当前位置:文档之家› 异面直线夹角的求法

异面直线夹角的求法

异面直线夹角的求法
异面直线夹角的求法

一、等角定理:一个角的两边分别与另一个角的两边平行,则两个角相等或互补。

二:异面直线夹角

(1)意义:(2)θ∈(0,π

2]

注:两异面直线夹角为90。时,也叫做两直线互相垂直。

三、异面直线夹角的求法:

1、平移不改变线段长度[主要适用于柱体]{直接法}

2 .A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1 分别是A 1B 1、A 1C 1的中点

若BC=CA=CC

1,求BD 1与AF 1所成角的余弦值.

3.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点, 求直线A D 1与CN 所成角的余弦值 二、平移改变线段长度[主要适用于锥体] 注:选择平移方向的法则:在两条异面直线上,各选择一个点形成线段,则该线段的中点就是平移的目标位置。

B 1 (第6题) A 1 A B

C 1

D 1 C

D M N (第5题) F 1 A B C D 1 C 1 A 1

B 1

注:正三棱锥对棱垂直。[性质]

三、补形[主要适用于线段的位置不易发生移动,如体对角线,同时要求在规则的柱体中如正方体、长方体中和一些正棱柱中]

例:正方体ABCD-A1B1C1D1中,求异面直线A1C与BD所成的角.

线面角的求法总结

线面角的求法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι

其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1 C 1 D 1 H 4 C 1 2 3 B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cos θ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角, B α O A C 图3

异面直线所成的角求法总结加分析

异面直线所成的角求法 总结加分析 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF = 3 ,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF = 3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA = 2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角

A B C D A 1 B 1 C 1 D 1 E F 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2 a BQ = a 4 14 ∴COS∠QNB= 5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若 BC =CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN = 5 ,GN =BM = 6 , cos∠GNA= 10 30 5 62556= ??-+。 5.如图,在正方体1111D C B A ABCD -中,E 、F 分别是1BB 、CD 的中点.求AE 与F D 1所 成的角。 证明:取AB 中点G ,连结A 1G ,FG , 因为F 是CD 的中点,所以GF ∥AD , 又A 1D 1∥AD ,所以GF ∥A 1D 1, 故四边形GFD 1A 1是平行四边形,A 1G∥D 1F 。 设A 1G 与AE 相交于H ,则∠A 1HA 是AE 与D 1F 所成的角。

线面所成角的求法

★线面所成角的求法:[。勺 1?作图一一证明一一计算 求角的关键在于找出平面的垂线及斜线的射影。一般地通过斜线上某个特殊点 作出平面的垂线来找角。角的计算一般是把已知条件归结到同一个或归结到几个有 关的三角形中,从而把空间的计算转变为平面图形内的解直角三角形或斜三角形的 边长相等,则AB i 与侧面ACC i A i 所成角的正弦值等于 A 亞 B 血 C 边 A. 4 B. 4 C. 2 4.如图,在长方体 ABCD — A i B i C i D i 中,AB = BC = 2, 7 僅― A a 问题。 A i D

n 与BC i所成的角为2,则BC i与平面BB I D I D所成角的正弦值为()代£B? C.^5 D¥ 5..正四棱锥S-ABCD中,0为顶点在底面上的射影,P为侧棱SD的中点,且SO =0D,则直线BC与平面PAC所成的角是 _____________ . 6. 如图,已知点P在正万体ABC B A B‘ C D的对角线BD上,/ PDA F60° . (1)求DP与CC所成角的大小; ⑵求DP与平面AA D D所成角的大小. 1 7. 已知三棱锥P-ABC中,PA丄平面ABC, AB丄AC,PA= AC= qAB, N为 AB上一点,AB = 4AN,M,S分别为PB、BC的中点. “ (1)证明:CM丄SN; ⑵求SN与平面CMN所成角的大小. ' ; 8 如图,在五棱锥P-ABCDE中,PA丄平面ABCDE,AB - // CD, AC// ED,AE // BC,/ ABC = 45°, AB = 2迈,BC = 2AE = 4,三角形FAB 是等腰三角形. (1)求证:平面PCD丄平面PAC; ⑵求直线PB与平面PCD所成角的大小; (3)求四棱锥P-ACDE的体积.

