当前位置:文档之家› 固体物理学习笔记

固体物理学习笔记

固体物理学习笔记
固体物理学习笔记

固体物理学习笔记

固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的

运动形态及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支

学科。固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及

这种微观结构和内部运动同固体的宏观性质的关系的学科。固体的内部结构和

运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,

而且具有明显的规律性,较易研究。以后进一步研究一切处于凝聚状态的物体

的内部结构、内部运动以及它们和宏观物理性质的关系。这类研究统称为凝聚

态物理学。

固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态

固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们

是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原

子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么

联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。新的实验条件和技术日新月异,为固体物理不断开拓出新的研

究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、

各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技

术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。由于

固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学

科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理

学中研究论文三分之一以上。同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技

术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其

经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见。

以下是学习到的章节

Ⅰ晶体结构

晶体:内部结构有规则排列的固体。晶体是由原子或分子在空间按一定规律、周期重复地排列所构成的固体物质。晶体内部原子或分子按周期性规律排列的结构,

是晶体结构最基本的特征,使晶体具有下列共同特性:⑴均匀性;⑵各向异性;⑶

自发地形成多面体外形;⑷有明显确定的熔点;⑸有特定的对称性;⑹使X射线产

生衍射。

由X射线衍射实验表明,晶体是由在空间有规律地重复排列的微粒(原子、

分子、离子)组成的,晶体中微粒的有规律地重复排列———晶体的周期性、不同品种的晶体内部结构不同,但内部结构在空间排列的周期性是共同的。

为了讨论晶体周期性,不管重复单元的具体内容,将其抽象为几何点(无质量、无大小、不可区分),则晶体中重复单元在空间的周期性排列就可以用几何在

空间排列来描述。例如:聚乙炔,排列成一条线的等径圆球,等径球密置层、NaCl晶体等。

1.点阵:由无数个几何点在空间有规律的排列构成的图形称为点阵(此定

义不太严格,点阵严格的定义在下面给出)。

在晶体内部原子或分子周期性地排列的每个重复单位的相同位置上定一个点,这些点按一定周期性规律排列在空间,这些点构成一个点阵。点阵是一组无

限的点,连结其中任意两点可得一矢量,将各个点阵按此矢量平移能使它复原。点阵中每个点都具有完全相同的周围环境。用点阵的性质来研究晶体

的几何结构的理论称为点阵理论.平移:所有点阵点在同一方向移动同一距

离且使图形复原的操作。点阵的严格定义:按连接任意两点的向量进行平移

后能复原的一组点叫点阵。构成点阵的条件:①点阵点数无穷大;②每个

点阵点周围具有相同的环境;③平移后能复原。2.直线点阵(一维点阵)

在直线上等距离排列的点——直线点阵。由聚乙炔、直线排列的等径圆球可

以抽取出直线点阵。

晶体在外形上呈现出的对称性为晶体的宏观对称性。

晶体的宏观对称类型——32个点群

一个晶体可能只有一种宏观对称元素,也有可能有多种对称元素,这些

对称元素的组合构成这个晶体的对称元素系,这个对无法元素系对应一系列

的对称操作,这些对称操作构成一个点群。

将上述8种独立的宏观对称元素的所有可能组合形式一一列出得到的对

称元素系只有32种;也对应32种点群,也就是说晶体就其宏观对称性面言

有32种宏观对称类型;一般用熊夫里斯记号(与分子点群记号相同)和国

际记号标记晶体所属的点群。

七个晶系

晶体在宏观上表现出不同的对称性,实际上是微观上晶胞的对称性不同,都不会超出32个点群之外,在这些点群中,有些具有某些共同的对称元素。将这些共同拥有的对称元素称为“特征对称元素”

按特征对称元素及其数目的不同,将32个点群分为7类,7类具有不同

的对称性,对应七种不同形状的晶胞,称之为7个晶系。

14种空间点阵形式(14种布拉堆格子)

按照选取正当晶胞的原则,有些晶系的正当晶胞是素晶胞,有些晶系只

能素晶胞作为正当晶胞,7个晶系的正当晶胞对应的空间点阵形式有14种,

称为14种空间点阵形式(或14种布拉维格子)。

倒格子,亦称倒易格子(点阵),它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。

固体的能带理论中,各种电子态按照它们波矢的分类。在波矢空间中取某一

倒易阵点为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分

为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;在第一布里渊区之外,由于一组平面所包围的波矢区叫第二布里渊区;依次

