当前位置:文档之家› 分子模拟实验 溶剂化效应和红外光谱的模拟

分子模拟实验 溶剂化效应和红外光谱的模拟

分子模拟实验 溶剂化效应和红外光谱的模拟
分子模拟实验 溶剂化效应和红外光谱的模拟

分子模拟实验溶剂化效应和红外光谱的模拟

实验内容介绍:

本次实验主要内容是溶剂化效应和红外光谱模拟。何谓溶剂化效应,通常量子化学的研究都是在真空中、绝对零度下、气相分子的性质,实际上大多数化学物质和过程都存在于介质(如各种溶剂)中,与孤立的气相分子相比,溶剂对溶质分子的性质及其参与的化学反应,都有可能有非常重要的影响。不同的溶剂不仅可以影响溶质分子的结构、反应平衡、反应速率,甚至可以改变反应进程和机理,得到不同的产物或产率。将这些影响称之为“溶剂化效应”。对溶剂化效应的模拟有三种模型:显式溶剂化模型、隐式溶剂化模型、显式隐式结合模型。显式模型主要是在溶质分子中加入真正的溶剂分子再进行优化模拟;隐式模型是连续介质模型,溶剂对溶质分子的作用称为反应场,通过场概念运用迭代方法的计算,直至自洽,称自洽反应场方法(SCRF),其中又包括:Onsager模型、极化连续介质模型(PCM)。实验中,我们以反应F- +CH3F = FCH3 +F-为例,进行溶剂化模型的建立以及反应优化计算。

红外光谱模拟是分子光谱模拟的重要一项。分子的红外光谱是分子振动的反映,振动频率对应于红外光谱的一个谱峰,振子强度(由于振动而引起的分子偶极矩的变化)相应于光谱峰的高度。谱峰的高度则是由于诸如热效应等引起的展宽,与分子本身的振动性质关系不大,因此模拟分子的红外光谱,首先需要对分子进行振动频率分析。计算红外光谱时有以下几个原则:1、必须采用优化的分子结构;2、结构优化和频率计算必须采用同一理论水平;

3、理论计算的频率为谐振动频率,一般偏高;

4、理论计算的振子强度和实验峰高不具有可比性。实验中,我们以H2O分子为对象,作红外光谱的模拟计算。

实验要求:

1、掌握溶剂化效应的概念和溶剂化模型,能做溶剂化效应对反应进程的模拟;

1、理解红外光谱的概念和模拟,作出不同优化方法下的H2O分子的红外光谱图,并比较分析。

实验一:溶剂化效应

(1)、反应F- +CH3F = FCH3 +F- 是一个典型的有机反应S N2反应,反应在气相进行时,首先形成一个“中间体”,这是一个简单的符合过程,不存在过渡态。然后经过一个S N2过渡态,形成另外一个中间体(反应对称,此中间体和初始形成的中间体是一样的),最后直接分解成两种产物。优化方法和基组设置为GAMESS/ HF/(6-31G(d)),R-Closed Shell, Spin Multiplicity 1,Net Charge -1,优化得到各物种的能量作出表一、并计算反应的能量途径图,如下图一所示:

图一:HF/6-31G(d)计算的F- +CH3F = FCH3 +F- 反应能量途径图(单位kcal/mol)

(2)、当该反应在水溶液中进行时,仍然采用相同的理论水平,即HF/6-31G(d),采用PCM溶剂模型,可对气相反应的的反应物、中间体、过渡态、产物,分别进行计算。PCM 水模型的计算能量值如下表二所示,反应能量途径图如下图二所示。很明显

表二:PCM水模型HF/6-31G(d)优化下反应各种分子或中间态的能量大小

图二:PCM水模型HF/6-31G(d)优化下反应的能量途径

从图二中分析可得,溶剂条件下,反应的“中间体”能量与原始反应物很接近,在水溶液中消失不见了,同时过渡态的能量升高了,远高于反应物的能量,预示着在水溶液中该反应会变得比较慢,理论计算与实验结果是比较符合的。

