当前位置:文档之家› 泰康压缩机常见故障分析

泰康压缩机常见故障分析

泰康压缩机常见故障分析
泰康压缩机常见故障分析

法国泰康全封闭压缩机故障简介

时间:2010-12-27 09:03来源:暖通吧作者:泰康压缩机点击:151次

前言虽然在质量方面做了大量工作,但有时法国泰康压缩机由于制造过程也会发生一些故障。本文的目的则是说明一些可用下列主要指导原则来避免或消除的一些特殊问题。虽然这些问

前言

虽然在质量方面做了大量工作,但有时法国泰康压缩机由于制造过程也会发生一些故障。本文的目的则是说明一些可用下列主要指导原则来避免或消除的一些特殊问题。虽然这些问题是对法国泰康压缩机讲的,但在绝大多数情况下,这些问题在无论怎样的工艺,无论怎样的用途和无论在何处使用下都会发生。一般地讲,这些问题可随着冷冻工业发展而解决,而不是仅用某一项复杂工艺就可解决。

故障种类

用户服务部所做出的压缩机故障分析结果如下:

—声称有故障压缩机中有20%实际上是好的,工作正常

—从整机返回的压缩机故障与从销售网络返回的压缩机故障相比较,是有很大不同的

—从销售网络返回的压缩机故障比从整机返回压缩机的故障多3-5倍

—电气故障总和占全部故障的20%

—压缩机缺油(即油位在标准高度50%以下时)故障占全部故障的6%

—压缩机卡死(机械故障)约为全部故障20%

—内部泄漏(阀片或垫片损坏,内排气管破裂等)约为全部故障的8%

—压缩机吸入空气(即吸气管泄漏)约占全部故障的5%

剩下的即是其他故障,如噪声过大,运输或装卸损坏等等。

小结一下,故障可区分如下

— 20% 无故障

— 29% 电器故障

— 6% 缺油

— 20% 卡死

— 5% 吸入空气

— 8% 内部泄漏

— 12% 其他故障

上面这些数字代表一个平均数,对不同的压缩机系列和型号,对不同的用途的压缩机这些数字是不同的。本分析的目的是对上述故障提出一些原因和说明,并对如何使用压缩机使之工作可靠提出解决办法和建议。

I 电器故障

(1) 内部线路起弧

该故障约占电器故障的20%,即占全部故障的6%,该种故障是马达在真空状态下供电或是真空状态下电击的典型结果。在此种情况下,接线柱之间或接线柱与压缩机外壳之间发生火花,也可能在线圈内部发生火花,这称为电晕效应(CORONA EFFECT)因此要大声劝告用户,只能在真空破坏后才能供电。对于电冲击试验也是如此。

为了工艺安全,建议充注冷媒(系统抽空后)并用压力表检查压力,应高于大气压力。事实上,从排气侧(往复压缩机的“高压”侧)或从旋转式压缩机的吸气侧或其他地方(壳体内高压)充注冷媒,冷媒气体不可能有足够的时间使马达区域增压。

绝对不要在真空状态下向压缩机供电。

绝对不要在真空破坏以前施加电冲击。

(2) 副绕组烧毁

该类故障占电器故障(单相马达)的80%,即全部故障的22%。

在大多数情况下,它是由于副绕组通电时间过长超出设计要求(PSC或CSR马达)或是电流过大而引起过热的结果。很困难找到这种故障的根源所在,但是,进行了一些研究计划以找出故障解释。

下列原因可以作为可能的原因:

2-a 接线错误

在大多数情况下,故障发生在装有电压继电器(即CSR马达)的情况下,当然其他类型的马达也有发生。但PTC马达不会发生,因为PTC马达其副绕组是保护的。作为直接后果,起动电容器也损坏。这二种故障(副绕组与起动电容器故障)可能是同时发生的。某种接线错误可能使副绕组在数秒内烧毁,这也包括PSC马达类型(但只有运转电容器)。但是,这种接线错误是可以避免的,只要注意在压缩机起动时间噪声大小。因为接线错误会产生摇摆的噪声。

2-b 继电器安装位置

这种故障仅在压缩机起动时继电器断不开而发生。电流继电器特别是仅在垂直安装位置时才能安全工作。在任何情况下,允许最大安装偏差±15°。如果此偏差超出此限度,继电器打不开,副绕组和起动电容保持通电,那就要烧毁。大多数情况下,继电器放在电器盒内,为此在压缩机起动前要检查安装位置。电压继电器对正确安装位置不太敏感,但是其特性(即释放/吸合)要变化,因此也会发生同样的故障。

2-c 每小时起动次数

压缩机起动时,副绕组通过大电流。通电如太长副绕组会损坏,虽然设计上不允许这样。为此,副绕组不允许保持通电(PSC马达除外),并且在二次起动之间要有足够长的时间以使副绕组冷却下来。作为基本规则,也根据技术的发展,每小时最多的起动次数应小于10次,特殊情况下可允许12次。但是大多数情况下为每小时7-8次。装置的开停比即运行时间与停机时间的比应不超过0.75,以使副绕组有足够时间冷却。显然,连续运转数小时(每天开动一次)是最理想的,这样可保证与经常开停相比有高的压缩机可靠性。有些装置有低压压力表作为监视。在这种情况下,应该切断后重新起用该压力表时应有一段时间延迟。虽然该表不是用作安全装置,特别在冷媒充注量不够时(吸气侧泄漏)要延长时间延迟。压缩机起动延迟时间继电器可以避免这种故障。

