员进行外,二、三级保养以保修人员为主,操作人员配合共同进行,包括以下几种情况: (1)一级保养:主要在于维护机械完好的技术状况,确保正常运转; (2)二级保养:以检查调整为中心,从外部检查设备的工作情况,进行调整排除故障; (3)三级保养:对主要部位进行解体检查或用仪器检测,及时消除隐患。 设备修理是修复由于正常或不正常的原因而造成的设备损坏和精度劣化。通过修理更换已经磨损、老化和腐蚀的零部件,使设备性能得到恢复,其实质是对设备有形磨损进行补偿,其目的是及时恢复机械设备的技术状况,延长使用寿命。 盾构机内的机械设备包括各种吊机行车,管片拼装机、喂片机、各种液压泵、电机等,对于它们的维护保养工作也有所不同,由于在长江隧道工程的施工中我们已经做了很详细的维护保养的手册,这里只是简单的介绍一下盾构机主要机械部件的维保内容。

ZD6道岔原理与常见故障分析

道岔的原理及常见故障的分析 一、道岔控制电路的原理 1、 道岔启动电路应保证实现以下技术条件 ⑴道岔区段有车时,道岔不应转换。此种锁闭作用叫做区段锁闭。 ⑵进路在锁闭状态时,进路上的道岔都不应转换。此种锁闭作用叫做进路锁闭。 ⑶在道岔启动电路已经动作以后,即使有车驶入该道岔区段也应保证道岔继续转换到底。 ⑷道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电机故障,以至电动 机电路不通时,应使启动电路自动停止工作复原,保证道岔不会再转换。 ⑸为了便于维修试验,以及在道岔尖轨与基本轨之间夹有障碍物致使道岔转换不到底时应能 使道岔转回原位。 2、 道岔启动电路构成原理 ⑴1DQJ 电路励磁电 路 ① 、道岔按钮CA 道岔按钮CA -61 CA-61 与 CA-62 ② 、锁闭继电器SJ -8前接点。 在6 5 0 2电器集中里,SJ 吸起反映道岔区段空闲和进路在解锁状态。当道岔区段有车时 或进路在锁闭状态时,SJ 落下,SJ81-82断开切断道岔启动电路,对道岔实行进路锁闭和区 段锁闭使道岔不能转换。 ③ 、道岔按钮继电器CAJ 前接点和条件电源 “KFZFJ”或“KFZDJ'。CAJ —Q 是道岔按钮 按下DAJ 吸起后闭合,是道岔按钮按下闭合接点的复示继电器。条件电源 “KFZFJ”在道岔 总反位继电器吸起后才有电。条件电源 “KFZDJ'在道岔总定位继电器吸起后才有电。 ④ 、道岔定位操纵继电器和DCJ 接点道岔反位操纵继电器FCJ 接点。当排列进路时,需 要进路上的道岔向定位转动则DCJ 吸起,当进路上的道岔需要向反位转动时,FCJ 吸起。 ⑤ 道岔第二启动继电器第四组接点(2DQJ 141 )反映道岔处在什么位置。 ?141 — 142闭 合,道岔处在定位。141 — 143闭合道岔处在反位。 ⑥ 向定位单独操纵道岔的操作方法为: ?同时按下道岔的单操按钮和总定位按钮, 这时CAJ 吸 起接通电路。ZDJ 吸起使“K — ZDJ'有电。1 DQJ 的励磁电路为: KZ — CA — SJ-Q —1 DQJ3.4 线圈一2DQJ 141_143 — CAJ — KF-ZDJ 。 ⑦ 道岔向反位单独操纵的操作方法为:同时按下道岔的单操按钮和总反位按钮,这时 CAJ 吸 起接通电路。ZFJ 吸起使“K — ZFJ”有电。1 DQJ 的励磁电路为:KZ — CA — SJ-Q —1DQ J 3.4 线圈一2DQJ 141-142 — CAJ — KF-ZFJ 。 ⑵2DQ J 电路 1DQ J 吸起后,2 DQJ 跟着吸起。励磁电路为: KZ — 1 CAJ21-22 — KF — ZDJ.或 KZ — 1 DQJ41-42 —2 DQJ1、 ⑶1DQJ 自闭电路 ①从反位向定位操纵 1 DQJ 吸起, 2 DQJ 转极后,1 DQJ 自闭电路为: -6接点 与CA-62接点定位时闭合,在维修转辙机或清扫道岔时,把CA 按钮拉出 断开 对道岔实行单独锁闭。 DQJ31-32 -2 DQJ J 3.4 线圈 2 线圈 CAJ11-12 — KF — ZFJ.

