当前位置:文档之家› 高二数学1.4导数在实际生活中的应用1教案苏教版

高二数学1.4导数在实际生活中的应用1教案苏教版

高二数学1.4导数在实际生活中的应用1教案苏教版
高二数学1.4导数在实际生活中的应用1教案苏教版

扬州中学西区高二数学教案( )

课题

导数在实际生活中的应用

课型

新授

教学目标 1.通过生活中优化问题的学习,体会导数在解决设计问题中的作用

2.通过对实际问题的研究,促进学生分析问题,解决问题的能力 教学重点 如何建立数学模型来解决实际问题

教学难点 如何建立数学模型来解决实际问题

教学过程

备课札记

一.基础知识梳理:

1 解决实际应用问题时,要把问题中所涉及的几个变量转化函数关系式,这需要通过分析,联想,抽象和转化完成,函数的最值要由极值和端点的函数值确定,当定义域是开区间且函数只有一个极值时,这个极值就是它的最值。

2.实际应用问题的解题程序:

○1读题 ○2建模 ○3求解 ○4反馈

二、讲解范例:

例1在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

解法一:设箱底边长为xcm ,则箱高

602x h -=

cm ,得箱子容积 260)(3

22x x h x x V -== )600(<

2

3()602x V x x '=- )600(<

令 2

3()602x V x x '=-=0,解得 x=0(舍去),x=40,

并求得 V(40)=16 000

由题意可知,当x 过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值

答:当x=40cm 时,箱子容积最大,最大容积是16 000cm3

解法二:设箱高为xcm ,则箱底长为(60-2x)cm ,则得箱子容积

x x x V 2)260()(-=)300(<

一,略)

由题意可知,当x 过小或过大时箱子容积很小,所

以最大值出现在极值点处.

事实上,可导函数260)(3

22

x x h x x V -==、x x x V 2)260()(-=在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值

例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?

解:设圆柱的高为h ,底半径为R ,则表面积

S=2πRh+2πR2

由V=πR2h ,得2V h R π=

,则

S(R)= 2πR 2V R π+ 2πR2=2V

R +2πR2

令 22()V s R R '=-

+4πR=0

解得,

h=2V R π

即 h=2R

因为S(R)只有一个极值,所以它是最小值

答:当罐的高与底直径相等时,所用材料最省

变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使所用材料最省?

提示:S=2Rh π+22R π?h=R R S ππ222

-

?V(R)=R R S ππ222

-πR 2=3221)2(21R SR R R S ππ-=-

)('R V )=026R S π=? ?R h R Rh R 222622=?+=πππ.

三、课堂练习:

1.使内接椭圆22

22b y a

x +=1的矩形面积最大,矩形的长为_____,宽为_____. 2.在半径为R 的圆内,作内接等腰三角形,当底边上高为___时,它的面积最大

答案: 4.2a

2b 5.23R

四、小结 :

⑴解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义.

⑵根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较.

⑶相当多有关最值的实际问题用导数方法解决较简单

2020版高中数学高二选修1-1教案及练习归纳整理70知识讲解导数的综合应用题基础

《导数及其应用》全章复习与巩固 编稿:李 霞 审稿: 张林娟 【学习目标】 1. 会利用导数解决曲线的切线的问题. 2. 会利用导数解决函数的单调性等有关问题. 3. 会利用导数解决函数的极值、最值等有关问题. 4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题 【要点梳理】 要点一:有关切线问题 直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上; ③切线斜率等于曲线在切点处的导数值. 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组. 要点二:有关函数单调性的问题 设函数()y f x =在区间(a,b)内可导, (1)如果恒有'()0f x >,则函数()f x 在(a,b)内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a,b)内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a,b)内为常数函数. 要点诠释: (1)若函数()f x 在区间(a,b)内单调递增,则'()0f x ≥,若函数()f x 在(a,b)内单调递减,则 '()0f x ≤. (2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤. ② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥.

(或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题 (1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根; (4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域 ②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点. 注意:无定义的点不用在表中列出 ③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值. 要点诠释: ①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可. ②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值.