如何求异面直线所成的角

如何求异面直线所成的角 立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。其中“作”是关键,那么如何作两条异面直线所成的角呢?本文就如何求异面直线所成的角提出了最常见的几种处理方法。 Ⅰ、用平移法作两条异面直线所成的角 一、端点平移法 例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若 1AB BC CC ==,求CD 与AF 所成的角的余弦值。 解:取BC 的中点E ,连结EF ,DF , //DF EC Q 且DF EC = ∴四边形DFEC 为平行四边形 //EF DC ∴ EFA ∴∠(或它的补角)为CD 与AF 所成的角。 设2AB =, 则EF = AF = EA = 故2222EF FA EA EFA EF FA +-∠==g arccos 10 EFA ∴∠= 二、中点平移法 例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。 解:连结MD ,取MD 的中点O ,连结NO , Q O 、N 分别MD 、AD 为的中点, ∴NO 为DAM ?的中位线, ∴//NO AM , ONC ∴∠(或它的补角)为AM 与CN 所成的角。 设正四面体ABCD 的棱长为2 ,则有2NO = ,CN = ,2CO =, 故2222 cos 23 NO CN CO ONC NO CN +-∠= =g 2 arccos 3 ONC ∴∠= 1 B D C

异面直线所成的角的求法

异面直线所成的角的求法 法一:平移法 在正方体 ABCD A i B i C i D i 中,求下列各对异面直线所成的角。 恵,求直线AB 与CD 所成的角。 习题1?在空间四边形ABCD 中,AD = BC = 2, E, F 分别为AB 、CD 的中点,EF =为, 求AD 、BC 所成角的大小. 例1: (1) AA 1 与 BC ; (2) DD 1 与 AB ; (3) A i B 与 A C 。 法二: 例2: 求直线AB 与MN 所成的角。 中位线 在空间四边形 ABCD 中,AB = CD ,且AB CD ,点M 、N 分别为BC 、AD 的中点, 变式:在空间四边形 ABCD 中,点M 、N 分别为 BC 、AD 的中点,AB = CD = 2,且 MN =

正 ABC 的边长为a , S 为 ABC 所在平面外的一点,SA = SB = SC = a, E , F 分别 是SC 和AB 的中点.求异面直线 SA 和EF 所成角. S 是正三角形 ABC 所在平面外的一点,如图 SA = SB = SC ,且 ASB = BSC = CSA = - , M 、N 分别是AB 和SC 的中点.求异面直线 SM 与BN 所成的角的 余弦值. 如图,在直三棱柱 ABC — A i B i C i 中,/ BCA = 90° M 、N 分别是 A i B i 和A i C i 的中 点, 若BC = CA = CC i ,求BM 与AN 所成的角. 5.如图1 — 28的正方体中,E 是A D 勺中点 (1) 图中哪些棱所在的直线与直线 BA 成异面直线? (2) 求直线 (3) 求直线 (4) 求直线 2. 3. 4 . BA 和CC 所成的角的大小; AE 和CC 所成的角的正切值; AE 和BA 所成的角的余弦值 B A (图 1— 28)

异面直线所成的角求法 答案

异面直线所成的角的两种求法 初学立几的同学,遇到的第一个难点往往便是求异面直线所成的角。难在何处?不会作! 下面介绍两种求法 一.传统求法--------找、作、证、求解。 求异面直线所成的角,关键是平移点的选择及平移面的确定。 平移点的选择:一般在其中一条直线上的特殊位置,但有时选在空间适当位置会更简便。 平移面的确定:一般是过两异面直线中某一条直线的一个平面,有时还要根据平面基本性质将直观图中的部分平面进行必要的伸展,有时还用“补形”的办法寻找平移面。 例1 设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB =122,CD =4 2,且四边形EFGH 的面积为12 3, 求AB 和CD 所成的角. 解? 由三角形中位线的性质知,HG∥AB,HE∥CD, ∴ ∠EHG 就是异面直线AB 和CD 所成的角. ∵? EFGH 是平行四边形,HG =2 1 AB =62, H G F E D C B A