类推可得第三、四、…等布里渊区。各布里渊区体积相等,都等于倒易点阵

的元胞体积。周期结构中的一切波在布里渊区界面上产生布喇格反射,对于

电子德布罗意波,这一反射可能使电子能量在布里渊区界面上(即倒易点阵

矢量的中垂面)产生不连续变化。根据这一特点,1930年L.-N.布里渊首先

提出用倒易点阵矢量的中垂面来划分波矢空间的区域,从此被称为布里渊区。第一布里渊区

第一布里渊区就是倒易点阵的维格纳-赛茨元胞,如果对每一倒易点阵

作此元胞,它们会毫无缝隙的填满整个波矢空间。由于完整晶体中运动的电子、声子、磁振子、……等元激发(见固体中的元激发)的能量和状态都是

倒易点阵的周期函数,因此只需要用第一布里渊区中的波矢来描述能带电子、点阵振动和自旋波……的状态,并确定它们的能量(频率)和波矢关系。限

于第一布里渊区的波矢称为简约波矢,而第一布里渊区又叫简约区,在文献

中不加定语的布里渊区指的往往就是它。

布喇菲点阵

布里渊区的形状取决于晶体所属布喇菲点阵的类型。简单立方、体心立

方和面心立方点阵的简约区分别为立方体,菱十二面体和截角八面体(十四

面体)。它们都是对称的多面体,并具有相应点阵的点群对称性,这一特征

使简约区中高对称点的能量求解得以简化。

Ⅱ晶体振动与晶体的热学性质

晶体中原子、离子实际上不是静止在晶格平衡位置上,而是围绕平衡位置作

微振动,称为晶体振动。对晶体振动的研究是从解释固体的热学性质开始的,最初把晶体中的原子看作是一组相互独立的振子,应用能量均分定理可以说

明固体比热容服从杜隆-珀替定律,但与T=0K时的

V

C=的规律不符。1906

年爱因斯坦提出固体比热容的量子理论,认为独立谐振子的能量是量子化的,

可以得到T=0K时

V

C=的规律的结论,但与低温下3

~

V

C T的实验结果不符。

1912年德拜提出固体的比热容理论,把固体当成连续介质,晶格振动的格波

看连续介质中的弹性波,得到低温下

3

~

V

C T的结果。随后,玻恩及玻恩学派

逐步建立和发展了比较系统的晶格振动理论成为最早发展的固体理论之一。晶格振动理论不仅可以用来解释固体的热学性质、结构相变等许多物理性质都是极为重要的,是研究固体物理性质的基础。

因为固体是由大量原子组成的,原子又由价电子和离子组成,所以固体实际上是由大量电子和离子组成的多粒子体系。由于电子之间、电子与离子以及离子之间的相互作用,要严格求解这种复杂的多体问题是不可能的,但注意到电子与离子的质量相差很大,离子的运动速度比电子慢得多,可以近似地把电子的运动与离子运动分开考虑,变成一个在晶格周期场中运动的多电子问题;在考虑离子的运动时,则认为电子能够即时跟上离子位置的变化,变成离子或原子如何围绕平衡位置运动的问题。这种近似称为绝热近似。晶格振动理论就是在这个近似的基础上建立的。

声学波与光学波

式(3-2-5)给出了一维双原子晶格中格波的色散关系,分为2支,如图3-2-2所示。频率较高的一支叫光学支,频率用ω+表示,对应于式(3-2-5)中根式前取“+

”号;频率较低的一支叫声学支,频率用ω-表示,对应于式(3-2-5)中根式前取“-”号,。它们的频率都是波矢q 的函数,周期为一个倒格子基矢,即π/a

(a)

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有

1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为 面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格 的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。