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高三数学重点 导数应用题型与分析

导数应用 一.复习目标: 1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念. 2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log x的导数)。 a 掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 二.考试要求: ⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 ⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log x的导数)。掌 a 握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和 充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三.教学过程: (Ⅰ)基础知识详析 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 4.曲线的切线 在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推 l与曲线C有惟广是不妥当的.如图3—1中的曲线C是我们熟知的正弦曲线y=sinx.直线 1 本卷第1页(共22页)

苏教版数学高二-北京四中数学选修【知识讲解】导数的综合应用题(基础)

导数的综合应用题 编稿:赵 雷 审稿:李 霞 【学习目标】 1. 会利用导数解决曲线的切线的问题。 2. 会利用导数解决函数的单调性等有关问题。 3. 会利用导数解决函数的极值、最值等有关问题。 4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题 【要点梳理】 要点一、有关切线问题 直线与曲线相切,我们要抓住三点: ①切点在切线上 ②切点在曲线上 ③切线斜率等于曲线在切点处的导数值。 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组。 要点二、有关函数单调性的问题 设函数()y f x =在区间(a ,b )内可导, (1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数。 要点诠释: (1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b ) 内单调递减,则'()0f x ≤。

(2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤。 ② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使 min (,)0f x m ≥。 (或是求含参函数(,)f x m 的最大值max (,)f x m ,使)max (,)0f x m ≤) 要点三、函数极值、最值的问题 1.函数极值的问题 ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: (1)先求出定义域 (2)一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点。 注意:无定义的点不用在表中列出 (3)依表给结论:注意一定指出在哪取得极值。 2.函数最值的问题 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值

高中数学导数及其应用

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数, 这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。 事实上,在点处的增量

导数应用题

高二(文科)导数应用题 例题: 时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中,为常数.已知销售价格为4元/套时,每日可售出套题21千套. (1)求的值; (2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数点) 试题分析:(1)直接代入点(4,21)即可求出;(2)先建立利润函数模型 ,然后由导数确定函数的单调性,求出函数的最值及条件. 试题解析:(1)因为时,, 代入关系式,得,2分 解得. 4分 (2)由(1)可知,套题每日的销售量,6分 所以每日销售套题所获得的利润 从而 . 8分 令,得,且在上,,函数单调递增;在上,,函数单调递减,10分 所以是函数在内的极大值点,也是最大值点,11分 所以当时,函数取得最大值. 12分

故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. 考点:1.利用导数处理函数的最值;2.函数模型的应用 练习题 一、单选题 1.做一个无盖的圆柱形水桶,若要使其体积是64π,且用料最省,则圆柱的底面半径为( ) A. 3 B. 4 C. 5 D. 6 2.现有一段长为18m 的铁丝,要把它围成一个底面一边长为另一边长2倍的长 方体形状的框架,当长方体体积最大时,底面的较短边长是( ) A. 1m B. 1.5m C. 0.75m D. 0.5m 二、填空题 3.传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在弯形时永远保持为圆柱体,其底面半径原为且以每秒 等速率缩短,而长度以每秒等速率增长.已知神针的底面半径只能从缩到 为止,且知在这段变形过程中, 当底面半径为 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时 金箍棒的底面半径为__________ . 4.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为________. 三、解答题 5.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以 往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为3 1 10v ??+ ??? (升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均 速度为2 v (米/单位时间),每单位时间用氧量为 1.5(升),记潜水员在此次考察活动中的总用氧量为y (升).

高二数学导数及其应用综合检测综合测试题

第一章导数及其应用综合检测 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则() A.a=1,b=1B.a=-1,b=1 C.a=1,b=-1 D.a=-1,b=-1 [答案] A [解析]y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1. 2.一物体的运动方程为s=2t sin t+t,则它的速度方程为() A.v=2sin t+2t cos t+1 B.v=2sin t+2t cos t C.v=2sin t D.v=2sin t+2cos t+1 [答案] A [解析]因为变速运动在t0的瞬时速度就是路程函数y=s(t)在t0的导数,S′=2sin t+2t cos t+1,故选A.