HE =2 1 ,CD =23, ∴? S EFGH =HG·HE·sin∠EHG=126 sin∠EHG,∴ 12 6sin∠EHG=123. ∴? sin∠EHG= 2 2 ,故∠EHG=45°. ∴? AB 和CD 所成的角为45° 注:本例两异面直线所成角在图中已给,只需指出即可。 例2.点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=2 2 AD ,求异面直线AD 和BC 所成的角。(如图) 解:设G 是AC 中点,连接DG 、FG 。因D 、F 分别是AB 、CD 中点,故EG∥BC 且EG= 2 1 BC ,FG∥AD,且FG=2 1 AD ,由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为 所求。由BC=AD 知EG=GF=2 1 AD ,又EF=AD ,由余弦定理可得cos∠EGF=0,即∠EGF=90°。 注:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角。通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系。 例3.已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 与CN 所成的角的余弦值; A B C G F E D

线面角的求法总结

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ ,则sin θ =h /AB=4/5

空间直线2--异面直线的概念及夹角

14.2.2 空间直线与直线的位置关系(二) 教学目标: 1. 理解异面直线的定义,会画出两条异面直线; 2.理解异面直线所成的角; 3. 初步了解反证法。 教学重点:异面直线所成的角概念 教学难点:异面直线所成的角概念 教学过程: 1. 引入: 提问:请叙述“公理4”和“等角定理”? 我们知道:公理4可以用来证明空间两条直线平行;等角定理用来判定空间中两个角相等。那么我们就把在同一平面中的“平行直线的传递性” 和等角定理,推广到空间。那么空间中,任意的两条直线的位置关系该如何界定呢? 2. 新课 (1)定义 由平面几何知识我们知道:在同一平面内,两条直线的位置关系有平行、相交。那么我们就把“不能置于同一平面的两条直线叫做异面直线”。 怎么理解“不能置于同一平面”? 不同在任何一个平面内。 请在教室内,找一找异面直线? (2)画法 在作两条异面直线的直观图时,为了使它们有“异面”的视觉效果,有时需要借助于辅助平面来表示。见课本P10

例1:课本P10 例2 反证法证明两条直线是异面直线。 (3)异面直线所成的角 在长方体中找与同一条棱异面的两条棱,那么这两对异面直线的相对位置是不同的。我们如何进一步区分,如何寻找一个合适的几何量来刻划两条异面直线之间的相对位置(及远近距离)呢?(角)问题1、两条直线相交就构成角,而两条异面直线不相交哪来 的“角”呢?如何规定两条异面直线所成的角呢? 问题2、能否找出两条相交直线所成的角来刻划两条异面直线所成的角呢? 根据等角定理这些角都相等,因此,这样作出的角是合理的,唯一的。 归纳: ①两条异面直线所成角的大小,是由这两条异面直线的相互位置关系决定的,与角的顶点O的位置的取法无关。 ②正因为点O的位置可以任意选取,这就给我们确定两条异面直线所成的角带来了方便,在运用时,为了简便,可以把点O取在两条异面直线中的其中一条上,甚至取在其中一条的一个已知或特殊点上。 ③要找到两条异面直线所成的角,关键是经过平移把两条异面直线所成的角转化为两条相交直线所成的锐角(或直角),因此,若两条异面直线所成的角为θ,则 。 ④当两条异面直线所成的角为直角时,则说这两条异面直线相互垂直。两条异面直线a、b相互垂直,记作a⊥b. 两条直线互相垂直,它们不一定相交。 ⑤得出两条异面直线所成角的定义: 经过空间任意一点,分别作两条异面直线的平行线,这两条直

异面直线所成角求法-总结加分析

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF =3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和 AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2a BQ = a 4 14 ∴COS∠QNB=5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC = CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6 , cos∠GNA= 10 305 62556=??-+。 B M A N C S

求线面角的三种常见思路方法

求线面角的三种常见思路方法 舒云水 本文以 2009年湖南卷理 18 题为例,介绍求线面角的三种常见思路方法,并对这三种方法作比较分析﹒ 如图 1,在正三棱柱ABC A1B1C1中,AB 2AA1,点 D是A1B1的中点,点 E 在A1C1上,且DE⊥ AE. (I)证明:平面ADE 平面ACC1A1 ; ( II )求直线 AD和平面ABC1所成角的正弦值. (Ⅰ)证明略.下面主要谈(Ⅱ)小题的解法﹒思路 1:直接作出线面角求解﹒ 分析:因为本题几何图形是特殊的几何体——正三棱柱,点 D 在特殊位置上——线段A1B1的中点,所以本题比较容易作出线面角﹒如图 2,取AB的中点F ,连结DF ,DC1 , C1F ,则面DFC1 面ABC1,过D作DH C1F于H ,则DH 面ABC1 ,连结AH,则HAD是AD和平面ABC1 所成的角﹒

