当前位置:文档之家› 电机测速系统

电机测速系统

电机测速系统
电机测速系统

目录

1 引言 (1)

1.1 电机速度检测简介 (1)

1.2 电机速度检测的发展趋势 (1)

1.3 本设计所要实现的目标 (1)

2设计方案的选择 (2)

2.1 方案一:采用以PLC为核心的控制方案 (2)

2.2 方案二:采用以单片机为核心的控制方案 (2)

3主要元器件介绍 (4)

3.1 核心元器件AT89S51 (4)

3.2 电压比较器LM339 (8)

3.3 光电元器件MOC70T2 (10)

4系统硬件构成 (11)

4.1 设计原理 (11)

4.2 电路总体构成 (11)

4.3 直流电机电源部分 (12)

4.4 光电信号转换及电压比较器部分 (12)

4.5 复位部位 (13)

4.6 晶振部分 (14)

4.7 数码管显示部分 (14)

5 系统软件设计 (16)

6结论 (17)

谢词 (18)

参考文献 (19)

附录 (20)

1引言

1.1电机速度检测简介

电机速度检测是社会生产和日常生活中重要的测量和控制对象。近年来,由于世界范围内对转速测量合理利用的日益重视,促使转速测量技术的迅速发展,各种新型的测量仪表相继问世并越来越多地得到应用。进行转速测量的检测控制,可以使用多种传感器。由于技术保密,厂家不会提供详细电路图和源代码,用户很难自行进行二次开发和改进。针对这种现状,使用光电传感器结合AT89S51型单片机设计的一种转速测量与控制系统。AT89S51单片机采用了CMOS工艺和高密度非易失性存储器技术,而且其输入/输出引脚和指令系统都与MCS-51兼容,是开发该系统的适合芯片。

目前科研生产中采用的速度测量方法可分为两类;直接测量法和间接测量法两大类。直接测量法是通过某种测量原理或效应直接获得速度量, 如多普勒测速仪、空间滤波测速等。这种方法的最大优点是反应快、可测量瞬时速度,但设备成本高,且受到大气物理环境的限制。间接测量法是测量目标的移动距离和时间, 通过计算得到速度量, 如光电测速、光栅测速、磁栅测速和图像测速等,用于测量小型弹丸的天幕法和光幕法测速系统、用于车辆测速的激光测速仪,以及用于生产流水线上的光电脉冲测速方法等等。

1.2电机速度检测的发展趋势

目前国内外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体内的放射性材料来发生脉冲信号.其中应用最广的是光电式,光电式测速系统具有低惯性、低噪声、高分辨率和高精度的优点.加之激光光源、光栅、光学码盘、CCD 器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。

1.3本设计所要实现的目标

本设计采用单片机为主控芯片,结合外围电路及直流电机,组成电机速度检测系统。在此采用计数测量法,其测量原理为,在固定的测量时间内,计取单位时间内转速传感器产生的脉冲个数,从而算出实际转速。

2设计方案的选择

2.1 方案一:采用以PLC为核心的控制方案

图2-1 PLC交流电机测速系统方框图

用PLC设计并制作一个电机测速系统,上位机组态软件能够设定不同的电机转速并且显示实时速度。其方框图如图2-2所示。

具体如下:通过按键能设定3--5个电机转动速度,PLC和上位机组态软件连接,PLC 通过控制变频器输出不同频率三相电使电机转动起来,然后通过旋转编码器测量电机速度,旋转编码器输出接PLC高速计数输入通道,计算当前电机转速,并在上位机组态软件中上显示出来。以PLC为控制核心的方案使用方便、编程简单、适应性强、可靠性强、抗干扰能力强,但是PLC设备费用高、维护代价大、安装调试复杂、环境适应能力差。

2.2 方案二:采用以单片机为核心的控制方案

图2-2 单片机直流电机测速系统方框图

以单片机为核心的直流电机测速系统方案的方框图如图2-2所示。

此方案的测速系统主要是由光电传感器来检测电机的转速。工作方式为:将光电码盘安

装在电机的转轴上,而光电传感器则放在转轴的旁边,光电传感器连接在电路中。光电码盘随转轴转动经过光电传感器时,由光电传感器的原理知:光电码盘的空隙经过光电传感器的光源时,此时将输出一个低电平或高电平(由电路结构决定)信号;而当光电码盘的空隙经过光电传感器的光源时后至下次空隙经过光电传感器的光源的这段时间里,又将输出一个高电平或低电平。这样通过高低电平的转换,将其送入单片机后就可以测量它的转速。以单片机为控制核心的方案具有成本相对较低、系统结构简单、使用方便,实现模块化、可靠性高、处理功能强、速度快低电压、低功耗、环境适应能力强等优点,缺点是用单片机制作的主控板受制版工艺、布局结构、器件质量等因素的影响导致抗干扰能力差,故障率高,不易扩展,对环境依赖性强,开发周期长。

通过比较两种方案的优缺点,结合实际实验条件,方案二利用单片机可以实现简易的电机测速系统,同时可通过调速模块实现电机转速的调整并能在数码管上显示,这样既满足了测速系统的可靠性要求,也降低了系统的成本,是一种较为理想的方案。因此本设计采用方案二来实现电机的测速。

3主要元器件介绍

3.1 核心元器件A T89S51

AT89S51是一个低功耗,高性能CMOS8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,A T89S51在众多嵌入式控制应用系统中得到广泛应用。

3.1.1 AT89S51简介

AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。

图3-1 AT89S51芯片引脚图

其主要功能特性:

兼容MCS-51指令系统4k可反复擦写(>1000次)ISP Flash ROM

32个双向I/O口 4.5-5.5V工作电压

2个16位可编程定时/计数器时钟频率0-33MHz

全双工UART串行中断口线128x8 bit内部RAM

2个外部中断源低功耗空闲和省电模式

中断唤醒省电模式3级加密位

看门狗(WDT)电路软件设置空闲和省电功能

灵活的ISP字节和分页编程双数据寄存器指针

可以看出AT89S51提供以下标准功能:4K字节Flash闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时器/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟。同时, A T89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式何在RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直接到一个硬件复位。

3.1.2 AT89S51引脚功能说明

Vcc:电源电压

GND:地

P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口,作为输出口用时,每位能驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端口。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1口:P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号校验期间,P1接收低8位地址。表3-1为P1口第二功能。

表3-1 P1口第二功能

P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流I。在访问8位地址的外部数据存储器(如执行:MOVX @Ri 指令)时,P2口线上的内(也即特殊功能寄存器,在整个访问期间不改变。Flash 编程或校验时,P2也接收高位地址和其它控制信号。

P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。作输入端口时,被外部拉低的P3口将用上拉电阻输出电流I。P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,P3口的第二功能如下表3-2。

表3-2 P3口的第二功能

RST:复位输入。当振荡工作时,RST引脚出现两个机器周期上高电平将使单片机复位。WDT益出将使该引脚输出高电平,设置SFR AUXR 的DISRTO 位(地址8EH)可打开或关闭该功能。DISRTO 位缺省为RESET输出高电平打开状态。

ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出的正脉冲信号,因此它可对外输出时钟或用于定时目地,要注意的是:第当访问外部数据存储器时将跳过一个ALE脉冲。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位禁位后,只有一条MOVX 和MOVC指令ALE才会被激活。此外,该引脚伎被微弱拉高,单片机执行外部程序时,应设置ALE无效。

PSEN:程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。当访问外部数据存储器,高有两次有效的PSEN信号。

EA/VPP:外部访问允许。欲使CPU公访问外部程序存储器(地址0000H-FFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V的编程电压Vpp。