固体物理知识点总结

一、考试重点 晶体结构、晶体结合、晶格振动、能带论得基本概念与基本理论与知识 二、复习内容 第一章晶体结构 基本概念 1、晶体分类及其特点: 单晶粒子在整个固体中周期性排列 非晶粒子在几个原子范围排列有序(短程有序) 多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积 准晶体粒子有序排列介于晶体与非晶体之间 2、晶体得共性: 解理性沿某些晶面方位容易劈裂得性质 各向异性晶体得性质与方向有关 旋转对称性 平移对称性 3、晶体平移对称性描述: 基元构成实际晶体得一个最小重复结构单元 格点用几何点代表基元,该几何点称为格点 晶格、 平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量 基矢 元胞以一个格点为顶点,以某一方向上相邻格点得距离为该方向得周期,以三个不同方向得周期为边长,构成得最小体积平行六面体。原胞就是晶体结构得最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。每个原胞含1个格点,原胞选择不就是唯一得 晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴) 为坐标轴,坐标轴上原点到相邻格点距离为边长,构成得平行六面体称为晶胞。 晶格常数 WS元胞以一格点为中心,作该点与最邻近格点连线得中垂面,中垂面围成得多面体称为WS原胞。WS原胞含一个格点

复式格子不同原子构成得若干相同结构得简单晶格相互套构形成得晶格简单格子 点阵格点得集合称为点阵 布拉菲格子全同原子构成得晶体结构称为布拉菲晶格子、 4、常见晶体结构:简单立方、体心立方、面心立方、 金刚石 闪锌矿 铅锌矿 氯化铯

氯化钠 钙钛矿结构 5、密排面将原子瞧成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成得三维结构称为密堆积。 六脚密堆积密排面按AB\AB\AB…堆积

学习固体物理后的感想

学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性,

以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。 新的实验条件和技术日新月异,为固体物理不断开拓出新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性

固体物理学概念和习题答案

《固体物理学》概念和习题 固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

朱建国版固体物理习题答案(DOC)

《固体物理学》习题参考 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b = 2 a 那么, Rf Rb 1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

固体物理学习心得

固体物理学习心得 篇一:学习固体物理后的感想 学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁

散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性, 以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质

依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案 1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的? [解答] 自由电子论只考虑电子的动能。在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。 2. 晶体膨胀时,费米能级如何变化? [解答] 费米能级 3/222 )3(2πn m E o F = , 其中n 单位体积内的价电子数目。晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。 3. 为什么温度升高,费米能反而降低? [解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。 4. 为什么价电子的浓度越大,价电子的平均动能就越大? [解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。 价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必 然结果。在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。由式 3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能 就越大。这一点从3 /2220)3(2πn m E F =和3/222)3(10353πn m E E o F ==式看得更清楚。电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度3 2l n 。所以价电子的浓度越大,价电子的平均动能就越大。 5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么? [解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。在这种情况下,温度为1T 的金属高于费米能o F E 的电子数目,多于温度为2T 的金属高于费米能o F E 的电子数目。两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于o F E 的部分电子将流向温度为2T 的金属。温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。

固体物理总结

在没有碰撞时,电子与电子(独立电子近似)、电子与离子(自由电子近似)之间得相互作用完全忽略;无外场时,每个电子作匀速直线运动;在外场存在时,服从牛顿定律。 k空间得概念:参量空间,状态空间。把波矢k瞧作空间矢量,相应得空间称为k空间。 T=0时,N个电子得基态可从能量最低得k=0态开始,按能量从低到高,每个k态占据两个电子,依次填充。最后,占据区形成一个球,称为费米球。 能态密度:T=0时,基态,单位体积自由电子气体得基态能量E。 费米-狄拉克函数得性质:随温度发生变化。 极限情况: 一般情况:随着T得增加,发生变化得能量范围变宽,但在任何情况下,此能量范围约在附近±kBT范围内。温度不为零时,电子占据态与非占据态之间得界面不在就是某个等能面 电子占据态与非占据态得界限可以近似为一个薄层。 电子漂移速度: 等离子体频率:自由电子气体作为整体相对正电荷背景集体运动得频率。 低频端(从直流到远红外),金属对光波有明显得衰减。(安检,金属屋子信号屏蔽) 可见光到近红外波段,金属就是高反射得。(铜镜,镜子) 电磁波频率大于等离子频率时,金属就是透明得。(金属可以作为滤波片,分离近红外-可见光与XUV/x-ray)