道岔表示电路断路故障处理

道岔表示电路断路故障处理 摘要:通过分析“四线制道岔表示电路”中固有的规律、特点,并利用这些规律、特点来分析、判断、查找表示电路故障,使之成为压缩故障延时,快速处理故障的有效手段。关键词:道岔表示故障处理方法 道岔控制电路,分启动电路和表示电路两部分,启动电路指动作电动转辙机的电路,而表示电路(见图1付带有虚线标示的电路)指把道岔位置反映到信号楼里的电路。在道岔电路故障中,表示电路故障占大部分,而处理故障的快与慢直接影响着铁路运输的安全、正点。 在长期的工作实践中,通过学习分析“四线制道岔表示电路”中固有的规律、特点,并利用这些规律、特点来分析、判断、查找道岔表示电路故障,收到了很好的效果。 图1 1 四线制道岔表示电路规律特点 因为道岔表示不仅用于监督,而更重要的是用于联锁,所以道岔表示电路是安全电路,必须采取较完善的故障-安全措施。 1.1 规律特点之一 四条控制线各线的作用分别是: X1 ——控制电动机向定位动作和定位表示电路共用线; X2 ——控制电动机向反位动作和反位表示电路共用线; X3 ——表示电路专用回线; X4 ——启动电路专用回线。 1.2 规律特点之二

表示电路中,大部分元器件都是串联结构,并且电路中由于串接有整流二极管(见图2)并采用了位置防护法,安装在室外电路的最远端。因此,在电路中即可测量出交流电压,也可测量出直流电压,当发生故障时,可根据某一测试点测试的不同电压数值或极性判断故障性质。 图2四线制道岔表示电路原理图 1.3 规律特点之三 每组道岔表示电路,都设有专用的表示变压器(BD1-7型,变压比为2:1),即采用了电源隔离保护法,因此,当联系线路之一混入其他电源时,不致构成闭合回路,因而表示继电器不会误动。 1.4 规律特点之四 电路中由于串接有整流二极管,所以只有半波整流电流流通。电流由定(反)位表示继电器D(F)BJ的端子1流入,从端子4流出,因而使D(F)BJ励磁吸起。在另一半波,由于有电容器C的放电电流,所以能使表示继电器保持在吸起状态。 1.5 规律特点之五 当联系线路发生短路时,整流二极管即失去作用,由于电路中串接有750Ω限流电阻,(防止烧毁器材及0.5A保险,使整个始终处于有电状态。)在继电器线圈中,只有交流电流流过,但因为它们都是直流偏极继电器,所以都不能吸起。体现了故障-安全的原则。 1.6 规律特点之六 如果不慎将外线X1和X2或将二极管正、负极接颠倒了,道岔能向相反的方向操纵,但这时相当于将整流二极管在电路中反接,于是改变了半波整流电流的方向,不能使表示继电器励磁吸起。

道岔的原理及故障分析

道岔的原理及常见故障的分析 一、道岔控制电路的原理 1、道岔启动电路应保证实现以下技术条件 ⑴道岔区段有车时,道岔不应转换。此种锁闭作用叫做区段锁闭。 ⑵进路在锁闭状态时,进路上的道岔都不应转换。此种锁闭作用叫做进路锁闭。 ⑶在道岔启动电路已经动作以后,即使有车驶入该道岔区段也应保证道岔继续转换到底。 ⑷道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电机故障,以至电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会再转换。 ⑸为了便于维修试验,以及在道岔尖轨与基本轨之间夹有障碍物致使道岔转换不到底时应能使道岔转回原位。 2、道岔启动电路构成原理 ⑴1DQJ电路励磁电路 ①、道岔按钮CA-6接点 道岔按钮CA-61与CA-62接点定位时闭合,在维修转辙机或清扫道岔时,把CA按钮拉出CA-61与CA-62断开对道岔实行单独锁闭。 ②、锁闭继电器SJ-8前接点。 在6502电器集中里,SJ吸起反映道岔区段空闲和进路在解锁状态。当道岔区段有车时或进路在锁闭状态时,SJ落下,SJ81-82断开切断道岔启动电路,对道岔实行进路锁闭和区段锁闭使道岔不能转换。 ③、道岔按钮继电器CAJ前接点和条件电源“KF-ZFJ”或“KF-ZDJ”。CAJ-Q是道岔按钮按下DAJ吸起后闭合,是道岔按钮按下闭合接点的复示继电器。条件电源“KF-ZFJ”在道岔总反位继电器吸起后才有电。条件电源“KF-ZDJ”在道岔总定位继电器吸起后才有电。 ④、道岔定位操纵继电器和DCJ接点道岔反位操纵继电器FCJ接点。当排列进路时,需要进路上的道岔向定位转动则DCJ吸起,当进路上的道岔需要向反位转动时,FCJ吸起。 ⑤道岔第二启动继电器第四组接点(2DQJ141)反映道岔处在什么位置。?141-142闭合,