XTAL1:振荡器反相放大器及内部时钟发生器的输入端。

XTAL2:振荡器反相放大器的输出端。

3.1.3 AT89S51芯片内部结构

特殊功能寄存器:特殊功能寄存器的片内空间分存如下图3-2所示。这些地址并没有全部占用,没有占用的地址不可使用,读这些地址将得到一个随意的数值。而写这些地址单元将不能得到预期的结果。

中断寄存器:各中断允许控制位于IE寄存器,5个中断源的中断优先级控制位于IP寄存器。图3-3为AUXR辅助寄存器。

图3-3 AUXR辅助寄存器

双时钟指针寄存器:为方便地访问内部和外部数据存储器,提供了两个16位数据指针寄存储器:PD0位于SFR区块中的地址82H、83H和DP1位于地址84H、85H,当SFR中的位DPS=0时选择DP0,而DPS=1时选择DP1。在使用前初始化DPS。

图3-3 双时钟指针寄存器

电源空闲标志:电源空闲标志(POF)在特殊功能寄存储器SFR中PCON的第4位(PCON.4),电源打开时POF置“1”,它可由软件设置睡眠状态并不为复位所影响。

存储器结构:MCS-51单片机内核采用程序存储器和数据存储器空间分开的结构,均具有64KB外部程序和数据的寻址空间。

程序存储器:如果EA引脚接地(GND),全部程序均执行外部存储器。在AT89S51,

假如接至Vcc(电源+),程序首先执行从地址0000H-0FFFH(4KB)内部程序存储器,再执行地址为1000H-FFFFH(60KB)的外部程序存储器。

数据存储器:在AT89S51的具有128字节的内部RAM,这128字节可利用直接或间接寻址方式访问,堆栈操作可利用间接寻址方式进行,128字节均可设置为堆栈区空间。

看门狗定时器(WDT):WDT是为了解决CPU程序运行时可能进入混乱或死循环而设置,它由一个14bit计数器和看狗复位SFR(WDTRST)构成。外部复位时,WDT默认为关闭状态,要打开WDT,必按顺序将01H和0E1H写到WDTRST寄存器,当启动了WDT,它会随晶体振荡器在每个机器周期计数,除硬件复位或WDT溢出复位外没有其它方法关闭WDT,当WDT溢出,将使RST引脚输出高电平的复位脉冲。

3.2 电压比较器LM339

LM339电压比较器芯片内部装有四个独立的电压比较器,是很常见LM339引脚图的集成电路。利用lm339可以方便的组成各种电压比较器电路和振荡器电路。

3.2.1 LM339简介

LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)

对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,外型及管脚排列如3-4图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

图3-4 LM339外型及管脚图

LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。

LM339可构成单限比较器、迟滞比较器、双限比较器(窗口比较器)、振荡器等。

LM339还可以组成高压数字逻辑门电路,并可直接与TTL、CMOS电路接口。3.2.2 LM339的特点和一些参数

(1)电压失调小,一般是2mV;

(2)共模范围非常大,为0v到电源电压减1.5v;

(3)他对比较信号源的内阻限制很宽;

(4)LM339 Vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;

(5)输出端电位可灵活方便地选用。

(6)差动输入电压范围很大,甚至能等于Vcc;

3.3 光电元器件MOC70T2

对射式光耦MOC70T2为光电传感器的一种,这是一种自带发光二极管和光敏三极管的器件.它能发射和接收红外线。当A,C两管脚接VCC,E,C两管脚接地时,在没有检测到红外信号时候,C脚输出等于VCC,当检测到信号时候,输出接近0V,既单片机能检测到的高低电平。

图3-5 MOC70T2电路原理图

4系统硬件构成

4.1 设计原理

本设计主要由单片机、数码管显示、电压比较电路、直流电源和光电传感器等部分组成。

通过改变滑动变阻器的阻值以改变直流电机的输入电流达到调速的目的,然后通过光电传感

器将光信号转换成电信号后通过电压比较器,然后信号输至单片机外部中断接口,由软件实

现单片机对信号的处理并显示在数码管上。系统原理方框图如图4-1所示。

图4-1 系统原理方框图

4.2 电路总体构成

在选定了单片机作为控制核心、确定数码管显示、电压比较电路、直流电源和光电传感

器等这些外围电路及设备后,下面给出电机测速系统的整体电路原理图:

4-2 电机测速系统电路原理图

4.3 直流电机电源部分

本次课程设计采用直流电机需要用5V直流电源供电,其电路如图4-3所示,把频率为50Hz、有效值为220V的单相交流电压转换为幅值稳定的5V直流电压。其主要原理是把单相交流电经过电源变压器、整流电路、滤波电路、稳压电路转换成稳定的直流电压。

由于输入电压为电网电压,一般情况下所需直流电压的数值和电网电压的有效值相差较大,因而电源变压器的作用显现出来起到降压作用。降压后还是交流电压,所以需要整流电路把交流电压转换成直流电压。由于经整流电路整流后的电压含有较大的交流分量,会影响到负载电路的正常工作。需通过低通滤波电路滤波,使输出电压平滑。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得稳定性足够高的直流电压。本电路使用集成稳压芯片7805解决了电源稳压问题。

图4-3 电源输入电路原理图

4.4 光电信号转换及电压比较器部分

本次课程设计测速系统主要是由光电传感器来检测电机的转速。工作原理是:将光电码盘安装在电机的转轴上,而光电传感器则放在转轴的旁边,光电传感器连接在电路中,如图4-4所示。光电码盘随转轴转动经过光电传感器时,由光电传感器的原理知:光电码盘的空隙经过光电传感器的光源时,此时将输出一个低电平或高电平(由电路结构决定)信号;而当光电码盘的空隙经过光电传感器的光源时后至下次空隙经过光电传感器的光源的这段时间里,又将输出一个高电平或低电平。这样通过高低电平的转换,将其送入单片机后就可以测量它的转速。

图4-4 光电传感器及电压比较电路

4.5 复位部位

单片机复位是使CPU和系统中的其他功能部件都处在一个确定的初始状态,并从这个状态开始工作,例如复位后PC=0000H,使单片机从第—个单元取指令。无论是在单片机刚开始接上电源时,还是断电后或者发生故障后都要复位。在复位期间(即RST为高电平期间),P0口为高组态,P1-P3口输出高电平;外部程序存储器读选通信号PSEN无效。地址锁存信号ALE也为高电平。根据实际情况选择如图4-5所示的复位电路。该电路在最简单的复位电路下增加了手动复位按键,在接通电源瞬间,电容C1上的电压很小,复位下拉电阻上的电压接近电源电压,即RST为高电平,在电容充电的过程中RST端电压逐渐下降,当RST端的电压小于某一数值后,CPU脱离复位状态,由于电容C1足够大,可以保证RST高电平有效时间大于24个振荡周期,CPU能够可靠复位。增加手动复位按键是为了避免死机时无法可靠复位。当复位按键按下后电容C1通过R5放电。当电容C1放电结束后,RST端的电位由R5与R6分压比决定。由于R5<

图4-5 复位电路原理图

4.6 晶振部分

AT89S51引脚XTAL1和XTAL2与晶体振荡器及电容C2、C1按图4-6所示方式连接。晶振、电容C1/C2及片内与非门(作为反馈、放大元件)构成了电容三点式振荡器,振荡信号频率与晶振频率及电容C1、C2的容量有关,但主要由晶振频率决定,范围在0~33MHz之间,电容C1、C2取值范围在5~30pF之间。根据实际情况,本设计中采用12MHZ做为系统的外部晶振。电容取值为20pF。

图4-6 晶振电路原理图

4.7 数码管显示部分

本次课程设计,采用“8字型”LED数码管作为显示装置。

LED数码管有共阴极、共阳极两种结构,如图4-7所示:

图4-7 LED数码管结构及外形

本次采用共阳极数码管。共阳极LED数码管的发光二极管的阳极连接在一起,公共阳极接正电压,当某个发光二极管的阴极接低电平时,发光二极管被点亮,相应的段被显示。

LED数码管有静态显示和动态显示两种显示方式。静态显示方式,数码管亮度高、软件编程简单,但是需要占用大量的I/O口,一般在多位显示时不采用此种方法。动态显示方式,数码管亮度稍低、软件编程复杂,但是占用的I/O口少,在显示多位数字的时候适合采用此种方法。考虑到本次课程设计需要显示六位数字,故采用动态显示方式。

LED数码管段选、位选驱动电路均采用DM74LS244作为驱动芯片。

5 系统软件设计

电机测速系统流程如下:直流稳压电源输出经过电位器的调节得到一个电压值,加在电机两端使电机带动光电码盘转动起来,光电传感器将得到的信号送入电压比较器进行去抖整形后输送给单片机T0溢出中断,T0对电机转的圈数进行计数,到达一秒钟后显示到数码管上,以此数码管不断进行扫描,每过一秒钟更新以此前一秒钟内的电机转动圈数,从而得到电机的转速,程序清单见附录,下面给出本系统的程序流程图:

图5-1 程序流程图

本设计通过对自动化专业大学本科所学知识进行整合,完成一个特定功能、满足特殊要求的直流电机测速系统的设计,比较好地体现自动化专业学生的理论研究水平、实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,实现了理论和实践的有机结合。

本设计从经济实用的角度出发,采用美国Atmel公司的单片机AT89S51与作为主控芯片,结合外围的数码管显示、电源模块、光电传感器等电路并用C语言编写主控芯片的控制程序,制作了一款可以实时检测直流电机转速的系统。

经过资料的收集、方案的选择比较和论证,到分析调试,再到工程图纸的绘制以及设计论文的撰写等各个环节,我们对大学阶段的知识有了一个整体的深层次的理解,同时对工程的理解更加深刻和准确。因此,通过课程设计实现了预期目标。

为期两周的课程设计在大家的共同努力之下,终于有了圆满的结果。我们组分工明确、计划周到,大家在组长的安排之下,有条不紊地各司其职,查阅资料、编写程序、调试程序、绘制程序流程图、撰写报告,大家相互帮助,共同克服种种困难,最终顺利完成了各项工作。此次课程设计让我获益良多,既是对自己一次所学专业知识综合的运用,又是对自己专业知识的掌握和巩固。使自己能够在亲自动手的实践中增加丰富的经验,为以后的工作打下良好的、殷实的基础。

转眼,为期两周的微机控制课程设计就结束了。而考验我们在大学期间专业及各方面能力的有效途径之一,就是课程设计。经过两周的努力,在指导老师们的帮助下,我们组顺利的完成了课程设计——电机速度检测系统的设计。

为了能够按照要求完成课程设计,我们查阅了大量的期刊和专业资料,校图书馆和上网是我查找资料的主要途径。设计初期查找资料的艰辛,时至今日仍历历在目。在接下来的硬件设计中,老师们一次又一次的给我们指导,把我们的思路引到了正确的方向上,经过多次修改,我们终于完成了硬件图的设计。在老师们的大力帮助下我才得以完成这项任务。

在此,再次感谢带领我们课程设计的王瑾老师、王文涛老师和蔡长青老师,正是有了三位老师的细心教导、耐心指导、苦心监督,我们才能够顺利完成各项学习任务、收获真知识、锻炼真本领。

[1]李广弟.单片机基础[M].北京:北航出版社.2009年

[2]胡汉才主编.单片机原理及系统设计[M].清华大学出版社.2008年5月

[3]王哲强.一款基于单片机技术的电机测速系统[J].机电工程技术.2005年

[4]童诗白.模拟电子技术基础[M].机械工业出版社.2001年12月

[5] 万福君、潘松峰.单片机原理系统设计与应用[M] .科学技术大学出版社.2001

[6]段鸿杰.河北工业大学.中国学术期刊(光盘版)电子杂志社[J].2004年7月

[7]潘永雄.新编单片机原理与应用[M].西安电子科技大学出版社.2002年

[8]闫石.数字电子技术基础(第四版)[M].高等教育出版社.2003年

[9]徐爱钧.电机测速实践教程[M].电子工业出版社.2005年3月

[10] 李瀚荪.电路分析基础[M].高等教育出版社.2007年

直流电机测速

单片机课程设计

基于单片机的转速测量系统设计 【摘要】介绍了一种基于AT89C51单片机平台,采用光电传感器实施电机转速测量的方法,硬件系统包括脉冲信号产生、脉冲信号处理和显示模块,并采用C语言编程,结果表明该方法具有简单、精度高、稳定性好的优点。介绍了该测速法的基本原理、实现步骤和软硬件设计 【关键词】转速测量; 单片机; 霍尔传感器;电机;脉冲。

1.概述 1.1 数字式转速测量系统的发展背景 目前国内外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体内的放射性材料来发生脉冲信号.其中应用最广的是光电式,光电式测系统具有低惯性、低噪声、高分辨率和高精度的优点.加之激光光源、光栅、光学码盘、CCD 器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。而采用光电传感器的电机转速测量系统测量准确度高、采样速度快、测量范围宽和测量精度与被测转速无关等优点,具有广阔的应用前景。 1.2 本设计课题的目的和意义 在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。要测速,首先要解决是采样问题。在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。因此转速的测试具有重要的意义。 这次设计内容包含知识全面,对传感器测量发电机转速的不同的方法及原理设计有较多介绍,在测量系统中能学到关于测量转速的传感器采样问题,单片机部分的内容,显示部分等各个模块的通信和联调。全面了解单片机和信号放大的具体内容。进一步锻炼我们在信号采集,处理,显示发面的实际工作能力。

直流电机测速并显示

可实现功能: 1 可控制左右旋转 2 可控制停止转动 3 有测速功能,即时显示在液晶上 4 有速度档位选择,分五个档次,但不能精确控速 5 档位显示在液晶上 用到的知识: 1 用外部中断检测电机送来的下降沿,在一定时间里统计 脉冲个数,进行算出转速。 2 通过改变占空比可改变电机速度,占空比的改变可以通过改变定时器的重装初值来实现。 3 要想精确控制速度,还需要用自动控制理论里的PID算法,但参数难以选定,故在此设计中没有涉及! #include #define uchar unsigned char #define uint unsigned int sbit PW1=P1^0 ; sbit PW2=P1^1 ; //控制电机的两个输入 sbit accelerate=P0^2 ; //调速按键 sbit stop=P0^3 ; //停止按键 sbit left=P0^4 ; //左转按键 sbit right=P0^5 ; //右转按键

sbit detect=P3^2; //检测脉冲 sbit lcdrs=P0^0; sbit lcden=P0^1; #define Da P2 uint temp; //保存检测到的电平数据以便比较 uint count; //用于计数 uint aa,bb; //用于计数 uint speed; //用来计算转速 uint a=25000; uint t0=25000,t1=25000; //初始时占空比为50% uchar flag=1; //此标志用于选择不同的装载初值uchar dflag; //左右转标志 uchar sflag=1; //用来标志速度档位 #define right_turn PW1=0;PW2=1 //顺时针转动#define left_turn PW1=1;PW2=0 //逆向转动#define end_turn PW1=1;PW2=1 //停转 void keyscan(); //键盘扫描 void delay(uchar z); void time_init(); //定时器的初始化 void write_(uchar ); //液晶写指令 void write_data(uchar date); //液晶写数据 void lcd_init(); //液晶初始化 void display(uint rate); //显赫速度 void int0_init(); //定时器0初始化 void keyscan(); //键盘扫描程序 void judge_derection(); void main() { time_init(); //定时器的初始化 lcd_init(); //液晶初始化 int0_init(); //定时器0初始化 while(1) { } } void time_init()