解法 1 如图 2,设 F 是 AB 的中点,连结 DF , DC 1 , C 1F .由正 三棱柱 ABC A 1B 1C 1的性质及 D 是A 1B 1的中点知, A 1B 1 ⊥ C 1D ,A 1B 1⊥ DF . 又C 1D DF D ,所以 A 1B 1 ⊥平面C 1DF . 而 AB ∥ A 1B 1, 所以 AB⊥平面C 1DF .又 AB 平面ABC 1 ,故 平面 ABC 1 ⊥平面C 1DF . 过点 D 作DH 垂直C 1F 于点 H , 则 DH ⊥ 平面 ABC 1 . 连结 AH ,则 HAD 是直线 AD 和平面 ABC 1 所成的角. 由已知 AB 2AA 1,不妨设 AA 1 2,则 AB 2,DF 2, DC 1 3, 所以 sin HAD D A H D 15 思路 2:用等体积法求出点 D 到面 ABC 1的距离h ,A h D 为所求线 面 C 1F 5, AD AA 12 A 1D 2 3, DF ·DC 1 2 3 30 DH C 1F 55 即直线 AD 和平面 ABC 1所成角的正弦值为 10 .

补充构造异面直线所成角的几种方法

一. 异面直线所成角的求法 1、正确理解概念 (1)在异面直线所成角的定义中,空间中的点O 是任意选取的,异面直线a 和b 所成角的大小,与点O 的位置无关。 (2)异面直线所成角的取值范围是(0°,] 90? 2、熟练掌握求法 (1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一作二证三计算。 (2)求异面直线所成角的步骤: ①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊点。 ②求相交直线所成的角,通常是在相应的三角形中进行计算。 ③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。 3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 例1如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线B 1E 与GF 所成角的余弦是 。 E F 1 A 1 B 1 C 1 D A B C D G E F 1 A 1 B 1 C 1 D A B C D G

例 2 已知 S 是正三角形ABC所在平面外的一点,如图SA=SB=SC, 且∠ASB=∠BSC=∠CSA= 2 π ,M、N分别是AB和SC的中点. 求异面直线SM与BN所成的角的余弦值. 例3长方体ABCD—A1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的大小。 B M A N C S B M A N C S B M A N C S

异面直线所成角的几种求法(最新编写)

异面直线所成角的几种求法 异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。 一、向量法求异面直线所成的角 例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。求A 1E 和B 1F 所成的角的大小。 解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线 到某个点上。作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。过F 作CD 的平行线RS ,分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。 由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。在△GHS 中,设正方体边长为a 。GH=a (作直线GQ//BC 交BB 1于点Q ,46连QH ,可知△GQH 为直角三角形),HS=a (连A 1S ,可知△HA 1S 为直角三角形),2 6GS=a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。426∴Cos ∠GHS=。6 1所以直线A 1E 与直线B 1F 所成的角的余弦值为。61解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。 以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。 B A C D F E B 1A 1D 1C 1 G H S R P Q 1

立体几何异面直线成角求法习题

构造异面直线所成角的几种方法 异面直线所成角的大小,是由空间任意一点分别引它们的平行线所成的锐角(或直角)来定义的.准确选定角的顶点,平移直线构造三角形是解题的重要环节.本文举例归纳几种方法如下,供参考. 一、抓异面直线上的已知点 过一条异面直线上的已知点,引另一条直线的平行线(或作一直线并证明与另一直线平行),往往可以作为构造异面直线所成角的试探目标. 例1(2005年全国高考福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) 二、抓异面直线(或空间图形)上的特殊点 考察异面直线上的已知点不凑效时,抓住特殊点(特别是中点)构造异面直线所成角是一条有效的途径. 例2(2005年全国高考浙江卷)设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________. 三、平移(或构造)几何体 有些问题中,整体构造或平移几何体,能简化解题过程. 例3(2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 1. 解:连B 1G ,则A 1E ∥B 1G ,知∠B 1G F 就是异面直线A 1E 与GF 所成的角.在 △B 1GF 中,由余弦定理,得 cos B 1GF =2221112B G GF B F B G GF +-= ?=0, 故∠ B 1 G F = ,应选(D). 2评注:本题是过异面直线FG 上的一点G ,作B 1G ,则A 1E ∥B 1G ,知∠B 1G F 就是所求的 角,从而纳入三角形中解决. 解:取AE 中点G, 连结GM 、BG ∵GM ∥ED ,BN ∥ED ,GM =21ED ,BN =2 1 ED . ∴ GM ∥BN ,且GM =BN . ∴BNMG 为平行四边形,∴MN//BG ∵A 的射影为B . ∴AB ⊥面BCDE . P B C A