道岔一般故障处理

道岔一般故障处理 当信号设备发生故障时,信号人员首先登记停用设备,且立即上报;经车站值班人员同意并签认后,应积极查明原因,排除故障,尽快恢复使用。 一、道岔机械故障处理 1、道岔转不到底的故障现象和原因 道岔转不到底的故障现象是操纵道岔后,控制台上的交流电流表一直可以测到动作电流,动作表示灯亮30秒后熄灭。 其故障原因主要是机械卡阻。属室外设备故障。其中: 1)外界影响的原因有:道岔清扫不良、滑床有杂物。岔尖与基本轨之间夹有异物。 2)工务设备的原因有: a)尖轨(或心轨)爬行超限; b)轨距变化。不符合标准; c)尖轨工作边直线度超限; d)尖轨及心轨弯腰或拱背; e)基本轨有肥边、顶铁过紧、等等。 3)电务设备的原因有: a)电动转辙机(或密贴检查器)内部故障; b)道岔密贴调整不良; c)杆件不平行;

d)杆件或其它机件卡阻。 2、造成道岔转换不到底的机械故障的几种现象及处理 造成道岔转换不到底的机械故障有: 1)道岔已转换到底,道岔已密贴,外锁闭设备已锁闭,表示杆卡缺口,室内无表示(转辙机内接点座的动接点无法打入静接点内)。 应立即检查工务轨距,轨道水平差有无变化,电务设备各杆件各部连接紧固螺丝是否松动。如工务设备不良应及时与工务联系克服。属电务设备问题应立即处理解决(按处理故障的相关规定执行)。 2)道岔不能解锁。 应检查外锁闭装置是否调整太紧,而造成转辙机带不动道岔,另外,还要检查工务滑床板有无吊板,从而造成外锁闭设备磨底轨。 3)道岔不能转换,即道岔动作到四开位置后就不再动作。 应检查工务设备是否有变化,轨面高度差是否超标,是否吊板,基本轨是否爬行造成杆件、外锁闭的卡阻。尖轨与基本轨之间是否有异物;转辙机的摩擦转换力是否有变化(变小造成牵引力不够)。转辙机内是否有异物造成卡阻。查明原因后应立即处理。 4)道岔不能锁闭,即道岔转换到位后外锁闭装置不能锁闭或不能完全锁闭。 应立即检查外锁闭装置是否磨轨底,连接杆是否卡阻。滑床板是否严重缺油锈蚀,密贴是否过紧,基本轨与尖轨之间是否夹有异物。应根据情况抓紧处理。 3、道岔密贴调整不良故障的处理

盾构机主驱动常见故障分析

盾构机主驱动常见故障分析 [摘要]主驱动是盾构机的核心驱动部件,在盾构法隧道施工过程中起到动力转换和输出的作用。在主驱动的实际使用中,主驱动故障的早期预防、常规保养,直接影响着盾构机的使用工况,了解主驱动的常见故障,有助于在常规保养中对故障点加以预防,有助于在出现故障时及时判定原因,制定处理方案。 【关键字】盾构机;主驱动;故障分析 引言 盾构机作为集机械、液压、电气与自动化控制于一体的综合性大型施工机械,以其优质、高速、安全的优势在地铁隧道施工与穿山隧道施工中被广泛应用。盾构机的主驱动则是其核心驱动部件,直接起到动力转换和输出的作用。在正常服役条件下,电机、马达、箱体结构等具备较长的使用寿命,对主驱动总成的寿命影响较小。常见的主驱动异常损坏大多发生在前部密封、密封滑环、主轴承、减速机、主轴承等方面。 一、盾构机主驱动的主要组成 1、主驱动箱:主驱动箱是主驱动总成的的主要结构件,用于承载主轴承、驱动法兰、减速机机等其他部件,同时提供主轴承润滑系统的齿轮油容纳空间,为前部密封及油脂润滑系统提供油脂通道。 2、主轴承:主驱动的核心组件,外环与主驱动箱相对固定,内环与刀盘驱动法兰相连,是驱动刀盘运转的过渡连接部件。 3、连接环:连接、固定主驱动各结构件,配合主驱动箱,提供润滑油脂通道。 4、密封隔环:将多道唇形密封分离隔开,形成空腔以填充润滑脂。 5、密封滑环:提供唇形密封的接触面。 6、密封压环:固定唇形密封,形成合适的预紧压力。 7、刀盘驱动法兰:连接主轴承大齿圈与刀盘法兰的连接部件,带动刀盘旋转。 8、马达或电机:刀盘的动力源,将流体势能或电能转化成机械能。 9、减速机:配合马达或电机,通过旋转速度的转换实现较大的驱动扭矩。