晶体结构包括两个最主要得特征:1、重复排列得具体单元——基元。2、晶格:基元重复排列得形式,一般抽象为空间点阵,称为晶体格子,简称晶格,由布拉维格子得形式来概括。 原胞:晶体中体积最小得周期性重复单元。 某一格点为中心,作其近邻格点连线得垂直平分面,这些平面围成得以格点为中心得最小体积单元—WS原胞。 晶胞:能表现对称性得单元,但就是未必最小。 7类晶系:三斜、单斜、正交、四方、三角、六角、立方。 群由群元素集合与规定乘法定义。 封闭性:若a,b∈G,则存在唯一确定得c∈G,使得a*b=c; 结合律:任意a,b,c∈G,有(a*b)*c=a*(b*c); 单位元:存在e∈G,对任意a∈G,满足a*e=e*a=a,称e为单位元; 逆元:任意a∈G,存在唯一确定得b∈G, a*b=b*a=e(单位元),则称a与b互为逆元素,简称逆元,记作a-1=b。 点群:在点对称操作基础上组成得对称操作群称为点群。 点群得元素:点对称操作。 点群得乘法:连续操作。 点对称操作:绕固定轴得转动、镜面反映、中心反演。 对称要素:固定轴、镜像面、反演点。 倒格子定义:对布拉维格子中所有格矢,满足得全部端点得集合,构成布拉维格子,称为正格子得倒格子。 同一晶体得正格子与倒格子有相同得对称性。 体心立方得倒格子为面心立方; 面心立方得倒格子为体心立方; 简单立方得倒格子仍为简单立方。

固体物理总结

固体物理总结 晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子 团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同 点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属 于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。晶面指数: 晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一 晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互 质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller指数标定方法:1)找出晶面系中任一晶面在轴矢上的截 距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。晶向指数: 从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描 写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积 比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排 列紧密程度的物理量。密堆积结构的堆积比最大。布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐 射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉

固体物理思考题答案固体物理课后思考题答案

固体物理思考题答案固体物理课后思考题答案第一章晶体的结构 1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R, 体心立方晶胞的空间对角线为4R, 晶胞的边长为 , 一个晶胞包含两个原子, 一个原子占的体积为 为 ; 面心立方晶胞的边长为 , 晶胞的体积为 , 单位体积晶体中的原子数为 , 晶胞的体积为 ,单位体积晶体中的原子数 , 一个晶胞包含四个 . 因此, 同体 原子, 一个原子占的体积为 1 积的体心和面心立方晶体中的原子数之比为 =0.272. 2. 解理面是面指数低的晶面还是指数高的晶面,为什么, [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 3. 基矢为 , , 的晶体为何种结构? 若 + , 又为何种结构? 为什么?

[解答] 有已知条件, 可计算出晶体的原胞的体积 . 由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量 , , . 对应体心立方结构. 根据14题可以验证, , 若 , 的晶体为体心立方结构. 满足选作基矢的充分条件.可见基矢为 + 则晶体的原胞的体积 2 , , 该晶体仍为体心立方结构. 4. 若 构证明之. [解答] 若 可知 , =h +k +l =(k+l) (l+h)

, (h+k) =p , =p(l1 +l2 +l3 与 平行, 一定是 的整数倍. 对体心立方结构, 由(1.2)式 与 平行, 是否是 的整数倍? 以体心立方和面心立方结 3 ), 其中p是(k+l)、(l+h)和(h+k)的公约(整)数. 对于面心立方结构, 由(1.3)式可知, , =h +k +l =(-h+k+l) +(h-k+l) +l3 ), , +(h+k-l) =p’ , = p’(l1

固体物理固体的结合总结完全版

第三章固体的结合 一、基本要求 1、掌握晶体结合能的概念;晶体内能与原子间作用力的一般特点及其与晶格常数、体弹性模量、抗张强度的关系。 2、掌握晶体结合的基本类型及相应晶体的基本性质;各种结合类型结合能的表示。 3、熟悉原子的负电性以及元素和化合物晶体结合的规律性。 二、基本概念 晶体结合能,电负性,电离能,亲和能,离子晶体,离子性结合,共价晶体,共价结合,成键态,反键态,轨道杂化,极性键,非极性键,金属,金属键,分子晶体,分子性结合,氢键晶体,氢键。 三、重点、难点 晶体结合能与内能的关系,互作用势能的关系,由晶体结合能得到的物理常数,成键态,反键态,五种晶体结合类型与其性质 四、本章构架 __________________________________________________

