当前位置:文档之家› 求随机变量函数的概率密度函数的教学方法

求随机变量函数的概率密度函数的教学方法

求随机变量函数的概率密度函数的教学方法
求随机变量函数的概率密度函数的教学方法

浅谈如何简单求随机变量函数的概率密度函数的方法

摘要:针对教材中给出的求连续型随机变量函数的概率密度的方法的单一,在借鉴前人研究成果的基础上,提出求概率密度的四步教学法。

概率论与数理统计是一门很有特色的数学分支,无论是综合类大学还是高职、高专院校,都将它作为一门必修课。在大学《概率论与数理统计》中,随机变量函数是一个重点也是一个难点,尤其是连续性随机变量函数的概率密度,教材中只是一般给出两种方法:一种是先求其分布函数,然后对分布函数求导,来得概率密度函数;二是教材中的定理1[1] 关键字:随机变量函数概率密度 一、

定义1:如果存在一个函数()g x ,使得随机变量,X Y 满足()Y g X =则称随机变

量Y 是随机变量X 的函数,那么随机变量Y 的概率密度函数称为随机变量函数的概率密度函数。

二、 (经典公式法)定理1:设随机变量X 具有概率密度

(),X f x x R

∈,又设

()y g x =出处可导且恒有

()()''0(0)

g x g x ><或则

()

Y g X =是一个连续性随

机变量,其概率密度函数

()()()11'

,0,X Y f g y g y y f y αβ--???<

其他(1.1)

该定理中给出的求解方法要求函数()y g x =必须是一对一的单射。然而,在我们实际教学中,学生经常会遇到这样的问题:设随机变量X 的概率密度函数为

()X f x 求随机变量函数2

12Y X ??

=- ???

的概率密度函数。显然在这情况下,使用定

理1的求法是不满足其使用条件的。

定理2 [2][3]设连续型随机变量X 的概率密度函数(),

()0,

f x a x b p x ?<<=?

?其他

()y g x =为区间[],a b 上连续的函数,若每一个y 对应唯一x 的表达式记为123(),

(),

()()n h y h y h y h y ,且均连续可导,对应的定义域

记作:123,,n I I I I ,则随机变量函数()Y g X =的概率密度函数为

[]()'

1

()(),

1,2,3()0n X i i i i Y f h y h y y I i n f y =?∈=?=???

∑ ,其他

该方法基于熟悉的公式法,拓宽了求解连续性随机变量函数的概率密度的方法,弥补了定理1,中的缺陷,解除了初学者使用时的困惑。针对三本院校学生基础知识薄弱,我们在教学中在严格遵守教学规律的同时,坚持以用为本,淡化概念定理的推到证明。从而融合定理1、定理2的思想方法归纳总结出以下结论 三、求概率密度函数的四步法: (1)反解()y g x =得

11()x h y =,()11,y a b ∈,22()x h y =,()12,y a b ∈ ,()(),,n n n n x h y y a b =∈

(2)使用数轴以i a ,i b 1,2,3i n = 为端点将(),i i a b 1,2,3i n = 分割成互不重合的

子区间

()()()()()()()()()1

1

2

2

,,,,,m

m

a b a b a b m n ≥

(3)确定每个区间()()(),j

j

a b 上的()i h y 1,2,j

i n = 并求出该区间上概率密度函数

()'1

()(),1,2,3j

n Yj X i i i f f h y h y j m ===∑

(4)确定概率密度函数()()()()()()11

122

2

(),,(),

,(),0,

Y Y Y f y a b f y a b f y ????

=????? 其他

四、举例

例1设

(),

0480,X x x X f x ?<

?? 其他

,求28Y X =+的概率密度

解:(1)由28Y X =+反解得8

2

Y X -=

, 当04x <<时,8

<(2)分割区间

816

(3)该区间上'

1188()=822Y y y f y --????

? ?????

,816y <<

(4)概率密度函数

()8

,81632

0,Y y y f y -?<

=???其他

例2

设随机变量X 的概率密度函数为2,

01

()0,

x x p x <

?其他

求2

13Y X ??