3.曲线y =x 2+3x 在点A (2,10)处的切线的斜率是 ( ) A .4 B .5 C .6 D .7 [答案] D [解析] 由导数的几何意义知,曲线y =x 2+3x 在点A (2,10)处的切线的斜率就是函数y =x 2+3x 在x =2时的导数,y ′|x =2=7,故选D. 4.函数y =x |x (x -3)|+1( ) A .极大值为f (2)=5,极小值为f (0)=1 B .极大值为f (2)=5,极小值为f (3)=1 C .极大值为f (2)=5,极小值为f (0)=f (3)=1 D .极大值为f (2)=5,极小值为f (3)=1,f (-1)=-3 [答案] B [解析] y =x |x (x -3)|+1 =??? x 3-3x 2+1 (x <0或x >3)-x 3+3x 2+1 (0≤x ≤3) ∴y ′=??? 3x 2-6x (x <0或x >3)-3x 2+6x (0≤x ≤3) x 变化时,f ′(x ),f (x )变化情况如下表:

与导数有关的应用题

与导数有关的应用题 1.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售 价格x (单位:元/千克)满足关系式210(6)3 a y x x = +--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ) 求a 的值; (Ⅱ) 若该商品的成本为3元/千克, 试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. 2.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为)(x R 万元,且?????>-≤<-=10,31000108100,3018.10)(22x x x x x x R (1)写出年利润W (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)

3.某学校要建造一个面积为10000平方米的运动场.如图, 运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个 半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道 外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为 150元,草皮每平方米造价为30元 (1)设半圆的半径OA=r (米),试建立塑胶跑道面积S 与r 的函数关系S(r ) (2)由于条件限制[30,40]r ,问当r 取何值时,运动场造价最低? 4一根水平放置的长方体形枕木的安全负荷与它的宽度a 成正比,与它的厚度d 的平方成正比,与它的长度l 的平方成反比. (Ⅰ)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷会如何变化?为什么?(设翻转前后枕木的安全负荷分别为21,y y 且翻转前后的比例系数相同都为k ) (Ⅱ)现有一根横断面为半圆(已知半圆的半径为R )的木材,用它来截取成长方体形的枕木,其长度 为10,问截取枕木的厚度为d 多少时,可使安全负荷y 最大?

(word完整版)高二数学导数及其应用练习题

高二上学期《导数及其应用》 单元测试(数学文) (满分:150分 时间:120分钟) 一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 2 4)(π=' (C) x x f 28)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D ) 2 1< b 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 94 e B.2 2e C.2 e D.2 2 e

7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 8.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有 ()0f x ≥,则 (1) '(0) f f 的最小值为( ) A .3 B . 52 C .2 D .32 9.设2 :()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 10. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0/ / f f f f -<<< y (B ) )2()2()3()3(0/ / f f f f <-<< (C ))2()3()2()3(0/ / f f f f -<<< (D ))3()2()2()3(0/ / f f f f <<-< O 1 2 3 4 x 二.填空题(本大题共4小题,共20分) 11.函数()ln (0)f x x x x =>的单调递增区间是____.

函数导数应用题

函数导数应用题 1.根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率p 与日产量x (件) 之间近似地满足关系式* 2* 219,,1560 1020,540 x x x p x x x ?∈??-=?+?∈??N N , ≤≤, ≤≤(日产品废品率=日废品量日产量 × 100%).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润y =日正品赢利额-日废品亏损额) (1)将该车间日利润y (千元)表示为日产量x (件)的函数; (2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元? 1.解:(1)由题意可知, 2 *3 *24219,,152(1)5 1020,.3 180x x x x x y x p px x x x x ?-∈??-=--=??-∈??N N , ≤≤, ≤≤ (2)考虑函数2 3 24219,15()5 1020,3180x x x x f x x x x ?-??-=??-?? , ≤≤, ≤≤ 当159x -<≤时,'()0f x <,函数()f x 在(15-上单调减. 所以当15x =-()f x 取得极大值,也是最大值, 又x 是整数,64(8)7f = ,(9)9f =,所以当8x =时,()f x 有最大值647 . 当1020x ≤≤时,22 5100'()036060 x x f x -=-=≤,所以函数()f x 在[10,20]上单调减, 所以当10x =时,()f x 取得极大值100 9 ,也是最大值. 由于1006497 >,所以当该车间的日产量为10件时,日利润最大. 答:当该车间的日产量为10件时,日利润最大,最大日利润是100 9 千元. 2.一根水平放置的长方体形枕木的安全负荷与它的宽度a 成正比,与它的厚度d 的平方成正比,与它的长度l 的平方成反比. (Ⅰ)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷会如何变化?为什么?(设翻