异面直线夹角习题及答案

1.长方体ABCD-A1B1C1D1中,AB=12,BC=3,AA1=4,N在A1B1上,且 B1N=1/3A1B1,求BD1与C1N所成角的余弦值。 你可以在AB上找一点N1,使AN1=1/3AB,然后连接CN1,这样的话,C1N平行与CN1,然后再连接AD1,在AD1上找一点E,使AE=2ED1,连接EN1,这样辅助线就做完了,然后计算CN1=5,BD1=13,那么根据三角形相似的性质,EN1=26/3,接下来求EC的长度,连接BC1,在BC1上找一点F,使FC1=1/2BF,连接CF,在面BCC1B1面上求出CF的长度,然后EF垂直于CF,这样在直角三角形中,求出CE,再根据余弦定理,在三角形CEN1中,求出角CN1E就是要求的角了。 看起来很麻烦,可是只要你看懂了,在根据我说的,画出图来,这道题还是很简单的,用高中的知识很容易就解决了。要有耐心啊~~~~ 2.在空间四边形ABCD中,AB=CD=6,M,N分别是对角线AC,BD的中点,MN=5,求异面直线AB与CD所成角的大小。 做MH//CD交AD于H,连结HN 角MHN是所成角或其补角 MH=NH=3,MN=5 cos角MHN=(MH^2+NH^2-MN^2)/2*MH*NH=(9+9-25)/2*3*3=-7/18 所成角为arccos7/18 ()1、设P={两异面直线所成的角},M={直线与平面所成的角},N={二面的平面角},则有 A、PìMìN B、P=MìN C、PéMéN D、PìM=N ()2、正四面体A—BCD中E、F分别是棱BC和AD之中点,则EF和AB 所成的角 A、45° B、60° C、90° D、30° ()3、正方体ABCD—A¢B¢C¢D¢中,与BD成60°角的面对角线的条数为A、0B、2C、4D、8 ()4、把一个正方形的纸折成一个底面为正方形的长方体,正方形的对角线就成为在长方体四侧面的一条折线,则这条折线相对的两段所成角是 A、45° B、60° C、90° D、120° 5、a、b为异,面直线,二面角a—a—b为q,a^a,b^b,则a、b的夹角为_______ 6、正方体ABCD—A¢B¢C¢D¢中,E、F分别是BC、A¢D¢之中点,则ADE所成的角是_______

线面角及二面角的求法

第9节线面角及二面角的求法 【基础知识】 求线面角、二面角的常用方法: (1) 线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解. (2) 二面角的大小求法,二面角的大小用它的平面角来度量. :] 【规律技巧】 平面角的作法常见的有①定义法;②垂面法?注意利用等腰、等边三角形的性质. 【典例讲解】 【例1】如图,在四棱锥 P-ABCD中,FA丄底面ABCD , AB⊥ AD , AC⊥ CD, ∠ ABC =60 ° , PA = AB = BC, E 是 PC 的中点. P (1)求PB和平面PAD所成的角的大小; ⑵证明:AE丄平面PCD ; ⑶求二面角 A — PD — C的正弦值. (1)解在四棱锥P — ABCD中, 因FA丄底面 ABCD , AB?平面 ABCD , 故PA⊥ AB.又AB⊥ AD , FA ∩ AD = A, 从而AB丄平面PAD, 故PB在平面PAD内的射影为FA, 从而∠ APB为PB和平面PAD所成的角. 在Rt△ PAB 中,AB= FA,故∠ APB = 45° 所以PB和平面PAD所成的角的大小为 45 ⑵证明在四棱锥P— ABCD中, 因FA丄底面 ABCD, CD?平面ABCD, 故CD丄FA.由条件 CD丄AC , PA ∩ AC= A , ??? CD丄平面PAC. 又 AE?平面 FAC,??? AE丄CD.