=- ??

?的概率密度函数。

解:(1)由213y x ?

?=- ?

??

得1

1()3

h y =,14=09I ?

? ???,,

21()3h y =,21=09I ?? ???,10,9y ?

?∈ ???

(2

(3)当10,9y ??∈ ??

?时''

11122()(())()(())()Y X X f y f h y h y f h y h y =+ 整理得1()Y f y =

,10,9y ?

?∈ ???

当14,99y ??∈ ?

??时,'

211()(())()Y X f y f h y h y == (4)

''

1122'111(())()(())(),0914()(())(),

990,X X Y X f h y h y f h y h y y f y f h y h y y ?+<<

???

=<

???

其他 整理得109

14()1990,Y y f y y ?<<

???=+<

其他

例3、设连续性随机变量X 的概率密度函数为()f x ,分布函数为()F x ,求随机变量=Y X 的概率密度

解:(1)反解y x =,1()h y y =,0y >;2()-h y y =,0y > (2)分割区间

(1) 当0y >时,

()()()()

''11122()()()()()

Y X X f y f h y h y f h y h y f y f y =+=+-

(2) 概率密度函数为()(),0

()0,

Y f y f y y f y ?+->=??其他

五、小结:本文在熟悉教材基本公式的情况下,将连续性随机变量函数的概

率密度求法做了推广和总结,通过融合两个定理的核心思想,提出求解概率密度的四步教学法。在基本理论的前提下采用数形结合借助图形直观形象的特点给出具体操作步骤。对于数学基础薄弱抽象思维匮乏的学生极大地降低了学习这部分知识的难度。同时,该方法也适合于将该门课作为基础理论课,以用为目的的院校。

参考文献:[1]吴赣昌. 概率论与数理统计(经管类.简明版)[M].第四版. 北京:中国

人民大学出版社,2011年

[2]程开敏.连续性随机变量函数[J].高等数学研究,2017年7月

[3] 顾玉娣.求连续性随机变量函数的概率密度[J].上海师范大学学报,2002年6月

[4]叶林.概率密度函数的引入[J].内蒙古教育学院学报,1998年12月

一十种概率密度函数

一十种概率密度函数 function zhifangtu(x,m) %画数据的直方图,x表示要画的随机数,m表示所要画的条数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a=min(x); b=max(x); l=length(x); h=(b-a)/m; %量化x x=x/h; x=ceil(x); w=zeros(1,m); for i=1:l for j=1:m if (x(i)==j) %x(i)落在j的区间上,则w(j)加1 w(j)=w(j)+1; else continue end end end w=w/(h*l); z=a:h:(b-h); bar(z,w); title('直方图') function y=junyun(n) %0-1的均匀分布,n代表数据量,一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y=ones(1,n); x=ones(1,n); m=100000; x0=mod(ceil(m*rand(1,1)),m); x0=floor(x0/2); x0=2*x0+1; u=11; x(1)=x0; for i=1:n-1 x(i+1)=u*x(i)+0; x(i+1)=mod(x(i+1),m); x(i)=x(i)/m; end %x(n)单位化

x(n)=x(n)/m; y=x; function y=zhishu(m,n) %指数分布,m表示指数分布的参数,m不能为0.n表示数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1;n if (x(i)==0) x(i)=0.0001; else continue; end end u=log(x); y=-(1/m)*u; function y=ruili(m,n) %瑞利分布,m是瑞利分布的参数,n代表数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1:n if (x(i)==0) x(i)=0.0001; else continue; end end u=(-2)*log(x); y=m*sqrt(u); function y=weibuer(a,b,n) %韦布尔分布,a,b表示参数,b不能为0.n表示数据量,一般要大于1024 %a=1时,是指数分布 %a=2时,是瑞利分布%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1:n if (x(i)==0) x(i)=0.0001; else continue; end