道岔常见故障的分析

道岔常见故障的分析 道岔的原理及常见故障的分析 一、道岔控制电路的原理 1、道岔启动电路应保证实现以下技术条件 ⑴道岔区段有车时,道岔不应转换。此种锁闭作用叫做区段锁闭。 ⑵进路在锁闭状态时,进路上的道岔都不应转换。此种锁闭作用叫做进路锁闭。 ⑶在道岔启动电路已经动作以后,即使有车驶入该道岔区段也应保证道岔继续转换到底。 ⑷道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电机故障,以至电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会再转换。 ⑸为了便于维修试验,以及在道岔尖轨与基本轨之间夹有障碍物致使道岔转换不到底时应能使道岔转回原位。 2、道岔启动电路构成原理 ⑴1DQJ电路励磁电路 ①、道岔按钮CA-6接点 道岔按钮CA-61与CA-62接点定位时闭合,在维修转辙机或清扫道岔时,把CA按钮拉出CA-61与CA-62断开对道岔实行单独锁闭。 ②、锁闭继电器SJ-8前接点。 在6502电器集中里,SJ吸起反映道岔区段空闲和进路在解

锁状态。当道岔区段有车时或进路在锁闭状态时,SJ落下,SJ81-82断开切断道岔启动电路,对道岔实行进路锁闭和区段锁闭使道岔不能转换。 ③、道岔按钮继电器CAJ前接点和条件电源“KF-ZFJ”或“KF-ZDJ”。CAJ-Q是道岔按钮按下DAJ吸起后闭合,是道岔按钮按下闭合接点的复示继电器。条件电源“KF-ZFJ”在道岔总反位继电器吸起后才有电。条件电源“KF-ZDJ”在道岔总定位继电器吸起后才有电。 ④、道岔定位操纵继电器和DCJ接点道岔反位操纵继电器FCJ接点。当排列进路时,需要进路上的道岔向定位转动则DCJ吸起,当进路上的道岔需要向反位转动时,FCJ吸起。 ⑤道岔第二启动继电器第四组接点(2DQJ141)反映道岔处在什么位置。?141-142闭合,道岔处在定位。141-143闭合道岔处在反位。 ⑥向定位单独操纵道岔的操作方法为:?同时按下道岔的单操按钮和总定位按钮,这时CAJ吸起接通电路。ZDJ吸起使“KF-ZDJ”有电。1DQJ的励磁电路为:KZ-CA-SJ-Q-1DQJ3.4线圈-2DQJ141_143-CAJ-KF-ZDJ。 ⑦道岔向反位单独操纵的操作方法为:同时按下道岔的单操按钮和总反位按钮,这时CAJ吸起接通电路。ZFJ吸起使“KF-ZFJ”有电。1DQJ的励磁电路为:KZ-CA-SJ-Q-1DQJ3.4线圈-2DQJ141-142-CAJ-KF-ZFJ。