高二文科数学导数及其应用

高二期末统测复习之一:《导数及其应用1》 班级 姓名 1. 导数的概念及意义; 2. 常见的一些基本函数的导数; 3. 导数的四则运算及复合函数的求导法则; 4. 导数的应用(单调性,极值,最值); 【基础训练】 1、曲线2 2x y =在点(1,2)处的瞬时变化率为( ) A 2 B 4 C 5 D 6 2、函数x x x y sin cos -=在下列哪个区间内是减函数( ) A )23, 2( π π B )2,(ππ C )2 5,23( π π D ()ππ3,2 3、已知函数()f x 在1x =处切线方程为230x y -+=,则=??+-?+→?x f x x f x )1()1()31(lim 0 ( ) A . 1- B . 1 C 6 D 11 4、已知函数bx ax x x f +-=2 3)(的图象与x 轴切于点(1,0),则)(x f 的极值为( ) A .极大值274 ,极小值0 B .极大值2716 - ,极小值4- C .极小值-27 4 ,极大值0 D .极大值27 16 ,极小值4- 5、如图所示的曲线是函数d cx bx x x f +++=23)( 2 2 ) A . 98 B . 910 C . 9 16 D . 4 5 【典型例题】 例1.已知函数x bx ax x f 3)(2 3-+=在1±=x 处取得极值. (1)求函数f (x )的极大值和极小值; (2)求曲线y= f (x )在2=x 的切线方程. 例4.已知:在函数x mx x f -=3 )(的图象上,以),1(n N 为切点的切线的倾斜角为 4 π. (1)求m ,n 的值; (2)是否存在最小的正整数k ,使得不等式1993)(-≤k x f 对于]3,1[-∈x 恒成立? 如果存在,请求出最小的正整数k ;如果不存在,请说明理由. .

高中数学 应用题

江苏新高考 “在考查基础知识的同时,侧重考查能力”是高考的重要意向,而应用能力的考查又是近二十年来的能力考查重点.江苏卷一直在坚持以建模为主.所以如何由实际问题转化为数学问题的建模过程的探索应是复习的关键. 应用题的载体很多,前几年主要考函数建模,以三角、导数、不等式知识解决问题.2013年应用考题是解不等式模型,2014年应用考题可以理解为一次函数模型,也可以理解为条件不等式模型,这样在建模上增添新意,还是有趣的,2015、2016年应用考题都先构造函数,再利用导数求解.2016、2017年应用考题是立体几何模型,2017年应用考题需利用空间中的垂直关系和解三角形的知识求解. [常考题型突破] 函数模型的构建及求解 [例1](2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍. (1)若AB=6 m,PO1=2 m,则仓库的容积是多少? (2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大? [方法归纳]

解函数应用题的四步骤 [变式训练] 1.(2017·苏锡常镇二模)某科研小组研究发现:一棵水蜜桃树的产量w (单位:百千克)与肥料费用x (单位:百元)满足如下关系:w =4-3x +1,且投入的肥料费用不超过5百元.此外,还需要投入其他 成本(如施肥的人工费等)2x 百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为L (x )(单位:百元). (1)求利润函数L (x )的函数关系式,并写出定义域; (2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少? 2.(2017·南通三模)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路C -D -E -F ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参观线路的费用