(3)、MOPAC COSMO 模型优化水溶剂对反应的影响

过渡态

图三:MOPAC COSMO 模型水溶剂优化下反应能量途径

从图三可分析出,反应只有过渡态、没有中间体,且过渡态能量很高,反应进行的难度会增大,与PM3水溶剂优化下的反应能量总体趋势和路径是相同的。

实验二:红外光谱

实验介绍中我们了解到计算红外光谱须遵循的几个基本原则,Chem3D软件只能进行简谐频率分析,因为没有考虑到非简谐效应,计算的振动频率一般高于实验值。通常采用“标定因子”对计算值进行校正。

实验是采用PM3,HF/6-31G(d),B3LYP/6-31G(d),MP2/6-31G(d)四种理论方法计算H2O分子的红外光谱,并比较结果优劣。实验上测量的水分子的振动频率为:1594cm-1, 3657cm-1, 3756cm-1.

具体的计算红外光谱的方法为:1、首先用一种理论优化H20分子的结构;2、使用同样的理论方法,计算H20分子的振动频率;3、频率标定:用该理论算法下的标定因子来计算振动频率,然后做出红外光谱图。

图四:H2O分子不同优化方法Lorentz算法下的红外光谱图

结果分析:

对H2O分子的红外光谱图分析,水分子的振动自由度为3,分别为1600cm-1左右的弯曲振动、3650cm-1附近的对称伸缩振动以及3750cm-1附近的不对称伸缩振动。从图四我们可以看出B3LYP/6-31G(d)、MP2/6-31G(d)方法得到的频率值都存在一个频率值红外强度过低,红外峰不出,导致无法观测,而HF/6-31G(d)方法下得到的频率值较实验值最为接近,且峰强度较好比较容易观察,效果最好。

实验总结和感想

总结:

通过此次实验,我们对溶剂化以及红外光谱的模拟有了初步的认识和了解,实验过程中比较成功地完成了实验要求,得到实验结果并做出了结论分析。溶剂化效应会影响反应的进程,改变反应的能量途径,其优化方法比较多样。红外光谱的模拟主要在于计算和校正振动频率,实验过程中通过指令程序的运用,我们很好地解决了振动频率转化为红外谱图的操作,最终得到的结果让人满意,也得出结论HF/6-31G(d)方法下得到的频率值较H2O分子实验值最为接近,且峰强度较好比较容易观察,效果最好。但是我们在实验过程中也存在一些小小的问题,比如对不同优化方法下H2O分子红外谱图强度大小的分析没有作出具体的讨论,其不同振动方式怎么影响和改变振动频率值也有待商榷。这在今后自己量子化学、结构化学的理论水平有了很大的提高后,会慢慢去解决这类问题。

感想:

通过这次实验,自己对分子模拟的理解和感觉又有了很大的改变,开始觉得分子模拟真的是环环相扣、知识连接紧密。从开始的简单建模到过渡态的建模优化,从热力学能量值的计算到分子振动频率的计算,从反应过程的模拟到分子谱图的模拟等等真是让人感情深厚,硕果累累。本次实验中对origin软件的运用以及一些指令程序的运算有了不错的学习与提高,对数据的处理能力大大增强,也注意到很多在进行实验数据分析中比较实用的技巧要领,感觉很棒。后面不多的分子模拟实验,自己更须努力,加油!

红外反射光谱原理实验技术及应用

高级物理化学实验讲义 实验项目名称:红外反射光谱原理、实验技术及应用 编写人:苏文悦编写日期:2011-7-7 一、实验目的(宋体四号字) 1、了解并掌握FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱表面分析技术的原理、实验技术及应用 2、比较分析FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱技术各自适用的样品、同一样品不同红外光谱的谱带位置及形状。 二、实验原理 衰减全反射(ATR)、漫反射(DRS)和反射吸收(RAS)都是傅里叶变换红外反射光谱,是FTIR常用的表面分析技术。 图1 入射角(θ)及折射率(n1,n2)对光在界面上行为的影响 θc为临界角,sinθc=n2/n1 1全反射光谱原理、实验技术及应用 全反射:光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象。很多材料如交联聚合物、纤维、纺织品和涂层等,用一般透射法测量其红外光谱往往很困难,但使用FTIR及ATR技术却可以很方便地测绘其红外光谱。 (1)入射角与临界角 在通常情况下,光透射样品时是从光疏介质的空气射向光密介质样品的,当垂直入射(入射角θ为0°)时,则全部透过界面;当θ≠0°时,如果两者的折射率相差不大,则光是以原方向透射的,但如折射率差别较大,则会产生折射现象。 当n2与n1有足够的差值(0.5以上),且入射光从光密介质(n1)射向光疏介