__________________________________________________ 1.定义:分散的原子(离子或分子)在结合成稳定晶体的过程中,所释放出来的能量,称为 晶体的结合能 2.内能:如果以组成晶体的N 个原子处于自由状态的能量作为能量的零点,则-E b 就是晶体 的内能。(当动能=0时,内能=势能=E b =E N -E 0 3.互作用力与互作用势: 4.结合能的一般形式 两个原子之间的互作用势能: 晶体的总的相互作用势: (j≠1 j=2,3,…N) (式中 r 代表最近邻的两原子间的距离。) 5.由U(r) 可求出晶体的某些物理常数 (1)晶格常数: 令 ,求得0r 即为晶格常熟 (2)体弹性模量: 当对晶体施加一定压强时,晶体体积有所改变,这种性质用压缩系数(K )或体弹性模量(k )来描述。 K= (在T =0 时,晶体的平衡体积为V0 ,则 ) (3)抗张强度: 晶体所能承受的最大张力即为抗张强度。 (1)离子键:异性离子间的互作用力称为离子键。 (2)离子性结合:当电离能较小的容易放出最外层的电子而成正离子金属原子与电子亲合能较大的容易接受前者放出的电子而变成负离子非金属原子相互接近时,出现正、负离子间的库仑作用,从而结合在一起。 (3)离子性结合的特点: a.以离子为结合单元,靠正负离子之间的库仑引力作用结合成晶体。 b.离子晶体中正、负离子是相间排列的,使异号离子之间的吸引作用强于同号离子之间的排斥作用,库仑作用的总效果是吸引的,晶体势能可达到最低值而使晶体稳定。 c.由于正、负离子的相对大小的差异,其结构形式和配位数也有所差异。 (4)离子晶体:靠离子性结合的晶体称为离子晶体或极性晶体。 (5)离子晶体的特点: a.离子晶体主要依靠较强的库仑引力而结合,故结构很稳定,结合 能很大,这导致了离子晶体熔点高、硬度大、膨胀系数小。 dr r du r f )()(-=n m r B r A r u +-=)(∑ ==N j j r u N r U 21)(2)(0|)(0=??=r r r r U )(122V U V ??=κ0 )(2200V V U V K ??=m V V V r U Pm Pm =??=-=)) ((||能合结的 体晶一、合结 性子 离

固体物理习题与答案汇总整理终极版

11级第一次(作业) 请充分利用网络、本校及外校图书馆的相关资料,同时联系相关专业的老师,调查关于固体物理的简史、发展趋势以及当代的热门前沿课题(针对自己感兴趣的某个方面),形成一份报告,阐述自己的看法,要求2000字以上。(已经在第一次课布置,11月1日前后上交) 11级固体物理第2次习题和思考题 1.在结晶学中,我们课堂上讲的单胞,也叫元胞,或者叫结晶学原胞,也叫晶胞,试回忆一下晶胞是按晶体的什么特性选取的? 答:在结晶学中,晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性。 2.解释Bravais 点阵并画出氯化钠晶体的结点所构成的Bravais 点阵。 答:晶体的部结构可以概括为由一些相同的结点构成的基元在空间有规则的作周期性的无限分布,这些结点构成点阵,如果基元只由一个结点构成,这种点阵称为Bravais 点阵。氯化钠晶体的Bravais 点阵可参照书p8的图1-13,点阵的结点由钠离子和氯离子组成。 3.说明金刚石结构是复式点阵的原因。 答:金刚石结构可这样描述:面心立方的体心向顶角引8条对角线,在互不相邻的四条对角线中点,各有一个原子。以金刚石为例,顶角和面心处的原子周围情况和对角线上的原子周围情况不相同,因而金刚石结构是复式晶格,可看作两套面心立方子晶格沿体对角线移开1/4体对角线长度而成。Bravais 点阵包含两个原子。 4.体心立方点阵和面心立方点阵互为正、倒格子,试证明之。 答:面心立方的三个基矢为: ??? ? ?????+=+=+=)(2)(2)(2321i k a a k j a a j i a a ρρρρρρρρρ 其体积为 4 3 a ,根据倒格矢的定义得: ???? ? ????-+=???=++-= ???=+-= ???=)(2)(2)(2)(2)(2)(23212 13321132321321k j i a a a a a a b k j i a a a a a a b k j i a a a a a a b ρρρρρρρρρρρρρρρρρρ ρ ρρρρρρ ρρππππππ 可见,除了系数不同之外,方向正好是体心立方的晶格基矢。反之亦然。 5、翻看资料,试画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。 (1)氯化铯; (2)硅; (3)砷化镓; (4)硫化锌 答:(1)氯化铯为简单立方,氯离子处于立方的顶角组成子晶格,铯离子处于立方的顶角组成 子晶格,两套子晶格沿着体对角线移开一半体对角线长度,使得氯离子子晶格的体心 恰好有一个铯离子,铯离子子晶格的体心恰好有一个氯离子。元胞就是简单立方。一 个元胞里有一个氯离子和一个铯离子;配位数为6。 (2)硅为复式格子,硅原子组成面心立方子晶格,两套子晶格沿体对角线移开1/4体对角线长度,形