关于四线制道岔电路常见故障的检测及处理方法

关于四线制道岔电路常见故障 的检测及处理方法 随着铁路跨越式发展,铁道信号设备也在不断的更新换代,以保证地对空安全和提高行车效率,以适应发展的更大要求。从手动控制的臂板信号、手扳道岔,发展到车站集中控制的色灯信号机及电动转辙机,再到目前最为先进的DMIS系统及微机联锁设备,这些都证明铁路在发展过程中的显著改进,为社会各个行业的交通运输提供了更便捷、更安全的服务。 目前,国内绝大部分地区采用的6502电气集中联锁方式进行控制。而在6502电气集中控制用于控制道岔的电路有三线制道岔控制电路和四线制道岔控制电路之分。其中,在现场使用较多的是四线制道岔控制电路。所以,我在本论文中以四线制道岔为例,进行分析和讨论。同时,介绍一些四线制道岔控制电器的常见故障及处理方法。 一、道岔控制电路的组成及继电器作用 道岔控制电路分启动电路和表示电路。启动电路指动用电动转辙机的电路,表示电路指把各部分位置反映到信号楼里来的电路。其中,道岔启动电路由1DQJ、2DQJ、熔断器、电动转辙机的自动开闭器及电机电路组成。1DQJ为JWXC-H125/0.44型继电器,作用是检查道岔区段是否空闲,进路是否在解锁状态,监督电动机能否正常动作。1DQJ3-4线圈起检查作用,1-2线圈起监督作用。2DQJ为加强接点的有极继电器JXJXC-220/220型,作用:1、2DQJ转极、改变绕阻的电流方向,实现正转、反转或中途转回;2、利用2DQJ极性保持特性,在车驶入道岔区段时,保证道岔转换到底。道岔启动电路的电源为KZ、KF直流24V电源,用于控制1DQJ、2DQJ动作,DZ、DF直流220V电源,用于控制转辙机动作。道岔表示电路由室内表示变压器、定位表示继电器DBJ、反位表示继电器FBJ、室外电动转辙机自动开闭器接点、整流匣、有关接点及电缆组成。电气集中表示继电器采用偏极继电器JPXC-1000型,与室外整流匣配合给出相应的道岔位置表示,表示电源为交流220V,用于动作表示继电器。

盾构机常见故障分析

盾构机常见故障分析 盾构机 1常见故障原因及对策。漏油 液压传动在盾构机中占有重要地位。漏油是常见的液压故障。漏油主要发生在管接头处,漏油的原因取决于具体情况。一般来说,有两个原因。一是关节松动。在这种情况下,可以用相应型号的扳手拧紧。盾构机管道螺纹为右旋,扳手顺时针拧紧。第二个是管道的螺纹磨损,导致接头松动。在这种情况下,一些未加工的胶带可以缠绕在线上。有些管道内部有密封圈,这可能是由于密封圈老化、密封圈损坏等原因造成的。,需要更换密封圈。漏油处理后,用干布清洁管道和泄漏的液压油,并定期再次观察。如果漏油仍然存在,需要进一步处理。在拆卸接头处理漏油故障的过程中,注意不要让管道螺纹沾染杂质。 2漏风 漏风一般可以通过听声音来识别。漏气的原因类似于漏油,主要是因为接头松动或螺纹不紧密配合。该解决方案可参考漏油故障的解决方案。 3漏水 漏水多发生在管道接头处,解决办法也可参照漏油解决办法。有些情况发生在法兰连接处,法兰连接螺栓需要拧紧。如果紧固无效,请拆卸法兰连接面,检查法兰密封垫是否损坏。如果损坏,及时更换 4螺栓松动 有些螺栓处于频繁振动的位置,如装配旋转电机底座上的螺栓、

泥浆泵周围的螺栓和电机底座等。由于振动,这些螺栓容易松动,应定期检查并拧紧。 5灌浆管线上的控制阀对操作无响应。 选择喷射口阀。喷射口阀将在短时间内正常打开和关闭。如果一段时间后没有完全关闭和完全打开,应考虑以下原因 (1)气动阀门(1-2秒):当供气压力和流量较低时,喷射口阀门处的同步灌浆材料凝固 (2)注入口阀(1秒):关闭用于开启和关闭注入口的液压泵,注入口阀处的同步灌浆材料凝固 (3)电动球阀(9-10秒):灌浆材料凝固,电磁阀电源未接通对于低气压和低流量,启动空气压缩机补充气压;如果压力正常,还不能驱动,拆卸相应的管道,检查灌浆材料是否凝固。如果是,清除管道中的固化物质,并清洁管道,以确保管道畅通。 6灌浆管道压力过高或过低。 盾构机有四条注浆管道。每个管道都配有一个压力传感器。灌浆压力值显示在灌浆触摸屏上。不同的注射压力有不同的背景颜色。 黑色...注射压力为正常橙色...喷射压力持续为低红色...喷射压力高当喷射压力高或压力持续低时,喷射口阀和主喷射阀自动关闭注入压力低,请考虑泥浆剩余量是否不足。 的注入压力太高。有必要考虑灌浆材料的固化可能会堵塞灌浆管道。请拆卸管道进行检查,清理管道中的固化物,确保管道畅通。 7灌浆泵无法运行

提速道岔故障分析及查找方法

提速道岔施工调试过程中常见故障 分析及查找方法 姓 名 白斌 学 号 20097287 院、系、部 电气工程系 班 号 方0953-4 完成时间 2012年12月21日 ※※※※※※※※※ ※※ ※※ ※※ ※※ ※※※※※※※ 2009级 铁道信号