高中数学选修1-1《导数及其应用》知识点讲义

第三章 导数及其应用 一、变化率与导数 ()()()()()()()() 000000000000000 10,0lim lim lim . x x x x x y f x x x x x y y x x x x x y x x f x x f x y x x y x x f x y f x x f x f x x ?→?→=?→==??≠??+???→=+?-?=??=+?-=?'''、定义:设在处取得一个增量. 函数值也得到一个增量称 为从到的平均变化率.若当时时,有极限存在,则称此极限值为函数在处的瞬时变化率,记为,也称为函 数在处的导数,记作或,即 ()0y f x x x ==说明:导数即为函数在处的瞬时变化率. ()()00. PT x f x P PT f x k ?→='2、几何意义:时,Q 沿图像无限趋近于点时,切线的斜率.即 ()()()()003==lim lim . x x f x x f x y y f x y f x y x x ?→?→+?-?==??''''、导函数(简称为导数) 称为导函数,记作,即 二、? 三、 常见函数的导数公式 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '= 7 若()log x a f x =,则1 ()ln f x x a '=

高二数学导数及应用题

(数学选修1-1)第三章 导数及其应用 [综合训练B 组] 一、选择题 1 函数()32 3922y x x x x =---<<有( ) A 极大值5,极小值27- B 极大值5,极小值11- C 极大值5,无极小值 D 极小值27-,无极大值 2 若'0()3f x =-,则000 ()(3) lim h f x h f x h h →+--=( ) A 3- B 6- C 9- D 12- 3 曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 4 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 5 函数x x y 142 + =单调递增区间是( ) A ),0(+∞ B )1,(-∞ C ),2 1 (+∞ D ),1(+∞ 6 函数x x y ln = 的最大值为( ) A 1 -e B e C 2 e D 3 10 二、填空题 1 函数2cos y x x =+在区间[0, ] 2 π 2 函数3 ()45f x x x =++的图像在1x =处的切线在x 轴上的截距为________________

3 函数32x x y -=的单调增区间为 ,单调减区间为___________________ 4 若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是 5 函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为________ 三、解答题 1. 已知曲线12-=x y 与31x y +=在0x x =处的切线互相垂直,求0x 的值 2 如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去 四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长 为多少时,盒子容积最大? 3 已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =- (1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间 4 平面向量11),(22 a b =-= ,若存在不同时为0的实数k 和t ,使 2 (3),,x a t b y ka tb =+-=-+ 且x y ⊥ ,试确定函数()k f t =的单调区间

高中数学导数及其应用

高中数学导数及其应用 一、知识网络 二、高考考点?1、导数定义的认知与应用; ?2、求导公式与运算法则的运用; ? 3、导数的几何意义; ?4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。??三、知识要点? (一)导数?1、导数的概念?(1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果

时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作 ,即 。 ?(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值 ,都对应着一个确定的导数 ,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间( )内的导函数(简称导数),记作或, 即。??认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当 时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量 ;? ②求平均变化率; ③求极限?上述三部曲可简记为一差、二比、三极限。?? (2)导数的几何意义:?函数在点处的导数,是曲线在点 处的切线的斜率。? (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别:?(Ⅰ)若函数在点处可导,则在点处连续;?若函数在开区间()内可导,则在开区间()内连续(可

导一定连续)。??事实上,若函数在点处可导,则有 此 时,? ? ? ?记 ,则有即在点处连续。?(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。?反例:在点处连续,但在点处无导数。 事实上,在点处的增量?当 时,, ;?当时,, 由此可知,不存在,故在点处不可导。??2、求导公式与 求导运算法则 (1)基本函数的导数(求导公式) 公式1 常数的导数:(c为常数),即常数的导数等于0。??公式2 幂函 数的导数:。? 公式3 正弦函数的导数:。??公式4 余弦函数的导数: ??公式5 对数函数的导数:? (Ⅰ); ?(Ⅱ)