固体物理总结2012

1. 倒格子(倒易点阵) 设晶格(正格子)的基矢为123 a a a 、、,定义满足 2, ;0, . i j i j a b i j π=?=?≠? 则称123 b b b 、、为倒格子(倒易点阵)基矢,由112233G h b h b h b =++ 构成 的格子称为倒格子(其中h 1、h 2、h 3为任意整数)。 2. 正规过程和翻转过程 声子之间的相互作用遵循能量守恒和准动量守恒,即有 123123()()() n q q q q q q G ωωω?+=??+=+?? (1)若 =n G 为正规过程. 碰撞后系统的准动量不变,对热流无影响。即不起阻力作用,对热传导没有贡献。 (2)若 0 ≠n G 为翻转过程. 翻转过程中动量有很大的变化,破坏声子波矢之和或准动量之和,产生热阻力,对热传导有贡献。 3. 长光学波和长声学波的特点: 1) 长光学波: a. 原胞中相邻原子的振动方向相反,同种的原子振动方向相同,原胞质心保持不变,描述原胞内原子的反相运动; b. 传播速度接近光速; c. 光学支的最高点,振动频率较高,能量较高。 2) 长声学波: a. 原胞中相邻原子的振幅相同,振动方向一致,代表了原胞质心的运动,描述原胞内原子同相整体运动;

b. 把晶体看成连续介质的弹性波,其传播速度等于声音在晶体中的传播速度。 c. 光学支的最高点,振动频率较高,能量较高。 两者的共同之处就是波矢很小,准动量很小。 4. 线缺陷 在两个方向上尺寸很小,另外一个方向上延伸较长的晶格缺陷。 位错有三种类型,螺位错、刃位错和混合位错。 螺位错:柏氏矢量与位错线平行。无确定的滑移面(其滑移面是围绕位错线的螺旋卷面),仅可滑移,不可攀移。 刃位错:柏氏矢量与位错线垂直。其有确定的滑移面,既可滑移,又可攀移。 混合位错:柏氏矢量与位错线呈任意角度θ 。它可以分解成螺位错和刃位错,混合位错既可滑移,又可攀移。 5. 布洛赫定理 当势场具有晶格周期性时,波动方程 22 () ()()2n V r E V r V r R m ψψ??-?+==+???? 其中n R 为任意晶格矢量 的解具有如下形式: ()()n ik R n r R e r ψψ+= 或()()()(+)=()ik r n r e u r u r u r R u r ψ= 其中具有与晶格同样的周期,即 即表示具有晶格周期势场的波动方程的解的形式是平面波和周期函数的乘积,即是周期函数调幅的平面波。 6. 固体物理学原胞和晶胞的区别 固体物理学原胞: 1) 原胞有8个顶点,每个原胞包含一个格点,是最小的周期重复单元。 2) 原胞的选择是多样的。 晶体学原胞: 1) 其不是最小的周期性单元,体积是固体物理学原胞的整数倍。 2) 除顶点外,格点可能出现在六面体的体心或面心上。 3) 不仅反映格子的周期性,也反映了格子的对称性。