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) .............................................................................. 2 5. Gamma 分布 .............................................................................................. 3 6. 倒Gamma 分布 ......................................................................................... 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ..................... 5 8. Pareto 分布 ................................................................................................. 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) (7) 10. 2χ分布(卡方分布) (7) 11. t 分布 ......................................................................................................... 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) .............................................................. 10 15. 对数正态分布 ....................................................................................... 11 1. 均匀分布 均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。 1 ()f x b a =-

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

今天在网上找到了一些概率密度函数的总结

今天在网上找到了一些概率密度函数的总结,怕以后找不到就先转到这里,呵呵统计工具箱函数 Ⅰ-1 概率密度函数 函数名对应分布的概率密度函数 betapdf 贝塔分布的概率密度函数 binopdf 二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数 exppdf 指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf 伽玛分布的概率密度函数 geopdf 几何分布的概率密度函数 hygepdf 超几何分布的概率密度函数 normpdf 正态(高斯)分布的概率密度函数 lognpdf 对数正态分布的概率密度函数 nbinpdf 负二项分布的概率密度函数 ncfpdf 非中心f分布的概率密度函数 nctpdf 非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数 poisspdf 泊松分布的概率密度函数 raylpdf 雷利分布的概率密度函数 tpdf 学生氏t分布的概率密度函数 unidpdf 离散均匀分布的概率密度函数 unifpdf 连续均匀分布的概率密度函数 weibpdf 威布尔分布的概率密度函数 Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf 贝塔分布的累加函数 binocdf 二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf 指数分布的累加函数 fcdf f分布的累加函数 gamcdf 伽玛分布的累加函数 geocdf 几何分布的累加函数 hygecdf 超几何分布的累加函数 logncdf 对数正态分布的累加函数 nbincdf 负二项分布的累加函数 ncfcdf 非中心f分布的累加函数 nctcdf 非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数 normcdf 正态(高斯)分布的累加函数 poisscdf 泊松分布的累加函数 raylcdf 雷利分布的累加函数 tcdf 学生氏t分布的累加函数 unidcdf 离散均匀分布的累加函数

16种常见概率分布概率密度函数意义及其应用

目录 1、 均匀分布 ...................................................................................................... 1 2、 正态分布(高斯分布) ............................................................................... 2 3、 指数分布 ...................................................................................................... 2 4、 Beta 分布(β分布) .................................................................................. 2 5、 Gamma 分布 .................................................................................................. 3 6、 倒Gamma 分布 ............................................................................................. 4 7、 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8、 Pareto 分布 ................................................................................................ 6 9、 Cauchy 分布(柯西分布、柯西-洛伦兹分布) .. (7) 10、 2 χ分布(卡方分布) (7) 11、 t 分布 ........................................................................................................ 8 12、 F 分布 ........................................................................................................ 9 13、 二项分布 ................................................................................................ 10 14、 泊松分布(Poisson 分布) .................................................................. 10 15、 对数正态分布 ....................................................................................... 11 1. 均匀分布 均匀分布~(,)X U a b 就是无信息的,可作为无信息变量的先验分布。 1 ()f x b a = -

概率论中几种常用重要分布

概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布.下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性” 类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数——一维随机变数。 定义1.1 设X 为一个随机变数,令 F(x) P([X ( ,x)]) P([X p x]),( p xp ). 这样规定的函数F(x)的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值a1,a2,..., 使得 P([ X { a1, a2 ,...}]) 1 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1) X可能取的值只有一个,确切地说,存在着一个常数a,使P([X a]) 1 o 称这种随机变数的分布为退化分布。一个退化分布可以用一个常数 a 来确定。 (2) X可能取的值只有两个。确切地说,存在着两个常数a , b,使 P([X {a,b}]) 1.称这种随机变数的分布为两点分布。如果P([X b]) p,那么,P ([X a]) 1 p。因此,一个两点分布可以用两个不同的常数a,b及一个在区间(0,1 )内的值p来确定。 特殊地,当a,b依次为0,1时,称这两点分布为零-壹分布。从而,一个零 -壹分布可以用一个在区间(0,1)内的值p来确定。 (3) X可能取的值只有n个:a1,...,a2 (这些值互不相同),且,取每个a:值 ■. 、. 1