转速测量方法

转速测量方法可以分为两类,一类是直接法,即直接观测机械或者电机的机械运动,测量特定时间内机械旋转的圈数,从而测出机械运动的转速;另一类是间接法,即测量由于机械转动导致其他物理量的变化,从这些物理量的变化与转速的关系来得到转速。同时从测速仪是否与转轴接触又可分为接触式,非接触式。目前国内外常用的测速方法有光电码盘测速法、霍尔元件测速法、离心式转速表测速法、测速发电机测速法、漏磁测速法、闪光测速法和振动测速法。 1.光电码盘测速法 这是通过测出转速信号的频率或周期来测量电机转速的一种无接触测速法。光电码盘安装在转子端轴上,随着电机的转动,光电码盘也跟着一起转动,如果有一个固定光源照射在码盘上,则可利用光敏元件来接受光,接收到光的次数就是码盘的编码数。若编码数为l,测量时间为t,测量到的脉冲数为N,则转速 n=(N/t*l)*60。 2.霍尔元件测速法 利用霍尔开关元件测转速的。霍尔开关元件内含稳压电路、霍尔电势发生器、放大器、施密特触发器和输出电路。输出电平与TTL电平兼容,在电机转轴上装一个圆盘,圆盘上装若干对小磁钢,小磁钢越多,分辨率越高,霍尔开关固定在小磁钢附近,当电机转动时,每当一个小磁钢转过霍尔开关,霍尔开关便输出一个脉冲,计算出单位时间的脉冲数,即可确定旋转体的转速。 3.离心式测速法 离心式转速表是利用物体旋转时产生的离心力来测量转速的。当离心式转速表的转轴随被测物体转动时,离心器上的重物在惯性离心力作用下离开轴心,并通过传动系统带动指针回转。当指针上的弹簧反作用力矩和惯性离心力矩相平衡时,指针停止在偏转后所指示的刻度值处,即为被测转速值。这就是离心式转速表的原理。测转速时,转速表的端头要插入电机转轴的中心孔内,转速表的轴要与电机的轴保持同心,否则易响准确读数。 4.测速发电机测转速 利用直流发电机的电枢电动势E与发电机的转速成正比的这一关系测量转速。测转速时,测速发电机连接到被测电机的轴端,将被测电机的机械转速变换为电压信号输出,在输出端接一个刻度以转速为单位的电压表,即可读出转速。 5.闪光测速法 利用可调脉冲频率的专用电源施加于闪光灯上,将闪光灯的灯光照到电机转动部分,当调整脉冲频率使黑色扇形片静止不动时,此时脉冲的频率是与电机转动的转速是同步的。若脉冲频率为,则电机的转速为(r/min)。

单片机控制直流电机并测速(电压AD、DA转换以及pwm按键调速正转反转)

单片机原理及应用 课程设计报告书 题目:用单片机控制直流电动机并测量转速姓名:徐银浩 学号:1110702225 专业:电子信息工程 指导老师:沈兆军 设计时间:2014年 11月 信息工程学院

目录 1. 引言 (1) 1.1 设计意义 (1) 1.2 系统功能要求 (1) 2. 方案设计 (1) 3. 硬件设计 (3) 3.1 AT89C51最小系统 (3) 3.2 按键电路 (4) 3.3 A/D转换模块 (4) 3.4. D/A转换模块 (6) 3.5 电机转速测量电路 (7) 3.6 显示电路 (8) 3.7 总电路图 (10) 4. 软件设计 (111) 4.1 系统主程序设计 (12) 4.2 按键扫描程序设计 (12) 4.3 显示子程序 (12) 4.4 定时中断处理程序 (12) 4.5 A/D转换程序 (13) 5. 系统调试 (14) 6. 设计总结 (16) 7. 参考文献 (17)

8. 附录A;源程序 (18) 9. 附录B;电路原理总图、作品实物图片 (23)

用单片机控制直流电动机并测量转速 1 引言 1.1. 设计意义 电动机作为最主要的动力源,在生产和生活中占有重要地位。电动机的调速控制过去多用模拟法,随着计算机的产生和发展以及新型电力电子功率器件的不断涌现,电动机的控制也发生了深刻的变化,本系统利用直流电机的速度与施加电压成正比的原理,通过滑动变阻器向ADC0809输入控制电压信号,经AD后,输入到AT89C51中,AT89C51将此信号转发给DAC0832,通过功放电路放大后,驱动直流电机。 1.2.系统功能要求 单片机扩展有A/D转换芯片ADC0809和D/A转换芯片DAC0832。 通过改变A/D输入端可变电阻来改变A/D的输入电压,D/A输入检测量大小,进而改变直流电动机的转速。 手动扩展。在键盘上设置两个按键——直流电动机加速键和直流电动机减速减。在手动状态下,每按一次键,电动机的转速按照约定的速率改变。 用显示器LED或LCD显示数码移动的速度,及时形象地跟踪直流电动机转速的变化情况。 2 方案设计 为了使用单片机对电动机进行控制,对单片机的基本要求应有足够快点速度;有捕捉功能。总体设计方案如图所示

简易小直流电机测速

科信学院 课程设计说明书(2012/2013学年第二学期) 课程名称:单片机应用课程设计 题目:简易小直流电机测速 专业班级:10级自动化三班 学生姓名:师鑫源 学号:100412309 指导教师:苗敬利高敬格王巍杨怡君 设计周数:两周 设计成绩: 2013年6月27日 目录

摘要.......................................................................................................... ............................ (3) 1、课程设计目的 (4) 2、课程设计要求 (4) 3、课程设计器材 (4) 4、课程设计正文 (5) 4.1系统分析与实施 (5) 4.2硬件部分 (5) 4.2.1 STC90C52AD功能参数介绍 (5) 4.2.2时钟电路设计 (6) 4.2.3按键电路设计 (8) 4.2.4显示电路设计 (8) 4.2.5复位电路设计 (9) 4.2.6检测电机转速的电路设计 (10) 4.3系统硬件调试 (12) 4.3.1.调试方案 (12) 4.3.2.仿真调试结果 (12) 4.3.3硬件调试结果 (12) 4.4 软件设计 (14) 4.4.1软件系统分析 (14) 4.4.2 系统软件设计 (17) 4.4.3 系统软件实施与调试 (23) 5、课程设计总结 (23) 6、课程设计经验 (24) 7、参考文献 (24) 附录一、protel软件绘制的工作原理图 (11) 附录二、PROTUES软件绘制的仿真图 (13) 摘要