摘要 “提速道岔”中道岔是一种常见的铁路配件,为了满足提速的需要,研制并生产了直向过岔最高速度为160公里/小时的提速道岔。提速道岔主要是12号道岔,共有两种型式,即整铸辙叉式和可动心轨式。由于提速道岔转换设备更新较快,特别是勾式外锁型提速道岔上道后,在日常工作中,存在不知道标准、不会对标调整,不能发现设备存在的隐患、问题,如因道岔密贴调整过松造成杆件、锁闭勾铁磨耗大,或者高速过紧出现打空转或不解锁,导致设备故障多。本文介绍了铁路信号工程施工中提速道岔的重要性,并具体分析了在施工调试过程中经常遇到的几种故障及查找方法,为施工过程中对提速道岔的调试提供了一定参考。 关键词:铁路配件提速道岔调试故障分析

目录 摘要 (2) 引言 (5) 一、机械故障分析 (6) (一)空转故障分析 (6) (二)道岔卡缺口故障分析 (6) (三)道岔油管漏油、各连接处漏油应急处理办法 (6) 二、电路故障分析 (7) (一)室内控制电路故障分析 (7) 1. 1DQJ(JWCXC—H125/0.44)不动作 (7) 2. 1DQJF1DQJ(JWCXC—H125/0.44)不动作 (7) 3. 2DQJ(JYJXC—135/220)不转极 (7) 4. DQJ不能自闭 (7) 5. 27Ω电阻断线 (8) 6. HBJ(JWXC—1700)不能动作 (8) 7. 继电器型号不同 (9) 8. TJ不能动作 (9) (二)定反位无表示电路分析(以定位表示做分析) (9) 1. 二极管断线 (9) 2. X1断线 (9) 3. X2(反位X3)断线 (9) 4. X4(反位X5)断线 (9) 5. B动D1、D2短路 (9) 6. 电机2断线 (9) 7. 电机3断线 (10) 8. 楼外二极管D短路 (10) 9. 楼外电阻R短路 (10)

盾构机几种常见故障的处理

盾构机几种常见故障的处理 1.泥土粘着并堵塞刀盘 产生原因: 盾构机在粘性土层中施工时,由于粘性土具有内摩擦角小、粘性大和流动困难等特点,使得粘性土体粘附在刀盘上。被刀盘从开挖面上切削下来的粘土,通过刀盘渣槽进入泥土仓后,在泥土仓上压力的作用下容易被压实固结,首先将刀盘支撑臂中心充满填实,并很快地堵死了刀盘中心的渣槽,使刀盘中心正面的土体不能通过中心刀渣槽进入泥土仓,而是在刀盘挤压力的作用下从刀盘四周的渣槽进入泥土仓。逐渐地,整个泥土仓内全部被压实固结的土体充满并堵塞。当刀盘继续旋转切削土体时,固结土体的刀盘和开挖面土体之间产生很大的摩擦力,相互摩擦产生大量的热量,刀盘温度不断升高,使刀盘和泥土仓内的土体不断地被烧结固化,最终在刀盘和整个泥土仓内形成坚硬的“泥饼”。 “泥饼”形成后,刀盘扭矩和盾构机推进阻力均迅速增大,螺旋输送机无法出土,盾构机不能往前推进。泥土仓内过高的温度会缩短刀盘主轴承的使用寿命,加速主轴承的损坏,甚至会出现主轴承“烧结、抱死”的严重后果。 处理方法: 当盾构机在粘土地层中进行施工时,或当泥土仓内形成“泥饼”时,应采取以下预防和排除措施: (1)空转刀盘,并通过泥土仓隔板的空心搅动棒向泥土仓注水,使“泥饼”在离心力的作用下脱落。 (2)在使开挖面保持稳定的前提下,可人工进入泥土仓清除“泥饼”。 (3)掘进时增加泡沫剂的注入量,改善土体的和易性,预防粘土结块。 (4)在盾构机设计时,应在泥土仓隔板上增加空心搅动棒,以加大搅拌渣土强度和范围,并通过空心搅动棒注水,用于清洗刀盘和泥土仓。 2.螺旋输送机循环“喷涌”泥水 产生原因:

盾构机在高水砂层进行施工时,由于开挖面土体充水裂隙,含水量丰富,而且已成型的盾构隧道同步注浆量没有完全充实衬背空隙,以致留下流水通道,开挖面土体裂隙的水不断地流入泥土仓,泥土仓内不停地积水。当螺旋输送机工作时,首先吸入泥土仓内的水,然后从其出土闸门迅速喷出,形成“喷涌”。泥土仓内的水被暂时吸干后,螺旋输送机才能出渣排土,很快地泥土仓内又积水较多,螺旋输送机又必须先吸水后出土。造成盾构机无法正常工作,螺旋输送机不停地喷涌—停机—喷涌……,如此恶性循环,盾构机推进缓慢。 处理方法: (1)当遇到此情况时,关闭螺旋输送机,停止出土,保持盾构机继续往前推进,增加泥土仓内的土压力,让刀盘切削下来的土体将泥土仓内的水不断地挤出,减少泥土仓内的含水量。同时要防止土仓压力过高,造成盾构机前方隆起、冒浆,以及击穿盾尾密封等现象的发生。 (2)向泥土仓内加入高浓度泥浆或泡沫,改善泥土仓内土体的和易性,使土体中的颗粒、泥浆成为一整体,使土体具有良好的可塑性、止水性及流动性,便于螺旋输送机顺利出土。 (3)在进入富水砂层前,盾构机提前采用气压平衡模式进行推进,但要防止发生漏气事件。 3.头部周期性下降 产生原因: 盾构机在推进过程中,由于泥土仓实际土压力值低于理论值,使盾构机头部周期性地下降。造成盾构机“磕头”。 处理方法: 实际操作中,应使泥土仓土压力值略高于理论值,并在推进时按工况条件和地质情况在盾构机正面加入发泡剂、膨润土和水等改良土体的添加剂,改良开挖面的土体。施工过程中要根据隧道的埋深、所在位置的土层状况和地层变形量等信息的反馈,对土压力设定值、推进速度和注浆量等施工参数及时地进行调整。 4.呈“蛇形”前进 产生原因: 在盾构机的推进过程中,操作人员在对盾构机中心轴线与隧道中心线出现的偏差进行纠正时,若每次的纠偏量过大,将导致不停地对盾构机进行左右纠偏,造成盾构机呈“蛇形“前进。

提速道岔外锁闭装置常见问题的分析及处理方法

提速道岔外锁闭装置常见问题的分析及处理方法

提速道岔外锁闭装置常见问题的分析及处 理方法 摘要:新建高速铁路常用钩式外锁闭装置和HRS外锁闭装置。在日常运用中,道岔外锁闭装置故障一直居高不下,解决、预防外锁闭装置故障,已成为提高信号设备运用质量的瓶颈。本文就日常运用过程中易发性、常见性钩式外锁闭及HRS外锁闭装置问题进行了总结分析并提出处理方法。 关键:提速道岔外锁闭装置钩式 HRS 问题分析Abstract: New high-speed rail hook common external locking device and HRS external locking device. In everyday use, the turnout has been high external locking device failure, resolve and prevent external locking device failure, has become use to improve the quality of signal equipment bottleneck. In this paper, the daily process of applying susceptibility common outside of the locking hook and locking device outside HRS issues were analyzed and proposed treatment. The key: Speed Turnouts External locking device Hook HRS Analysis 近年来提速道岔,已在各客运专线广泛使用。据统计道岔设备故障占信号设备故障总数的50%以上,而在道岔设备故障中,外锁闭装置转换故障又占主要部分。因此如何减少外锁闭装置故障,已成为提高信号设备运用质量的关键点所在。目前,在各客运专线两种外锁闭装置较为常见一种是钩式外锁闭装置,一

六线制道岔故障处理

六线制道岔简单故障分析、判断 第一部分四线制与六线制区别 六线制道岔和四线制道岔不同处:四线制道岔的X1、X2在六线制道岔被分成了X1、X5和X2、X6,并且六线制道岔多了一个2DQJF继电器,道岔启动时主、副机同时动作,表示电路是主、副机串联,其他的电路和四线制道岔基本一样;为了方便分析,以下电路故障分析时按四线制道岔来讲。 第二部分故障分析、判断 (一)、分线盘上区分室内外: 启动电路故障: 1、扳动时烧侧面保险 处理可从分线盘上甩下一根启动线,装上保险,再来回扳动: 若继续烧保险,则室内短路; 若不烧保险,则室外短路。 2、扳动时道岔不转换 可在分线盘上测扳动时的瞬间电压: 若没有电压,则室内故障; 若有电压则室外故障。 3、扳动时道岔动作,但电流表指针不复原,此时可判断为道岔密贴过紧或岔尖挤东西。如果故障电流很小时,单机小于2.0,双要小于4.0时为故障电流偏小。