求随机变量函数的概率密度函数的教学方法

浅谈如何简单求随机变量函数的概率密度函数的方法 摘要:针对教材中给出的求连续型随机变量函数的概率密度的方法的单一,在借鉴前人研究成果的基础上,提出求概率密度的四步教学法。 概率论与数理统计就是一门很有特色的数学分支,无论就是综合类大学还就是高职、高专院校,都将它作为一门必修课。在大学《概率论与数理统计》中,随机变量函数就是一个重点也就是一个难点,尤其就是连续性随机变量函数的概率密度,教材中只就是一般给出两种方法:一种就是先求其分布函数,然后对分布函数求导,来得概率密度函数;二就是教材中的定理1[1] 关键字: 随机变量函数 概率密度 一、 定义1:如果存在一个函数()g x ,使得随机变量,X Y 满足()Y g X = 则称随机变 量Y 就是随机变量X 的函数,那么随机变量Y 的概率密度函数称为随机变量函数的概率密度函数。 二、 (经典公式法)定理1:设随机变量X 具有概率密度 (),X f x x R ∈,又设 ()y g x =出处可导且恒有 ()()''0(0) g x g x ><或则 () Y g X =就是一个连续性 随机变量,其概率密度函数 ()()()11' ,0,X Y f g y g y y f y αβ--???<

10种概率密度函数程序

10种概率密度函数function zhifangtu(x,m) %画数据的直方图,x表示要画的随机数,m表示所要画的条数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a=min(x); b=max(x); l=length(x); h=(b-a)/m; %量化x x=x/h; x=ceil(x); w=zeros(1,m); for i=1:l for j=1:m if (x(i)==j) %x(i)落在j的区间上,则w(j)加1 w(j)=w(j)+1; else continue end end end w=w/(h*l); z=a:h:(b-h); bar(z,w); title('直方图') function y=junyun(n)

%0-1的均匀分布,n代表数据量,一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y=ones(1,n); x=ones(1,n); m=100000; x0=mod(ceil(m*rand(1,1)),m); x0=floor(x0/2); x0=2*x0+1; u=11; x(1)=x0; for i=1:n-1 x(i+1)=u*x(i)+0; x(i+1)=mod(x(i+1),m); x(i)=x(i)/m; end %x(n)单位化 x(n)=x(n)/m; y=x; function y=zhishu(m,n) %指数分布,m表示指数分布的参数,m不能为0.n表示数据量,n一般要大于1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x=junyun(n); for i=1;n if (x(i)==0) x(i)=0.0001;

概率论中几种常用的重要的分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。 称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

16种常见概率分布概率密度函数、意义及其应用

均匀分布 .................................... 1 .... 正态分布(高斯分布) ....................... 2 ... 指数分布 .................................... 2 .... Beta 分布( 分布) .......................... 2 ... Gamma 分布 .................................. 3 .... 倒 Gamma 分布 威布尔分布 (Weibull 分布、韦伯分布、韦布尔分布 ) .............................................. 5.. Pareto 分布 ................................ 6 .... Cauchy 分布(柯西分布、柯西 .................. - 洛伦 兹分布) 7.. 2 分布(卡方分布) ......................... 7. t 分布 ......................................................................................................... 8.. F 分布 ......................................................................................................... 9.. 二项分布 ....................................................................................................... 1..0. 泊松分布( Poisson 分布) .............................................................................................. 1..0. 对数正态分布 ..................................................................................................... 1..1.. 均匀分布 均匀分布 X ~U (a,b ) 是无信息的,可作为无信息变量的先验分布 1 f (x ) 目 录 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 1. .4.

几种常见的概率分布

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数: (Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==- k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ? 是常数, 则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

相关主题
文本预览
相关文档 最新文档