直流电机调速与测速系统设计

直流电机调速与测速系统设计 【摘要】直流电机具有宽广的调速范围,平滑的无级调速特性。利用PWM 脉冲信号的占空比决定输出到直流电机的平均电压的大小。通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以实现无级连续调节。以AT89S51单片机为核心的直流电机调速与测速系统的设计方法,给出了系统的主电路结构,以及驱动电路设计和系统软件设计。充分利用了单片机的优点,具有频率高、响应快的特点。 【关键词】直流电机;单片机;调速测速;PWM;占空比 直流电机是工业生产中常用的驱动设备,具有良好的起动、制动性能。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成。控制系统的硬件部分复杂、功能单一,调试困难。采用单片机控制系统,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。 1.基于单片机的PWM直流调速原理 PWM(脉冲宽度调制Pulse Width Modulation)简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种技术,广泛应用在测量、功率控制与变换等许多领域中。脉宽调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极的偏置,改变晶体管导通时间。是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 PWM可以应用在许多方面,如电机调速、温度控制、压力控制等。在PWM 驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。通过改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速。因此,PWM又被称为“开关驱动装置”。PWM的占空比决定输出到直流电机的平均电压。所以通过调节占空比,可以实现调节输出电压无级连续调节。 2.调速和测速系统的主体电路设计 整个系统由输入电路、PWM调制、测速电路、驱动电路、控制部分及显示等部分组成,PWM调制选用AT89S51单片机通过软件实现频率和占空比的调节。 2.1 直流电机调速的设计方案 驱动电路用光耦隔离保护电路,控制部分由单片机和外围电路组成,实现各种控制要求,外围电路主要完成对输入信号的采集、操作、对速度进行控制,显示部分采用四位共阳数码管。系统方框图如图1所示。

电机测速方法的研究

电机速度测试方法的研究 一、基本内容 通常,常用的测速方法有:旋转轴编码器测速、直流发电机测速、交流测速发电机测速、光电测速等。本实验中用到轴编码器测速、交直流测速发电机测速以及无接触式转速表测速。 1、轴编码器测速及其原理 增量式编码器由主码盘、鉴向盘、光学系统和光电变换器组成。在主码盘(光电盘)周边上刻有节距相等的辐射状窄缝,形成均匀分布的透明区和不透明区。鉴向盘与主码盘平行,并刻有a、b两组透明检测窄缝,它们彼此错开1/4节距,以使A、B两个光电变换器的输出信号在相位上相差90°。工作时,鉴向盘静止不动,主码盘与转轴一起转动,光源发出的光投射到主码盘与鉴向盘上。当主码盘上的不透明区正好与鉴向盘上的透明窄缝对齐时,光线被全部遮住,光电变换器输出电压为最小;当主码盘上的透明区正好与鉴向盘上的透明窄缝对齐时,光线全部通过,光电变换器输出电压为最大。主码盘每转过一个刻线周期,光电变换器将输出一个近似的正弦波电压,且光电变换器A、B的输出电压相位差为90°。光电编码器的测量准确度与码盘圆周上的狭缝条纹数n有关,能分辨的角度α为: α=360°/n (1) 分辨率=1/n (2) 2、交直流测速发电机测速原理 通过负载带动发电机转动,发电机转动后根据电磁感应原理产生电动势,从而有对外输出电压U,输出电压U正比于转速,进而测出转速。 3、非接触式转速表测量原理 非接触式转速计系采用光电反射原理的量法(光学RPM 转速测量法)。转速计发射出的红外线经固定在待测目标上的反射条反射后,即携带有关转速的信息,当转速计接收到反射波后,经过处理即得到转速测量数据。 二、实验内容 1、采用无接触式转速表测速 序号n(r/min) n标准序号n(r/min) n标准 1 10 2 100 11 1100 1100 2 199 200 12 1201 1200 3 302 300 13 1300 1300 4 401 400 14 1400 1400 5 501 500 15 1501 1500 6 599 600 16 1600 1600 7 700 700 17 1700 1700

电机测速设计

河南科技大学电子课程设计报告 题目:电动机测速器 专业班级: 姓名: 时间: 指导教师:

目录 摘要 (3) 1 引言 (3) 1.1 电动机转速测量现状及前景 (3) 1.2 研发意义 (3) 2 总体设计方案 (4) 2.1 设计思路 (4) 2.2 总体设计框图 (5) 3 设计原理分析 (5) 3.1 电源的选择 (5) 3.2转速测量原理 (5) 3.3开关型霍尔传感器介绍 (5) 3.4定时电路 (6) 3.5 控制电路 (7) 3.6计数器电路 (9) 3.7驱动显示电路 (11) 3.8总体电路 (11) 4 总结与体会 (12) 参考文献 (12)

电机测速器 摘要:本论文要设计一个用霍尔传感器来测量电动机的转速系统,并做出相应的仿真分析,画出原理图。为了知道电机的实际转速,需要实时监测电机轴的转速,该系统利用霍尔传感器采集脉冲信号,涉及到信号的采集,控制计数、译码、显示。论文所设计的系统用到的器件都是本专业电路中常见的器件,价格便宜,且其结构简单,原理易于掌握,但却能较精确测得电机的转速 关键词:霍尔传感器555触发器CD4511 4518 数码管 1引言 1.1电动机测速发展现状及前景 目前国内外对电动机的测速方法有很多,按照不同的理论方法,先后产生拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。 传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体内的放射性材料来发生脉冲信号.其中应用最广的是光电式,光电式测速系统具有低惯性、低噪声、高分辨率和高精度的优点。 由于电磁测量方法灵活多样,可测参数众多,一般情况下又具有非接触、高精度、高分辨率、高可靠性和反应快等优点,使得光电传感器在检测和制领域得到了广泛的应用。而采用光电传感器的电机转速测量系统测量准确度高、采样速度快、测量范围宽和测量精度与被测转速无关等优点,具有广阔的应用前景。 1.2 研发意义

计算机控制系统课程设计直流电机测速调速系统

XI`AN TECHNOLOGICAL UNIVERSITY 课程名称直流电机测速调速实验 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:秦刚 成绩: 2016年7月11 日

计算机控制系统课程设计 ——直流电机测速调速系统 一、选定题目:电机速度控制系统 二、设计目的和要求: 计算机控制技术的课程设计是一个综合运用知识的过程,它不仅需要微型机控制理论、程序设计方面的基础知识,而且还需要具备一定的生产工艺知识。课程设计包括确定控制任务、系统总体方案设计、硬件系统设计、控制软件的设计等,以便使学生掌握计算机控制系统设计的总体思路和方法。 三、功能需求: 1、基本功能: (1)该系统使用实验箱的直流电机、1602 液晶、 DA、键盘等模块完成设计; (2)直流电机通过DA模块使用PWM方式进行驱动及调速; (3)能够通过 1602 液晶显示当前转速及 PWM占空比;(4) 通过按键控制电机的启动和停止。 2、扩展功能: (1)能够通过按键手动输入目标转速(转/秒),启动电机后控制电机稳定 在目标转速; (2)使用 1602 液晶实时显示目标转速、当前转速及启停状态(on/off )。 四、实验思路: 本直流电机调速系统以单片机系统为依托,根据 PWM调速的基本原理,控制电动机的转速为依据,实现对直流电动机的调速,并通过单片机控制速度的变化。本设计的直流电机调速系统主要是由硬件和软件两大部分组成。硬件部分是前

提,是整个系统执行的基础,它主要为软件提供程序运行的平台。而软件部分, 是对硬件端口所体现的信号,加以采集、分析、处理,最终实现控制器所要实现 的各项功能,达到控制器自动对电机速度的有效控制。 用51 来产生 PWM波就必须要用软件编程的方法来模拟。方法大概可以分为软件延时和定时器产生两种方法。本次课程设计我们采用定时器产生PWM方波。 定时器产生PWM:这种方法利用了定时器溢出中断,在中断服务程序改变电 平的高低,在程序较复杂、多操作时仍能输出较准确的pwm波形。 五、实验设备: 单片机开发实验仪一台; AT89C51; LCD1602; DA数模转换; 按键; 光电开关 六、实验原理: 1、硬件框图: 硬件部分主要由电位器、模数转换模块、51 单片机、显示模块、驱动电路 和无刷直流电机组成。其功能框图如下:

简易小直流电机测速

科信学院 课程设计说明 (2012/2013学年第二学期) 课程名称:单片机应用课程设计 简易小直流电机测速 专业班级:10级自动化三班 学生姓名:师鑫源 学号: 100412309 指导教师:苗敬利高敬格王巍杨怡君 设计周数:两周 设计成绩: 2013年6月27日

摘要..................... 1、课程设计目的.......... 2、课程设计要求........ 3、课程设计器材.......... 4、课程设计正文........... 4.1 系统分析与实施..... 4.2 硬件部分........... 4.2.1 STC90C52AD 4.2.2 时钟电路设计 4.2.3 按键电路设计 4.2.4 显示电路设计 4.2.5 复位电路设计 4.2.6 检测电机转速的电路设计.. 4.3 系统硬件调试...................... 4.3.1. 调试方案.................. 4.3.2. 仿真调试结果............... 4.3.3 硬件调试结果................ 4.4 软件设计......................... 4.4.1 软件系统分析................ 4.4.2 系统软件设计................ 4.4.3 系统软件实施与调试.......... 5、课程设计总结......................... 6、课程设计经验......................... 7、参考文献............................. 附录一、protel 软件绘制的工作原理图附录 二、P ROTUE软件绘制的仿真图… 功能参数介绍 摘要10 12 12 12 12 14 14 17 23 23 24 24 .11 13

基于PLC的直流电机测速系统

课程设计报告 课程名称微机控制技术课程设计 设计题目电机测速系统设计 专业班级自动化0842 姓名王晓明 学号0804421231 指导教师蔡长青、王瑾、张卓、王文涛起止时间2010.12.26—2011.01.06 电气与信息学院

课程设计考核和成绩评定办法 1.课程设计的考核由指导教师根据设计表现、设计报告、设计成果、答辩等几个方面,给出各项权重,综合评定。该设计考核教研室主任审核,主管院长审批备案。 2.成绩评定采用五级分制,即优、良、中、及格、不及格。 3.参加本次设计时间不足三分之二或旷课四天以上者,不得参加本次考核,按不及格处理。4.课程设计结束一周内,指导教师提交成绩和设计总结。 5.设计过程考核和成绩在教师手册中有记载。 课程设计报告内容 课程设计报告内容、格式各专业根据专业不同统一规范,经教研室主任审核、主管院长审批备案。 注: 1.课程设计任务书和指导书在课程设计前发给学生,设计任务书放置在设计报告封面后和正文目录前。 2.为了节省纸张,保护环境,便于保管实习报告,统一采用A4纸打印(正文采用宋体五号字)或手写。

10/11学年第一学期 微机控制技术课程设计任务书 指导教师:蔡长青班级:自动0841、2 地点:3101、工训512 课程设计题目:电机测速系统 一、课程设计目的 本课程设计的目的在于培养学生运用已学的微机控制技术的基础知识和基本理论,加以综合运用,进行微机控制系统设计的初等训练,掌握运用微机控制技术的原理、设计内容和设计步骤,为从事相关的毕业设计或今后的工作需要打下良好的基础。 二、课程设计内容(包括技术指标) 1.用PLC设计并制作一个电机测速系统,上位机组态软件能够设定不同的电机转速并且显示实时速度。 具体如下:通过按键能设定3~5个电机转动速度,PLC和上位机组态软件连接,PLC 通过控制变频器输出不同频率三相电使电机转动起来,然后通过旋转编码器测量电机速度,旋转编码器输出接PLC高速计数输入通道,计算当前电机转速,并在上位机组态软件中上显示出来。 2.可以结合题目自己发挥,发挥部分须在所选题目的基本要求达到的前提下实现。 3.设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。完整的电路原理图、重要的源程序用附件给出。 三、课程设计原则 1.尽可能地满足被控对象的控制要求; 2.在满足控制的前提下,力求使控制系统简单、经济; 3.保证控制系统安全可靠; 四、课程设计步骤

直流电机测速系统

设计名称:直流电机调速及速度系统设计院系:工学院电气与信息工程系专业班级:自动化 小组组号: 小组成员: 日期:

一、方案比较、设计与分析 1、稳压电源 直流稳压电源通过MC34063芯片所构成降压电路,把输入的24V的直流电压降为12V的直流稳压电源,为所有的电路模块和系统提供所需要的电源电压该电路的仿真图如图3所示。 图1 直流稳压电源 2、电机调速模块 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM通过控制固定电压的直流电源开关频率,从而改变负载两端的电压,进而达到控制要求的一种电压调整方法。PWM可以应用在许多方面,如电机调速、温度控制、压力控制等。在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短即通过改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而达到控制电动机转速的目的。 图2 占空比仿真波形

图 3 电机调速电路图 3、测速模块 方案一:霍尔传感器测量方案 霍尔传感器是利用霍尔效应进行工作的,其核心元件是根据霍尔效应原理制成的霍尔元件霍尔转速传感器其引脚封装如图3所示。在直流电机扇叶两端放置固定的互相垂直的感应接收装置A和B,在电机的扇叶上贴上磁片HA和HB,当电 机转动的时候就会产生速度感应信号。 图4 霍尔元件封装图 优点:采用霍尔传感器是通过对磁场的感应,从而产生电信号脉冲的元件,霍尔 元件的感应灵敏,能够比较准确的反映直流电机的转速,而且改元件的体积较小, 方便使用。 方案二:光电传感器采集速度数据 转速信号由光电传感器拾取,使用时应先在直流电机的扇叶上做好光电标记,具体 办法可以是:将一片白色的纸板作为光电标记,然后将光电传感器(光电头) 固定 在正对光电标记的某一适当距离处。当直流电机转动时,光电头每照到一次白色 的纸板,光电传感器就会产生一个脉冲信号,从而达到计数的目的。

测速电机

测速电机(tachogenerator) 综述: 输出电动势与转速成比例的微特电机。测速发电机的绕组和磁路经精确设计,其输出电动势E和转速n成线性关系,即E=Kn,K是常数。改变旋转方向时输出电动势的极性即相应改变。在被测机构与测速发电机同轴联接时,只要检测出输出电动势,就能获得被测机构的转速,故又称速度传感器。 简介: 为保证电机性能可靠,测速发电机的输出电动势具有斜率高、特性成线性、无信号区小或剩余电压小、正转和反转时输出电压不对称度小、对温度敏感低等特点。此外,直流测速发电机要求在一定转速下输出电压交流分量小,无线电干扰小;交流测速发电机要求在工作转速变化范围内输出电压相位变化小。 测速发电机广泛用于各种速度或位置控制系统。在自动控制系统中作为检测速度的元件,以调节电动机转速或通过反馈来提高系统稳定性和精度;在解算装置中可作为微分、积分元件,也可作为加速或延迟信号用或用来测量各种运动机械在摆动或转动以及直线运动时的速度。测速发电机分为直流和交流两种。 直流测速发电机: 有永磁式和电磁式两种。其结构与直流发电机相近。永磁式采用高性能永久磁钢励磁,受温度变化的影响较小,输出变化小,斜率高,线性误差小。这种电机在80年代因新型永磁材料的出现而发展较快。电磁式采用他励式,不仅复杂且因励磁受电源、环境等因素的影响,输出电压变化较大,用得不多。 用永磁材料制成的直流测速发电机还分有限转角测速发电机和直线测速发电机。它们分别用于测量旋转或直线运动速度,其性能要求与直流测速发电机相近,但结构有些差别。 交流测速发电机 有空心杯转子异步测速发电机、笼式转子异步测速发电机和同步测速发电机3种。 1、异步测速发电机 ①空心杯转子异步测速发电机:结构原理如图所示,主要由内定子、外定子及在它们之间的气隙中转动的杯形转子所组成。励磁绕组、输出绕组嵌在定子上,彼此在空间相差90°电角度。杯形转子是由非磁性材料制成。当转子不转时,励磁后由杯形转子电流产生的磁场与输出绕组轴线垂直,输出绕组不感应电动势;当转子转动时,由杯形转子产生的磁场与输出绕组轴线重合,在输出绕组中感应的电动势大小正比于杯形转子的转速,而频率和励磁电压频率相同,与转速无关。反转时输出电压相位也相反。杯形转子是传递信号的关键,其质量好坏对性能起很大作用。由于它的技术性能比其他类型交流测速发电机优越,结构不很复杂,同时噪声低,无干扰且体积小,是目前应用最为广泛的一种交流测速发电机。 ②笼式转子异步测速发电机:与交流伺服电动机相似,因输出的线性度较差,仅用于要求不高的场合。 2、同步测速发电机 ③同步测速发电机:以永久磁铁作为转子的交流发电机。由于输出电压和频率随转速同时变化,又不能判别旋转方向,使用不便,在自动控制系统中用得很少,主要供转速的直接测量用。