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质 思 考 题 1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率 [解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目 1/)(+=-T k E E B F e g n , g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数 11 )(/)(+=-T k E E B F e E f 是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率. 2.绝对零度时, 价电子与晶格是否交换能量 [解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数 11 /-=T k i B i e n ωη. 从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量. 3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的 [解答] 自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近. 4.晶体膨胀时, 费密能级如何变化 [解答] 费密能级 3/2220)3(2πn m E F η=, 其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低. 5.为什么温度升高, 费密能反而降低 [解答]

清华大学固体物理期末小结

【德鲁德模型】 气体分子运动论=>统一解释金属的电、热、光性质(电子气模型)。问题:电子比热太大,没有实验支持;温度趋零时,无限大的平均自由程和有限的离子间距矛盾。 ⑴ 电子浓度:n=N/V=naZ/a 3~1022cm -3 ⑵ 电子平均占有半径:r s =(3/4πn)1/3~2-5a B ⑶ 金属电阻率:ρ~1(77K)-10(300K)μΩ·cm ⑷ 金属热导率:κ~10-100W/(m·K) ⑸ 弛豫时间:3 15 2 2.210s B r m s n e cm a τρρμ-??==? ?Ω??? ⑹ 平均自由程:l=vτ~1-10A ⑺ 费米能量、速度:εF ~1-10eV ,v F ~106m/s ⑻ 费米波矢、温度:k F ~1A -1,T F ~1-10×104K 弛豫时间为τ的电子在电磁场中的运动方程 () mdv e E v B c mv τ=-+?- 【索末菲模型】 基于电子轨道不相容原理,提出对电子气体新的统计方法(f F-D 统计)=>索末菲模型=>一系列重要概念(费米气体、费米球面、费米波矢等) 自由电子的能态密度g ∝ε1/2可以通过软X 射线证实。设射线的发射宽度对应的高低能量为εF -εb 和-εb ,则: ()22222 023,22F b B Z e n m n a επε==- 在引入的费米统计中,能量为ε的量子态在化学势μ 以下基本是被填满的,其上基本是空的。 自由电子能量与波矢的关系(ε=h 2k 2/4π22m e ),因此,电子的等能面在倒易空间中是球面。能量等于化学势的球面就是费米面。 在绝对零度下,费米面内的电子量子态数等于价电子总数N ,由此可以得到费米波矢等相关量如下: ()() ()()() ()() 32 13 212232 24 2 133.63 3A 50.13258.210 F k F F s B F s B F F F s B N n dk k k V V k n r a n eV m r a T K k r a ρπ πεπε-== = == ==?= = ? P.S.:能态密度定义为单位体积晶体在单位能量间隔 中的能级数或状态数(自旋乘以2): ()()()( )()330323 2222212lim 222412224,2L V dV g V d V k dk m d k dk V k dn dk dn k dk N εεεε πππεπππρπ?→*'' ?= = ????== ??? ===Ω 【索末菲展开】 对应微观物理量()x ε的宏观量: ()()() ()()()()()()()()()()() 02222212 2 ,222!6 m m m m m B m m B X d g f x dy df d y g x d d d y y B k T m d y y k T μεεεεεεεεεεεπμεπμμ∞ ∞ ∞==?? =-=???? ???? =+-???? ''≈+ ??∑ 对于自由电子气浓度:1,2x g y g ε=∝=? ()()()()2222236 112B B F F n g g k T k T T πμμμπμεε'=+?? ???? =- ??????? 金属中的比热:,x g y g εε'==? ()()() ()() ()222 22 222 3356235632V B F F B V F B B F E g g k T n g k T T c g k T nk T πμμμπεεππε=+=+== 因此,电子和原子振动贡献的比热容比为: 3 42 212052 mole e D F mole C T T R ZR T T C ππ?? =∝→ ?Θ?? 实验测得的与上述预言的总趋势是一致的,但普遍较高: 2 32 e mole D F D T T C ZR Rf T π??= + ?'Θ?? 这是因为在对费米的5-22式中,电子的有效质量发生变 化的原因:

相关主题
文本预览
相关文档 最新文档