由FA= AB = BC,∠ ABC = 60° ,可得 AC = PA. ??? E 是 PC 的中点,???AE⊥ PC. 又PC∩ CD = C,综上得AE⊥平面PCD. 【变式探究】如图所示,在四棱锥P — ABCD中,底面ABCD是正方形,侧棱 PD丄底 面ABCD , PD = DC.E是PC的中点,作 EF丄PB交PB于点F. ⑴证明PA//平面EDB ; ⑵证明PB⊥平面EFD ; (3) 求二面角 C — PB— D的大小. ⑴证明如图所示,连接 AC, AC交BD于0,连接EO. ???底面ABCD是正方形, ?点0是AC的中点. 在厶PAC中,EO是中位线, ? PA // E0. 而E0?平面EDB且PA?平面EDB , ? PA //平面 EDB. 【针对训练】 1.如图,四棱锥 P — ABCD中,底面 ABCD为菱形,PA丄底面ABCD , AC = 2,2, FA =2, E 是PC 上的一点,PE= 2EC. (1)证明:PC⊥平面BED ; ⑵设二面角A — PB-C为90°,求PD与平面PBC所成角的大小.

线面角的三种求法

线面角的三种求法 河北 王学会 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂

线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1C 1D 1 H 4 C B 12 3B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cosθ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的 一条直线,其中θ为OA 与OC 所成的角, B αO A C 图3 θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cosθ2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理) 例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC 所成

异面直线的夹角专题(教师版)

异面直线所成角的几种方法 异面直线所成角的大小,是由空间任意一点分别引它们的平行线所成的锐角(或直角)来定义的.准确选定角的顶点,平移直线构造三角形是解题的重要环节.本文举例归纳几种方法如下,供参考. 方法一:抓异面直线上的已知点 过一条异面直线上的已知点,引另一条直线的平行线(或作一直线并证明与另一直线平行),往往可以作为构造异面直线所成角的试探目标. 例1:如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是? 解:连B 1G ,则A 1E ∥B 1G ,知∠B 1G F 就是异面直线A 1E 与GF 所成的角.在△B 1GF 中,由余弦定理,得 cos B 1GF =222222 111(2)(3)(5)2223 B G GF B F B G GF +-+-= ???=0, 故∠B 1G F =90° 练习1.1:在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小. 1 A 1 B 1 C 1 D A B C D E F G

练习1.2:长方体ABCD -A 1B 1C 1D 1中,AB=BC=2cm ,AA 1=4cm ,求异面直线BD 1与AD 所成的角的余弦值? 方法二:抓异面直线(或空间图形)上的特殊点 考察异面直线上的已知点不凑效时,抓住特殊点(特别是中点)构造异面直线所成角是一条有效的途径. 例2:设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小为多少? A B C D E M N 图1 A B C D E M N G 图2

异面直线及其夹角

异面直线及其夹角 教学目标:: 知识目标:1、掌握异面直线的概念,会画空间两条异面直线的图形, 会判断两直线是否为异面直线。 2、掌握异面直线所成角的概念及异面直线垂直的概念,能 求出一些较简单的异面直线所成的角 能力目标:在问题解决过程中,培养学生的实验观察能力、空间想能 力象、逻辑思维能力、分析问题、解决问题的能力。 教学重点、难点: 重点:异面直线所成角的概念, 能求出一些较简单的异面直线所成的角。 难点:异面直线所成角的定义, 如何作出异面直线所成的角。 教学准备:多媒体课件 教学课时:二课时 教学过程: 第一课时 一、导入新课 1.引导学生观察立交桥上的车辆为什么能畅通无阻? 两条道路所在的直线不在同一平面内。它们既不平行也不相交,这样的两条直线有什么特点呢? 2.请学生做一个小实验,拿两支笔在空间中你能摆出几种位置关系? 有3种:平行、相交、不平行也不相交的两条直线(对于这样的两条直线以前我们没有学习过,那么它们之间有什么特点和关系呢?)。(板书课题) 二、新课讲解 前面我们学习过平行线,相交线,它们是同一平面内两条直线的位置关系,通过前面的实验和动画的观察,在空间还存在另一种两条直线的位置关系(不平行也不相交)。我们给它一个新的名称“异面直线”。 1 异面直线的定义:不同在任何.. 一个平面内的两条直线叫异面直线。 2.两条异面直线的性质:既不平行,也不相交。(如前面我们所说的两个例子,同学们还能找出具有这种性质的两条直线吗?)找两位学生说说他们所找的情况。 3.空间两条异面直线的画法。 如何用图形来表示两条异面直线,通常怎么样画?(老师板演,同时让学生总结其特点) 这三种表示方法有一个共同的特点,就是用平面来衬托,离开平面的衬托,不同在任何一个平面的特征难以体现。(今后我们也可以不用平面来衬托) 同学们想一想如果这样表示两条异面直线行吗?为什么? a b a b b a