直流电机测速器

机电学院 电子课程设计报告题目:直流电机测速器 专业班级:应用电子技术111 姓名: 时间:2013.12.9 ~2013.12.27 指导教师: 完成日期:2013年12月27日

直流电机测速器设计任务书 1.设计目的与要求 设计一个电动机测速器,要认真并准确地理解有关要求,独立完成系统设计,要求所设计的电路具有以下功能: (1)测量电动机六秒钟所转的圈数,显示电动机转速; (2)3个数码管显示电动机转速(转/分); (3)转速超出所测范围时,进行灯光报警。 2.设计内容 (1)画出电路原理图; (2)元器件及参数选择; (3)电路仿真; (4)搭接所设计的电路完成设计功能。 3.编写设计报告 写出设计的全过程,附上有关资料和图纸,有总结体会。 4.答辩 在规定时间内,完成叙述并回答问题。

目录 1引言 (1) 2 总体设计方案 (1) 2.1 设计思路 (1) 2.2 总体设计框图 (2) 3 设计原理分析 (2) 3.1 传感器电路 (2) 3.2 计数电路 (3) 3.3 显示电路 (5) 3.4 定时电路 (6) 3.5报警电路 (7) 3.6总体电路 (7) 3.7仿真电路 (8) 3.8调试图 (9) 4 总结与体会 (9) 参考文献 (10) 附录1 (11)

直流电机测速器 摘要:在工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量。数字式通常采用光电编码器,霍尔元件等为检测元件,得到的信号是脉冲信号。电机在运行过程中,需要对其进行监控,转速是一个必不可少的一个参数。本系统就是对电机转速进行测量,显示电机的转速,并观察电机运行的基本状况。本设计主要用霍尔传感器、LED数码显像管、555定时器、及74LS93组成的计数器构成。本文重点是测量速度并在3位LED数码管上显示电机六秒钟所转圈数,及超过预定值时经行的灯光报警。 关键词:霍尔元件,小直流电机,定时 1引言 在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。 目前国内外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体内的放射性材料来发生脉冲信号。本文将介绍利用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)来获取脉冲信号经行测速。 2总体设计方案 2.1设计思路

电机测速

河南科技学院新科学院 电子课程设计报告 题目:电动机测速器设计 专业班级:电气工程及其自动化 姓名:曹旺 时间:2011年6月6日到6月17日指导教师:徐涛王玉萍 完成日期:2011年6月15日

目录 摘要 (1) 1 引言 (2) 1.1 电动机转速测量现状及前景 (2) 1.2 研发意义 (2) 2 总体设计方案 (2) 2.1 设计思路 (2) 2.2 总体设计框图 (4) 3 设计原理分析 (4) 3.1 电源的选择 (4) 3.2 传感器电路 (4) 3.3 定时电路 (5) 3.4 控制电路 (7) 3.5 计数器电路 (7) 3.6 驱动显示电路 (8) 3.7总体电路 (9) 3.8 PCB文件的打印输出 (11) 4 总结与体会 (12) 参考文献 (13)

电动机测速器设计任务书 1.计设目的与要求 设计一电动机测速器装置,理解相关要求,自主完成对系统的相关设计,要求所设计的电路具有以下功能: (1)能够测量电动机每秒钟所转的圈数并监视电动机的运转情况; (2)自己选择要测量的电动机的合适的转速范围; (3)运用相关的集成芯片对信号进行译码,用四位数码管显示电动机的转速(转/分)。 2 设计内容 (1)画出电路原理图,熟练掌握各种逻辑功能并正确使用逻辑关系; (2)确定相关元器件的合适的元件参数; (3)制作出电路仿真图示; (4)制作SCH文件的生成与打印输出; (5)制作PCB文件的生成与打印输出。 3编写设计报告 写出设计的全过程,附上有关资料和电路图,并且有自己的有总结体会。 4 答辩 在规定时间内完成相关叙述并回答出提出的相关问题。

单片机直流电机测速系统实训报告

单片机综合实训报告 专业:详详细细 姓名:xxxxx 学号:小行星 联系方式:详详细细 指导教师:粗粗糙糙 时间:2013年6月14日—6月28日

摘要 在电气时代的今天,电机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速范围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。 随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 在工程实践中,经常会遇到各种需要测量转速的场合, 例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要分时或连续测量和显示其转速及瞬时转速。要测速,首先要解决是采样问题。在使用模技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。为了能精确地测量转速外,还要保证测量的实时性,要求能测得瞬时转速方法。因此转速的测试具有重要的意义。 本文介绍了一种基于AT89C51 单片机平台,采用光电传感器实施电机转速测量的方法,硬件系统包括脉冲信号产生、脉冲信号处理和显示模块,并采用C 语言编程,结果表明该方法具有简单、精度高、稳定性好的优点。介绍了该测速法的基本原理、实验步骤和软硬件设计 这次设计内容包含知识全面,对传感器测量发电机转速的不同的方法及原理设计有较多介绍,在测量系统中能学到关于测量转速的传感器采样问题,单片机部分的内容,显示部分等各个模块的通信和联调。全面了解单片机和信号放大的具体内容。进一步锻炼我们在信号采集,处理,显示发面的实际工作能力。 关键词 单片机AT89C51 直流电机转速测量光电传感器电机脉冲

测速发电机工作原理

测速发电机工作原理: (一)、直流测速发电机工型式 1、永磁式其定子磁极由永久磁钢做成,没有激磁绕组。 2、电磁式其定子激磁绕组由外部电源供电,通电时产生磁场。 永磁式电机结构简单,省掉激磁电源,便于使用,并且,温度变化对激磁磁通的影响也小。但永磁材料价格较贵,帮常应用于小型测速成发电机中。 (二)、自动控制系统对直流测速发电机的要求 自动控制系统对其元件的要求,主要是精确度高、灵敏度高、可靠性好等。据此,直流测速成发电机在电气性能方面应满足以下几项要求: 1、输出电压和转速的关系曲线(即为输出特性)应为线性; 2、温度变化对输出特性的影响要小; 3、输出特性的斜率要大; 4、输出电压的纹波要小,即要求在一定的转速下输出电压要稳定,波动要小; 5、正,反转两个方向的输出特性要一致,实际应用中一般都是不一致的,稍有差别。 不难理解,第3项要求是为了提高测速成发电机的灵敏度。因为输出特性斜率大,即是速度变化相对的电压变化大,这样,测速成机