质(n 2 ),入射角θ 大于一定数值时,光线会产生全反射现象。这个“一定数值”的角度称为临界角,也即当折射角φ 等于90°时的入射角θ称为临界角θc ,如图1,其中临界角θc 和折射率n 1和n 2有如下关系: sin θ=n 2/n 1 显然,临界角的数值取决于样品折射率与全反射晶体的折射率之比,对同一种全反射晶体,不同材质的样品会有不同的临界角值,表1所列数值可看出这一关系。 表1 在ATR 和MIR 方法中必须选用远大于临界角的入射角,即sin θ>n 2/n 1,以确保全反射的产生和所获光谱的质量,本实验运用单次衰减全反射ATR 附件,反射晶体是锗,入射角固定为45°,远大于临界角。 (2)衰减全反射 衰减全反射(Attenuated Total Reflectance)缩写为ATR 。当入射角大于临界角时,入射光在透入光疏介质(样品)一定深度后,会折回射入全反射晶体中。进入样品的光,在样品有吸收的频率范围内光线会被样品吸收而强度衰减,在样品无吸收的频率范围内光线被全部反射。因此对整个频率范围而言,由于样品的选择性吸收,使ATR 中的入射光能被部分衰减,除穿透深度dp 外,其衰减的程度与样品的吸收系数有关,还与多次内反射中的光接触样品的次数有关。这种衰减程度在全反射光谱上就是它的吸收强度。 全反射光谱的强度及分布 ATR 光谱的强度取决于穿透深度dp 、反射次数和样品与棱镜的紧密贴合情况以及样品本身吸收的大小。 内反射次数则是设计装置时的一个参数,入射角?越小,对同样尺寸的全反射晶体,全反射的次数就越多,谱峰越增强。 在全反射过程中光线穿透入样品的深度dp 的表示公式如下: 其中,dp :是光透入样品的垂直深度,称穿透深度 λl :是光在内反射晶体材料中的波长,与入射光波长λ成正比λ1=λ/n 1 ?:为入射角, n 21=n 2/n 1 :是样品与全反射晶体的折射率之比 21221 21)(sin 2n dp -=θπλ

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理 1)红外光谱的产生 能量变化 ν νhc h= = E - E = ?E 1 2 ν ν h ?E = 对于线性谐振子 μ κ π ν c 2 1 = 2)偶极矩的变化 3)分子的振动模式 多原子分子振动 伸缩振动对称伸缩 不对称伸缩 变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆 AX3:对称变形、反对称变形 . 不同类型分子的振动 线型XY2: 对称伸缩不对称伸缩 弯曲

弯曲型XY2: 不对称伸缩对称伸缩面内弯曲(剪式) 面内摇摆面外摇摆卷曲 平面型XY3: 对称伸缩不对称伸缩面内弯曲 面外弯曲 角锥型XY3: 对称弯曲不对称弯曲

面内摇摆 4)聚合物红外光谱的特点 1、组成吸收带 2、构象吸收带 3、立构规整性吸收带 4、构象规整性吸收带 5、结晶吸收带 2 聚合物的红外谱图 1)聚乙烯 各种类型的聚乙烯红外光谱非常相似。在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜) 中压聚乙烯(热压薄膜) 高压聚乙烯(热压薄膜)