导数应用题

导数在生活中的应用 【例1】一点沿直线运动,如果由始点起经过t 秒后的距离为错误!未找到引用源。,那么速度为零的时刻是( ) A .1秒末 B .0秒 C .4秒末 D .0,1,4秒末 【例2】已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为错误!未找到引用源。.求产量q 为何值时,利润L 最大? 【例3】如图,一矩形铁皮的长为cm 8,宽为cm 5,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大? 解:设小正方形的边长为cm x ,则盒子底面长为82x -,宽为52x - 32(82)(52)42640V x x x x x x =--=-+ '2125240V x x =-+,令0V '=得1x =或10 3 x = (舍去) (1)18V V ==极大值,在定义域内仅有一个极大值, 18V ∴=最大值 练习: 1、甲乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/小时,已知该汽车每小时的运输成本P (元)关于速度v (千米/小时)的函数关系是P =119 200v 4-1 160v 3+15v , (1)求全程运输成本Q (元)关于速度v 的函数关系式; (2)为使全程运输成本最少,汽车应以多少速度行驶?并求此时运输成本的最小值. 2、在长为100千米的铁路线AB 旁的C 处有一个工厂,工厂与铁路的距离CA 为20千米.由铁路上的B 处向工厂提供原料,公路与铁路每吨千米的货物运价分别为5k 和3k (k >0,k ∈R ),为节约运费,在铁路的D 处修一货物转运站,设AD 距离为x 千米,沿CD 直线修一条公路(如图). (1)将每吨货物运费y (元)表示成x 的函数. (2)当x 为何值时运费最省? 3、某地有三家工厂,分别位于矩形ABCD 的顶点A ,B ,及CD 的中点P 处,已知20AB =km, 10CD km =,为了处 20100x A B C D

高二数学周测卷--导数及其应用(含答案)

2019—2020学年第二学期高二数学周测试卷 2020.3.1 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设函数y =f (x )在(a ,b )上可导,则f (x )在(a ,b )上为增函数是f ′(x )>0的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 解析 y =f (x )在(a ,b )上f ′(x )>0?y =f (x )在(a ,b )上是增函数,反之,y =f (x )在(a ,b )上是增函数?f ′(x )≥0?/f ′(x )>0. 答案A 2.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程是2x +y -1=0,则( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0 D .f ′(x 0)不存在 解析曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率为f ′(x 0)=-2<0. 答案B 3.曲线y =13x 3-2在点(-1,-5 3)处切线的倾斜角为( ) A .30° B .45° C .135° D .150° 解析y ′=x 2,k =tan α=y ′|x =-1=(-1)2=1, ∴α=45°. 答案B 4.曲线f (x )=x 3+x -2的一条切线平行于直线y =4x -1,则切点P 0的坐标为( )

A.(0,-1)或(1,0) B.(1,0)或(-1,-4) C.(-1,-4)或(0,-2) D.(1,0)或(2,8) 解析设P0(x0,y0),则f′(x0)=3x20+1=4, ∴x20=1,∴x0=1,或x0=-1. ∴P0的坐标为(1,0)或(-1,-4). 答案B 5.下列函数中,在(0,+∞)上为增函数的是( ) A.y=sin2x B.y=x3-x C.y=x e x D.y=-x+ln(1+x) 解析对于C,有y′=(x e x)′=e x+x e x=e x(x+1)>0. 答案C 6.已知函数f(x)=x3-3x2-9x,x∈(-2,2),则f(x)有( ) A.极大值5,极小值为-27 B.极大值5,极小值为-11 C.极大值5,无极小值D.极小值-27,无极大值解析f′(x)=3x2-6x-9 =3(x+1)(x-3). 当x<-1时,f′(x)>0, 当-1

高中数学-知识讲解_导数的综合应用题(提高)(理)

导数的综合应用题 【学习目标】 1. 会利用导数解决曲线的切线的问题。 2. 会利用导数解决函数的单调性等有关问题。 3. 会利用导数解决函数的极值、最值等有关问题。 4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题 【要点梳理】 要点一、有关切线问题 直线与曲线相切,我们要抓住三点: ①切点在切线上 ②切点在曲线上 ③切线斜率等于曲线在切点处的导数值。 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组。 要点二、有关函数单调性的问题 设函数()y f x =在区间(a ,b )内可导, (1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数。 要点诠释: (1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b )内单调递减, 则'()0f x ≤。 (2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤。 ② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥。 (或是求含参函数(,)f x m 的最大值max (,)f x m ,使)max (,)0f x m ≤) 要点三、函数极值、最值的问题 1.函数极值的问题

相关主题
文本预览
相关文档 最新文档