的输出对转速的变化很灵敏。第1、2、4、5项的要求是为了提高测速成发电机的精度。因为只有输出电压和转速成线性关系,并且正、反转时特性一致,温度变化对特性的影响越小,输出电压越稳定,则输出电压就越能精确地反映转速,这样才能对提高整个系统的精度有利。 (三)、直流测速发电机的误差及其减小的方法 1、温度影响: 电机周围环境温度的变化以及电机本身发热都会引起电机绕组电阻的变化。当温度升高时,激磁绕阻电阻增大,激磁电流减小,磁通也随之减小,输出电压就降低。反之,当温度下降时,输出电压便升高。 处理方法:在激磁回路中串联一个阻值比激磁绕阻电阻大几倍的附加电阻来稳流,这样,尽管温度升高将引起激磁绕组电阻增大,但整个激磁回路的总电阻增加不多。附加电阻可以用温度系数较低的合金材料制成。 2、电枢反应: 测速运行时,其电枢绕组的电流产生电枢磁场,它对激磁绕组磁场有去磁效应。而且负载电阻越小或是转速越高,负载电流就越大,去磁作用就越明显,造成输出特性曲线非线性误差增加。 处理方法:为了减小电枢反应对输出特性的影响,在直流测速发电机的技术条件中标有最大转速和最小负载电阻值。在使用时,转速

直流电机测速系统课程设计

单片机课程设计报告书 题目:电机测速系统 院系名称:自动化学院 学生姓名: 专业名称:自动化 班级:自动XXXX班 时间:20XX年X月X日至 X月XX日

电机测速系统 一、设计目的 随着科技的飞速发展,计算机应用技术日益渗透到社会生产生活的各个领域,而单片机的应用则起到了举足轻重的作用。在工程实践中,经常会遇到各种需要测量转速的场合,例如在发动机、电动机、机床主轴等旋转设备的试验运转和控制中,常需要分时或连续测量、显示其转速及瞬时速度。为了能精确地测量转速,还要保证测量的实时性,要求能测得瞬时转速。因此设计一种较为理想的电机测速控制系统是非常有价值的。 二、设计要求 1.用按键控制电机起停; 2.电机有两种速度,通过按键来改变速度; 3.通过数码管显示每分钟或每秒的转速。 四、设计方案及分析(包含设计电路图) 1. STC89C52单片机介绍 STC89C52是一种带8K字节闪烁可编程可檫除只读存储器(FPEROM-Flash Programmable and Erasable Read Only Memory )的低电压,高性能COMOS8的微处理器,俗称单片机。该器件采用ATMEL搞密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

(1)单片机最小系统 单片机最小系统电路如图所示,由主控器STC89C52、时钟电路和复位电路三部分组成。单片机STC89C52作为核心控制器控制着整个系统的工作,而时钟电路负责产生单片机工作所必需的时钟信号,复位电路使得单片机能够正常、有序、稳定地工作。 图单片机最小系统 (2)晶振电路 (3)复位电路

直流电机测速

数字电路课程设计报告书课设名称:直流电机测速 姓名:张赫 学号:10020113 学院:电控学院 专业:自动化 指导老师: 完成日期:2012年3月

目录 一、题目名称及设计任务的选择 (1)题目名称 (2)设计任务的选择 二、设计任务及设计要求 (1)设计任务 (2)设计要求 (3)参考元件 三、设计思路及设计原理 (1)设计流程图 (2)主要芯片说明 (3)实验原理 四、对设计方案的论证和比较 五、电路所涉及的参数计算 六、调试过程中的问题及解决方案 七、心得体会 八、附录 (1)二极管的简易测试机管脚判别 (2)电阻色环的识别及其色环对应表 (3)题目所用电子元件清单 九、实验照片 十、参考文献

一、题目名称及设计任务的选择 (1)题目名称 根据本专业的课程要求及需要和自己的兴趣,我们在此次课程设计中所选的题目是直流电机测速。 (2)设计任务的选择 现代社会对电机的应用越来越广泛,利用电机可以带动很多的机器进行运转,这些机器为我们生产出必需的生活,工作和学习用品,可以说电机对我们的生活产生了很大的影响。如果通过此次课程设计实践能设计出一个能对直流电机进行调速和测速的电路那我们将会受益匪浅,这是我们选择此题目的一个原因。 另外通过此次课设可以增进对电路的设计、操作和分析的技能,本题目涉及NE555定时器、计数器和逻辑与非们的应用,它们在以后的应用十分广泛,通过此次实践如果能把它们熟练掌握,这将为我以后的电子设计竞赛打下一定的基础。 综合以上我们决定做这个题目。 二、设计任务及设计要求 (1)设计任务 此次试验我们将要设计一个能对直流电动机运行速度进行调速和测速的电路。 (2)设计要求 本题目的设计要求包括基本要求和扩展要求。 基本要求是设计一个脉宽调速电路,实现对直流电机转速的控制。 利用光电脉冲转换、整形、门控电路和计数电路测出直流电机的转速,并显示在数码管上。要求转速可达到300转/分以下,越低越好。

课程设计---直流电动机测速系统设计

专业课程设计 题目三 直流电动机测速系统设计 院系: 专业班级: 小组成员: 指导教师: 日期:

前言 1.题目要求 设计题目:直流电动机测速系统设计 描述:利用单片机设计直流电机测速系统 具体要求:8051单片机作为主控制器、利用红外光传感器设计转速测量、检测直流电机速度,并显示。 元件:STC89C52、晶振(12MHz)、小按键、ST151、数码管以及电阻电容等 2.组内分工 (1)负责软件及仿真调试:主要由完成 (2)负责电路焊接:主要由完成 (3)撰写报告:主要由完成 3.总体设计方案 总体设计方案的硬件部分详细框图如图一所示:

一、转速测量方法 转速是指作圆周运动的物体在单位时间内所转过的圈数,其大小及变化往往意味着机器设备运转的正常与否,因此,转速测量一直是工业领域的一个重要问题。按照不同的理论方法,先后产生过模拟测速法(如离心式转速表) 、同步测速法(如机械式或闪光式频闪测速仪) 以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。本文介绍的采用单片机和光电传感器组成的高精度转速测量系统,其转速测量方法采用的就是电子式定时计数法。 对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。在频率的工程测量中,电子式定时计数测量频率的方法一般有三种: ①测频率法:在一定时间间隔t 内,计数被测信号的重复变化次数N ,则被测信号的频率fx 可表示为 f x =Nt(1) ②测周期法:在被测信号的一个周期内,计数时钟脉冲数m0 ,则被测信号频率fx = fc/ m0 ,其中, fc 为时钟脉冲信号频率。 ③多周期测频法:在被测信号m1 个周期内, 计数时钟脉冲数m2 ,从而得到被测信号频率fx ,则fx 可以表示为fx =m1 fcm2, m1 由测量准确度确定。 电子式定时计数法测量频率时, 其测量准确度主要由两项误差来决定: 一项是时基误差; 另一项是量化±1 误差。当时基误差小于量化±1 误差一个或两个数量级时,这时测量准确度主要由量化±1 误差来确定。对于测频率法,测量相对误差为: Er1 =测量误差值实际测量值×100 % =1N×100 % (2) 由此可见,被测信号频率越高, N 越大, Er1 就越小,所以测频率法适用于高频信号( 高转速信号) 的测量。对于测周期法,测量相对误差为: Er2 =测量误差值实际测量值×100 % =1m0×100 % (3) 对于给定的时钟脉冲fc , 当被测信号频率越低时,m0 越大, Er2 就越小,所以测周期法适用于低频信号( 低转速信号) 的测量。对于多周期测频法,测量相对误差为: Er3 =测量误差值实际测量值100%=1m2×100 % (4) 从上式可知,被测脉冲信号周期数m1 越大, m2 就越大,则测量精度就越高。

相关主题
文本预览
相关文档 最新文档