2.聚丙烯 无规聚丙烯

等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。 3.聚异丁烯 CH3 H2 C C n CH3

建筑工程学院虚拟仿真实验室建设方案要求

建筑工程学院虚拟仿真实验室建设方案要求 一、硬件设备及功能要求 在针对BIM设计/办公场景评估并实现能够替代PC电脑/工作站方案,降低学校设备运维成本,优化使用体验,提升设计/教学效率和效果。结合目前学校现状、需求及挑战,建设一个完善的软件定义的BIM云平台,最终将达到以下目标: 1、统一的BIM云平台 根据BIM业务需要建设统一的基础设施云平台(IaaS),整合计算、存储、GPU和网络资源,将业务应用整合,云化部署迁移到数据中心的云计算平台,在实现数据统一的基础上通过统一的云平台管理界面进行资源的调度和管理。通过集中管理的桌面云提供随时随地的桌面访问、灵活的教育教学和统一的后端运维管理,同时实现更高的安全性、控制能力并节省IT运维费用。 2、资源全面池化 将计算、存储、GPU、网络资源整合成为可以统一管理、弹性调度、灵活分配的资源池,每个应用系统不再占用独立的物理服务器、存储和网络资源,而是与其他应用系统一起,共享基础平台的资源,以虚拟机的形式独占其中部分逻辑资源。 3、提供标准化的资源服务 合理划分计算存储网络等资源,针对各类业务需求提供标准化且可按需调整的支撑资源配置,进行自动化部署和维护,快速提供标准、安全和稳定的资源服务。统一管理各种资源,并根据业务系统对计算能力、存储I/O、网络带宽等需求,提供不同级别的资源服务。 4、随需分配和回收资源 未来新建应用系统或扩容、迁移应用系统,只需根据需求从资源池中直接获取资源即可快速完成,而不必额外申请购买硬件设备。在业务系统生命周期完结后,也可释放资源回到资源池。这样既提升了业务部署效率,又提升了资源利用率,降低了运维复杂度,从而降低了总体拥有成本。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

虚拟仿真(虚拟现实)实验室解决方案设计

数虎图像提供虚拟仿真实验室硬件设备搭建和内容制作整体解决 方案 虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。数虎图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随数虎图像一起,让我们从头开始认识虚拟现实实验室。【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 数虎图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成:

虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

远程虚拟仿真实验室教学系统

电力电子虚拟仿真教学实验平台 实验室建设背景 目前的高等教育中,越来越强调对学生实践能力的培养,实验教育成为理工科教育的一个至关重要的环节。然而,随着各学科实验项目和学生人数的增多,传统的电气实验室和实验仪器数量很难满足学生的需求,在教学和学生使用上的不便之处也慢慢凸现出来。如何解决传统实验教学资源分配不足、实验方式过于刻板、实验器材维护费时费力、实验内容固定难以拓展等问题,是目前新工科建设、课程改革内容中一个讨论的热点。 在对创新型实验建设的需求日益明确之际,仿真实验教学的概念开始成为学校关注的重点。仿真教学实验是一种基于软件技术构建的虚拟实验教学系统,是现有各种教学实验室的数字化和虚拟化,为开设各种专业实验课程提供了全新的教学与科研环境。因此建设仿真实验室可以与实物实验室互补,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点。近年来,国内的许多高校都根据自身科研和教学的需求建立了一些高科技的仿真实验室。 远宽解决方案 远宽能源除了将仿真技术应用于科研与工业测试,也率先将该技术引入到了教学实验室建设中。对于不同的实验内容与实验类型,远宽能源提出了如下的仿真实验建设的解决方案:实时仿真实验和远程虚拟仿真实验。

1. 实时仿真实验 远宽能源将先进的FPGA小步长实时仿真技术应用到教学实验室建设中,小步长实时仿真技术使它能够覆盖电力电子、电机驱动、新能源等多个电力电子相关应用的创新教学实验以及研究的需求。基于图形化系统建模,模型一键下载,无需FPGA编程编译,大大增强了产品的易用性;同时实验平台还配置了硬件控制器(TI的DSP或者NI的GPIC),和仿真器构成完整的闭环系统。实时仿真实验系统如下图所示:

仪器分析红外光谱实验

仪器分析实验报告 实验名称:红外光谱分析(IR)实验学院:化学工程学院 专业:化学工程与工艺 班级:化工112 姓名:王文标学号11402010233 指导教师:张宗勇 日期:2014.4.29

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。 根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。 红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