异面直线所成角的求法

异面直线所成角的求法 内蒙古杭锦后旗奋斗中学 刘 宇 例:长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的大小。 选题意图,通过该题,让学生进一步理解异面直线所成角的概念,熟练掌握异面直线所成角的求法。 分析:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。 解法一:如图①连结B 1C 交BC 1于0,过0点作OE ∥DB 1,则∠BOE 为所求的异面直线DB 1与BC 1所成的角。连结EB ,由已知有 B 1B C 1=5,BE=2,∴c o s ∠BOE=170 ∴∠BOE=cos arc 170 解法二:如图②,连DB 、AC 交于O 点,过O 点作OE ∥DB 1,过E 点作EF ∥C 1B ,则∠OEF 或其补角就是两异面直线所 成的角,过O 点作OM ∥DC ,连结MF 、OF 。则 ,cos ∠OEF=,∴异面直线B 1D 与 BC 1所成的角为cos arc 170 解法三:如图③,连结D 1B 交DB 1于O ,连结D 1A ,则四边形ABC 1D 1为平行四边形。在平行

四边形ABC1D1中过点O作EF∥BC1交AB、D1C1于E、F,则∠DOF或其补 ,cos∠角就是异面直线DB1与BC1所成的角。在△ADF中DF= 2 DOF=cos arc 解法四:如图④,过B1点作BE∥BC1交CB的延长线于E点。 则∠DB1E就是异面直线DB1与BC1所成角, 连结DE交AB于M, cos∠DB1 ∴∠DB1E=cos arc 解法五:如图⑤,在平面D1DBB1中过B点作BE∥DB1交D1B1的延长线于E,则∠C1BE就是异面直线DB1与BC1所成的角,连结C1E,在△B1C1E 中,∠C E=135°,C1 cos∠C1C1BE=cos arc 分析:在已知图形外补作一个相同的 几何体,以例于找出平行线。 解法六:如图⑥,以四边形ABCD为上底补接 一个高为4的长方体ABCD-A2B2C2D2,连结D2B,则 DB1∥D2B,∴∠C1BD2或其补角就是异面直线DB1与 BC1所成的角,连C1D2,则△C1D2C2为Rt△,cos∠ C1BD2=

定义法求线面角(人教A版)

定义法求线面角(人教A版) 一、单选题(共10道,每道10分) 1.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点,则直线DE与平面ABCD 所成角的正切值为( ) A. B. C. D. 2.如图,在正方体ABCD-A1B1C1D1中,直线A1B与平面A1B1CD所成角的余弦值是( ) A. B. C. D. 3.如图,已知△ABS是等边三角形,四边形ABCD是正方形,平面ABS⊥平面ABCD, 则直线SC与平面ABCD所成角的余弦值为( )

A. B. C. D. 4.如图,在正三棱柱ABC-A1B1C1中,侧棱长为,底面三角形的边长为1,则直线BC1与平面ACC1A1所成角的正切值是( ) A. B. C. D. 5.如图,在三棱锥P-ABC中,PA=PB=PC=BC,且∠BAC=90°,则直线PA与底面ABC所成的角为( )

A.30° B.45° C.60° D.90° 6.如图,在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值为( ) A. B. C. D. 7.如图,在四棱锥A-BCDE中,AC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,则直线AE与平面ABC所成角的正切值为( )

A. B. C. D. 8.如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点, 则直线AD与平面B1DC所成角的正弦值为( ) A. B. C. D. 9.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,若M,N分别是PC,PB的中点,则CD与平面ADMN所成角的正弦值为( ) A. B. C. D.

相关主题
文本预览
相关文档 最新文档