4、若扳动时,定、反位表示灯不熄灭,则说明1DQJ没吸,若扳动后松开道岔按钮时,表示灯又回复到原来位置则2DQJ没转极。 表示电路故障: 在分线盘测量电压时 1、若有110伏电压,则室外开路; 2、若无电压时,可甩下一根表示线,再测两根软线: (1)若有110伏电压,则为室外短路; (2)若无110伏电压,则为室内故障。 (二)、室外部分故障处理 道岔故障大体可分为机械故障和电气故障。下面以1、3排闭合为例: 启动电路故障: 1、当道岔由定位向反位扳时扳不动,道岔无表示。用电阻档测X 2、X4,若有十几欧姆电阻,则X2、X4有一根电缆断线,然后把表档放在交流250伏上,测X2、X3电压,若有110伏电压,则说明X4断线,没有则X2断线。若电阻为开路时,则可把表棒一个固定在X4上,另一个表棒经X2—11—12—3—4—05、06—X4,从电阻不通到通即为故障点。 2、当道岔扳动时烧坏DF保险: (1)扳动道岔时烧定位启动保险,则X1与X4混线。 处理时可先从分线盘上甩下X1或X4,然后再扳动道岔,烧坏DF 保险则室内短路;若不烧坏DF保险则室外短路。当发现室外短路

基于神经网络的铁路道岔故障智能诊断研究

目录 第一章绪论 (1) 1.1 研究背景和意义 (1) 1.1.1 研究背景 (1) 1.1.2 研究意义 (2) 1.2 道岔故障诊断技术 (3) 1.2.1 故障诊断的发展历程 (3) 1.2.2 故障诊断的主要方法 (5) 1.2.3 铁路道岔故障诊断的发展 (7) 1.3 论文主要研究内容及组织结构 (9) 1.3.1 主要研究内容 (9) 1.3.2 论文组织结构 (10) 第二章BP和PNN神经网络的原理 (12) 2.1神经网络的概述 (12) 2.2神经网络在道岔故障诊断中的优势 (12) 2.3 BP神经网络原理 (14) 2.4 PNN神经网络原理 (17) 2.5 本章小结 (20) 第三章道岔典型故障动作电流曲线分类及分析 (21) 3.1道岔发展及铁路信号微机监测系统简介 (21) 3.1.1 道岔的组成 (21) 3.1.2 郑州铁路局管内道岔的发展 (21) 3.1.3 铁路信号微机监测系统简介 (22) 3.1.4 郑州铁路局微机监测系统的发展 (22) 3.2铁路道岔启动电路原理和电流曲线分析 (23) 3.2.1 铁路道岔的分类 (23) 3.2.2 ZD6系列电动转辙机启动电路基本原理 (24) 3.2.3 S700K型电动转辙机启动电路基本原理 (27) v

3.2.4 ZD6系列电动转辙机正常动作电流曲线分析 (30) 3.2.5 S700K型电动转辙机正常动作电流曲线分析 (31) 3.2.6 道岔转辙机设备监测原理和规则 (32) 3.3道岔典型故障分类及分析 (34) 3.3.1 ZD6型道岔典型故障分析 (34) 3.3.2 S700K型提速道岔故障分析 (37) 3.4本章小结 (41) 第四章铁路道岔启动电路故障智能诊断 (42) 4.1 铁路道岔故障智能诊断概述 (42) 4.2 ZD6型道岔启动电路故障智能诊断 (42) 4.2.1 ZD6型道岔典型故障动作电流曲线 (42) 4.2.2动作电流曲线特征向量的提取方法研究 (44) 4.2.3 ZD6型道岔启动电路故障智能诊断算法研究 (49) 4.2.4 实验与分析 (55) 4.2.5 多动道岔故障智能诊断及实例测试 (60) 4.3 提速道岔启动电路故障智能诊断 (63) 4.3.1 提速道岔分类简介 (63) 4.3.2 提速道岔典型故障动作电流曲线 (64) 4.3.3 动作电流曲线特征向量的提取方法研究 (65) 4.3.4 提速道岔启动电路故障智能诊断算法研究 (70) 4.3.5 实验与分析 (71) 4.3.6 实例测试 (75) 4.4 道岔启动电路故障智能诊断算法研究 (76) 4.5 本章小结 (78) 第五章铁路道岔表示电路故障智能诊断 (79) 5.1铁路道岔表示电路概述 (79) 5.2 ZD6型道岔表示电路故障智能诊断 (79) 5.2.1 ZD6型道岔表示电路原理 (79) 5.2.2 ZD6型道岔表示电路故障智能诊断算法研究 (82) vi

相关主题
文本预览
相关文档 最新文档