油品的红外光谱实验数据分析

图1. 干涉法测液池厚度干涉图

图2.润滑油第一次分析所得图谱及峰数据

图3.润滑油第二次分析所得图谱及峰数据

讨论分析: 由公式l=n/(2*(δ1-δ2)) (1) 注:n为干涉图中波峰数目;【δ1 δ2】扫描波数范围大小 结合图1得出如下结果: n=33 δ1=2000cmˉ1δ2=600cmˉ1 l=0.117857mm 可以看出l的值足够小,能够满足实验的需要。 数据处理: 由图2及图3 的数据记录,结合公式(2)~(4)得到如下表格: C A%=10.32*A1610/l+0.23 (2) C P%=6.9*A720/l+28.38 (3) C N%=100-(C A%+C N%) (4) 表1.图2 数据处理表 峰 基点1 基点2 高度面积C A% C P% C N% 液池池程l 名 1 1620.58 1589.15 0.0384 1.29 3.592448 65.8257 2 30.5818 3 0.117857 2 760.16 691.54 0.6396 12.72

表2.图3数据处理表 峰 基点1 基点2 高度面积C A% C P% C N% 液池池程l 名 1 1683.81 1589.94 0.0426 2.71 3.960215 55.52171 40.51808 0.117857 2 736.84 704.4 3 0.4636 5.92 实验注意事项: 1.实验时液体样品池内两盐片的宽度应该始终保持一致。 2.液体样品用注射器注入液体池中,并且要求没有气泡。 3.在第二次重复操作时,应该将液体池和垫片上的溶剂用四氯化碳洗净吹干。 20091161034 文昊 2011年12月5日

会计创新创业虚拟仿真实训平台实验室建设方案

会计创新创业虚拟仿真实训平台实验室 建设方案

《国务院办公厅关于深化高等学校创新创业教育改革的实施意见》中指出,深化高等学校创新创业教育改革,是国家实施创新驱动发展战略、促进经济提质增效升级的迫切需要,是推进高等教育综合改革、促进高校毕业生更高质量创业就业的重要举措。高校要打通一级学科或专业类下相近学科专业的基础课程,开设跨学科专业的交叉课程,探索建立跨院系、跨学科、跨专业交叉培养创新创业人才的新机制,促进人才培养由学科专业单一型向多学科融合型转变。 会计创新创业虚拟仿真实训平台实验室包括企业财税协同作业实训和创业仿真模拟实训两个部分,企业财税协同作业实训是通过对真实商业社会环境中典型单位、部门与岗位的系统模拟,让学生体验身临其境的岗前实训,认知并熟悉现代商业社会内部不同组织、不同职业岗位的工作内容和特性,培养学生从事经营管理所需的综合执行能力、综合决策能力和创新创业能力,使其具备全局意识和综合职业素养;而创业仿真模拟实训是通过学生模拟从企业建立到企业经营的全过程,即从开办公司的前期准备工作(如名称预先核准),到公司进入经营轨道后的各项经营决策的整个过程,全方位培养学生的实践能力。 下面对企业财税协同作业实训和创业仿真模拟实训分别进行介绍。 企业财税协同作业实训 建设背景 随着中国经济的不断发展,企业对财务管理信息化的要求也在不断提高。在中国一直有着财税不分家之说,据专家预测,财税结合将是未来的财务管理软件的发展方向。会计创新创业虚拟仿真实训平台实验室的设立响应了国家“十二五教育规划”中关于“鼓励校企合作办学及着重加强在校生实际业务操作能力培养”的号召,同时改变了财、税、计算机等教学领域相互分离与割裂的现状,提高了学生适应社会的专业能力,形成了财税人员综合素质培养的新平台。 系统完整的实训基地

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

红外光谱实验

实验 红外光谱实验 计划学时:4学时 时间: 一、实验目的: 1、学习KBr 压片的制样方法。 2、学习红外光谱仪的操作技术。 二、实验原理 由于分子吸收了红外线的能量,导致分子内振动能级的跃迁,从而产生相应的吸收信号——红外光谱(简记IR )。通过红外光谱可以判定各种有机化合物的官能团;如果结合对照标准红外光谱还可用以鉴定有机化合物的结构。 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。 (1) 双原子分子的红外吸收频率 分子振动可以近似地看作是分子中原子心平衡点为中心,以很小的振幅做周期性的振动。这种振动的模型可以用经典的方法来模拟。如图1所示,m1和m2分别代表两个小球的质量,即两个原子的质量,弹簧的长度就是化学键的长度。这个体系的振动频率取决于弹簧的强度,即化学键的强度和小球的质量。其振动是两个小球的键轴方向发生的。 图1 双原子分子的振动模型 用经典力学的方法可以得到如下的计算公式: μπνk 21= 或 μ πνk c 21= 可简化为: μ νk 1304≈ 式中,ν是频率,Hz ;ν是波数,cm -1;k 是化学键的力常数,g/s 2;c 是光速(3×1010cm/s);μ是原子的折合质量(μ=m1m2/(m1+m2)。 一般来说,单键的k=4×105~6×105 g/s 2;双键的k=8×105~12×105 g/s 2;叁键的k=12×105~20×105 g/s 2。 (2) 多原子分子的吸收频率 双原子分子振动只能发生在联接两个原子的直线上,并且只有一种振动方式,而多原子分子振动则有多种振动方式。假设由n 个原子组成,每一个原子在空间都 有3个自由度,则分子有3n 个自由度。非线性分子的转动有3个自由度,线性分子则只有2个转动自由度,因此非线性分子有3n-6种基本振动,而线性分子有3n-5种基本振动。以H2O 分子为例,其各种振动如图所示,水分子由3个原子组成并且不在一条直线上,其振动方式应有3×3-6=3个,分别是对称和非对称伸缩振动和弯曲振动。O -H 键长度改变的振动称为伸缩振动,键角小于HOH 改变的振动称为弯曲振动。通常键长的改变比键角的改变需要更大的能量,因此伸缩振动出现在高波数区,弯曲振动出现在低波数区。 (3) 红外光谱及其表示方法 红外光谱的表示方法如下图所示:

虚拟实验室建设方案

电子信息技术虚拟实验室建设实施方案 虚拟实验室是一种基于Web技术、VR虚拟现实技术构建的开放式网络化的虚拟实验教学系统,是现有各种教学实验室的数字化和虚拟化。虚拟实验室由虚拟仿真平台、虚拟实验平台、虚拟仪器和开放式实验室管理系统组成。虚拟仿真平台可提供学生进行实验电路的虚拟仿真,实验原理预习;虚拟实验平台和虚拟仪器与真实实验设备类似,自己动手配置、连接、调节和使用实验仪器设备;开放式实验管理系统提供教师编辑、设计实验任务和内容、设置学生各种权限、解答学生提问、提交实验报告。 虚拟实验室为开设各种电子信息实验课程提供了全新的教学环境,使教师上课的更生动、实验设备利用率更高、学生自主实验的内容和时间更灵活。 一、系统总体框架 网络服务器 客户端实验箱 网络 如上图,整个系统主要有客户端、服务器和实验平台构成。 客户端主要有两类:管理员(教师)终端和学生终端,管理员能设置实验室开放时间、实验内容设定、学生访问权限,上传实验课件,布置实验任务等。学生端通过浏览器登陆虚拟实验室平台,自主选择实验项目,进行课前预习、实验操作、仪表选择、仿真数据测量、实验报告提交等工作,也可进行机位预定、虚拟仪表预定、实体数据的采集和测量等工作。 服务器提供整套基于B/S架构的实验室管理软件和虚拟远程实验操作平台软件;虚拟实验形式包括纯虚拟的仿真实验、虚拟实体操作实验、远程控制的实体操作实验。使用者既可以通过网络登录服务器完成纯虚拟的仿真实验,也可以通过网络远程控制基础实验箱的实验电路,改变电路器件参数,采集实际的测试数据,进行远程测试和数据分析。也可通过网络远程动态加载开发例程,完成设计性开发性实验。具体功能如下: 1、在线学习功能:可通过登陆虚拟实验平台进行在线课前预习、原理学习等工作; 2、虚拟仿真功能:基于浏览器和Multisim与Labview软件,搭建真实的实验电路进行仿真。无源器 件电阻、电感、电容能实时调节,电路响应可通过虚拟示波器和虚拟频谱仪示波。 3、虚拟实体仿真:学生能在PC机上操作虚拟实体实验平台和Tektronix TDS2024四通道虚拟示波器, 完成信号种类设置、信号频率设置、信号幅度设置、实验电路搭试、波形测试等实验过程,多通道示波器能同时显示4个测试点波形,使实验过程的展示更形象生动。

虚拟仿真实验室(系统)建设项目

虚拟仿真实验室(系统)建设项目 ---模拟数字混合智慧实验平台采购论证报告 项目执行单位:防灾仪器系 项目负责人:洪利 项目执行人:姜运芳 申请执行时间:2018年6月26日

目录 1.1项目实施必要性分析 (3) 1.2项目实施可行性分析 (4) 1.3项目实施支撑保障条件 (4) 3.2项目风险与不确定性分析.................... 错误!未定义书签。 3.3预期经济社会效益.......................... 错误!未定义书签。

1 项目建设背景及情况分析 近年来,我院防灾仪器系不断探索“新工科”人才培养模式,建立健全“双创协同”育人体制机制,创新教学模式和管理模式,搭建了“创新创业协同培养平台”。实践教 学作为我院教学过程的重要环节,对于深化学生对所学知识的理解和掌握、培养学生分 析问题和解决问题的能力至关重要。 电子技术实践教学所涉及的都是既重理论更重实践的课程,是帮助学生理解理论、 加深认识而达到学以致用的必要环节。形成具有自身特色的创新性虚拟实验教学模式, 满足规模化教育环境下培养具有创新精神和实践能力的高素质人才的要求,推动和影响 基础实验教学模式的改革与创新是非常有必要的。 模拟数字混合智慧实验平台建设项目于2018年3月获批资金36.9万元。拟以“新工科”人才培养“智慧教学”为导向,并以此项目建设为契机,后期与教育部在线教育研究中 心智慧教学平台“雨课堂”以及“雨课堂”全球首家软件云战略合作伙伴“北京时代行 云科技”有限公司共建的产学合作智慧教学示范基地。将“新工科”的“互联网+智慧教学”先进教学理念注入学生的实践学习环节,充分地借助“教育部在线教育研究中心智 慧教学平台”将“理论课程智慧课堂教学”即雨课堂以及仿真与真实动手智慧实验即雷 实验无缝通过微信衔接,具有便携式,模块化,数模混合,全可编程,产学合作可定制、可二次开发、可扩展等独特优势,为电类专业奠定坚实基础,孵化基础电类创新想法, 培养学生创业素质的“以学生为中心”基础电类实践基地。 1.1项目实施必要性分析 随着“互联网”时代的到来,结合丰富网络资源的“线上”+ “线下” O2O学习模 式成为高效学习的方法和趋势。然而即使是最优秀的大规模在线开放课程(MOOC),其“线下”配套动手实验环境的搭建始终影响到工程实践类专业的人才培养质量。为营造 与互联网时代相匹配的“无处不在的大实验室”环境,达成实验室内与实验室外相衔接,课内与课外相融合,理论与实践环节不隔离,后续课程与基础课程相贯穿、企业讲师与 学校教授相互动、基于项目的学习与基础学习统一平台化。建设一个方便学生带入和带 出实验室的电路课程配套“书包实验室”将使教师教授与学生学习的场景和内容更加丰 富化,高效化,多元化,生活化。具有十分的必要性。在学生随时随地可以获取知识的互联网时代,配套建设综合的“书包实验室”电路实验平台,具有如下优势:(1)智慧教学实验平台包括电路实验便携式智慧仪器仪表硬件(内置示波器、信号源、电源、电压表、逻辑分析仪、波特图仪等十合一硬件仪器)以及配套电路面包板等 实验对象。设备使用率高,且每年/每学期可以复用。

红外实验报告

红外实验报告 篇一:红外遥控实验报告 红外遥控开关 小组成员: 指导教师: 掌握电子电路设计的基本方法;了解各种红外收发器件;掌握红外遥控的收发方式;掌握红外遥控的编码、解码方式;掌握开关量信号对强电设备的控制方式设计要求及技术指标: 基本部分: [1] 红外遥控器采用现成的家用电器的红外遥控器,遥控距离不小于5米; [2] 遥控开关接收端的工作电源为220V 交流电; [3] 遥控开关使用发光二极管指示有无220V交流电源及遥控开关的开关状态; [4] 遥控开关能够控制台灯、电扇等家用电器,输出功率不超过200W。发挥部分: [1] 自制红外遥控器,包括至少4路遥控按键; [2] 遥控开关能够控制至少4路家用电器 设计任务 [1] 设计、安装、调试所设计的电路; [2] 画出完整电路图,详细说明电路原理,写出设计总

结报告 设计思路 红外遥控→红外接收→信号处理→开关驱动及显示 红外遥控器的发射端具有键盘矩阵,每按下一个键,即产生具有不同的编码的数字脉冲,这种代码指令信号调制在38kHZ的载波上,激励红外光二极管产生具有脉冲波串的红外波,通过空间的传送送到受控机内的遥控接收器。在接收过程中红外波信号通过滤波器和光电二极管转换为38kHZ的电信号,此信号经过放大、检波、整形、解调,送到解码器与接口电路,从而完成相应的遥控功能。 “红外线遥控器”设计方案 直流稳压电源部分 直流稳压电源的基本结构 设计电路 整流电路虽然已经把交流电转换成直流电, 但是整流出来的电压还不是平稳的直流电电压, 所以在整流电路的后边还要有滤波电路, 来改善整流输出电压的平滑程度, 这个工作由电容器来完成。 电路的核心是集成稳压电路LM317, 它有三个端点, 一个输入端, 一个输出端, 还有一个调节端。调节端接地在实际的焊接过程中,我们采用芯片7805代替了芯片LM317,由7805的OUT端输出直流的稳定的电压。三端稳

虚拟仿真实验室硬件设备搭建和内容制作整体解决方案

图像提供虚拟仿真教学硬件设备搭建和内容制作整体解决方案 【虚拟现实教学系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实教学建设经验,最新推出的虚拟现实教学系统提供以下组成: 虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,而虚拟三维投影显示系统则是目前应用最为广泛的系统,因为虚拟现实技术要求应用系统具备沉浸性,而在这些所有的显示系统或设备中,虚拟三维投影显示系统是最能满足这项功能要求的系统,因此,该种系统也最受广大专业仿真用户的欢迎。虚拟三维投影显示系统是目前国际上普遍采用的虚拟现实和视景仿真实现手段和方式,也是一种最典型、最实用、最高级别的投入型虚拟现实显示系统。这些高度逼真三维显示系统的高度临场感和高度参与性最终使参与者真正实现与虚拟空间的信息交流与现实构想。

红外光谱实验报告

红外光谱实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在 2.5~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤 1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄

片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 表一聚乙烯的红外光谱 谱带位置/cm-1吸收基团的振动形式 2915.118 (—C—(CH )n—C— n≥4) 2 2849.065 (—C—(CH )n—C— n≤3) 2 1472.730 δC-H(面内) 730.320 δC-H(面外) 719.560 δC-H(面外)

虚拟仿真实验室硬件设备搭建整体解决方案

虚拟仿真实验室硬件设备搭建整体 解决方案

虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。**图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随**图像一起,让我们从头开始认识虚拟现实实验室。【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 **图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成:

虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统:

·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,而虚拟三维投影显示系统则是目前应用最为广泛的系统,因为虚拟现实技术要求应用系统具备沉浸性,而在这些所有的显示系统或设备中,虚拟三维投影显示系统是最能满足这项功能要求的系统,因此,该种系统也最受广大专业仿真用户的欢迎。虚拟三维投影显示系统是目前国际上普遍采用的虚拟现实和视景仿真实现手段和方式,也是一种最典型、最实用、最高级别的投入型虚拟现实显示系统。这些高度逼真三维显示系统的高度临场感和高度参与性最终使参与者真正实现与虚拟空间的信息交流与现实构想。

相关主题
文本预览
相关文档 最新文档