2-d 继电器用错

某种继电器仅适用于一种压缩机。因此,它的特性是专用的(吸合/释放)以保证安全起动。每一种马达也专为适合某种继电器特性而设计,以使能够在规定的电压范围内的任何电压都能起动压缩机。大多数继电器看起来是一样的,而且都装在任何压缩机上工作而不会立即发生问题。因此,重要的是要检查压缩机供电电压。继电器的吸合和释放电压和通过继电器电流成正比,因此也与马达的供电电压成正比。人们都不太注意电压波动会影响继电器工况的事实以及这种波动的后果。电压太高会形成副绕组长久通电(继电器不断开)。反之,电压太低会使起动失败,或形成开/停状态。只有制造厂认可的继电器有准许使用。

注:“通用继电器”

修配市场出售的继电器也可能会成功地工作,但随后,它会在使用现场出现故障。除了马达的起动扭矩被限定,形成压缩机起动困难外,PTC型通用继电器有一个再起动的时间延迟(冷却问题),因此形成压缩机处于永久性的非起动状态。

2-e 继电器故障

任何继电器可能在初始阶段发生或在工作一段时间后发生故障。在大多数情况下,故障是与继电器本身的或是放电起弧的机械故障有关的。故障的根源来自副绕组烧毁或起动电容器损坏。此类故障是难于查明的。但大多数情况,有的是此类故障的后果。可以提出的最好忠告是“在任何情况下不要使用先前损坏过的继电器”

备注:对继电器进行试验性机械运行(翻倒方法)是不足证明能够使用的。任何损坏了的继电器必须更换新的继电器。

2-f 电压不对

例:“A”型额定电压为100/115V的继电器通以220伏,压缩机起动以后,如继电器不释放,这样副绕组和起动电容器在过载保护器切断前即通过大电流。

(3) 主绕组烧毁

这类故障约为单相压缩机电器故障的3.5%(按欧洲市场统计比率)。这类故障大多数来源于使用问题,

即不在正常工况下运转。

主要原因有三:

—压缩机选型错误

—冷凝器太小或堵塞(或马达风扇故障)

—冷却压缩机的空气流不够或形成热空气循环

3-a 压缩机选型错误

电动机是设计在规定的蒸发温度区域,为一定的冷媒和规定的电压范围内在最佳效率下工作的。其中任一因素的偏差可能会是决定性的,并形成过热而过载保护器未跳开:即或是在非设计的运转工况下功率不够,或是在周围环境下的热交换不够。压缩机过大,配上一个不能匹配同样冷量的冷凝器也会有问题。因为热交换量增大。最重要的是压缩机冷量必须与冷凝器规格、冷量相匹配。选型错误使系统平衡温度增高4-5K(冷凝温度),因此系统性能的增加只是期望值的60%,如果压缩机设计能有油冷器或用风扇冷却,这种冷却方法必须要使用。

3-b 冷凝器太小或冷凝器堵塞

这二种情况都会使系统在设计范围以外工作,其后果如同上节所述。冷凝器堵塞或风扇马达损坏会使冷凝温度大大增高(也使排气压力大为增高)。但风扇冷却的压缩机冷却或冷却气流却不够,或空气气流温度太高。虽然此时形成异常过热,但过载保护器跳闸却不发生。

3-c 气流不充分或热空气循环

此故障大多数情况是由于设计者疏忽而造成系统设计不佳。压缩机和冷凝器的冷却必须有最佳的气流(在气流组织和气流温度方面)以保证最佳效率。冷凝机组装在一个很小的空间内应保证有充足的流入空气口和同样大小的流入口。在某些情况下,装置本身看起来不错,但对压缩机来说并一定是好,对冷凝器可靠运行来说不一定是好。很多情况下冷凝机组的安装方向并不与空气流入口和流出口方向很好地对准,因此有可能使流入冷凝器的冷空气被同一地方的热空气所加热,这就是空气循环。在装置现场使用中,检查冷凝器流入空气温度,发现某些情况下流入空气温度比大气温度高10K以上,例如大气温度32°C,我们发现吸入冷凝器的空气是44°C(在冷凝器前面10公分处)。在高的环境温度下会发现这样的运转工况,这种工况与装置的受限制的状态有关,发生过载保护器跳开。在这种情况下,维修人员常常作这样的解释:“冷凝器太小”。但他却从来不想到这是“热空气循环”。

对上述所有的原因,主绕组烧毁不是主要的后果,阀片上油结炭或过载保护器跳开都总是要降低压缩机的寿命的。

II 缺油

为进一步研究,只分解了具有50%原油量的压缩机。这类故障占全部故障的6%,但可能在大型压缩机内发生即AG和AN系列(约占全部故障20%)。缺油的后果是压缩机卡死或发生早期磨损。压缩机缺油可以有以下二个原因来解释:

—压缩机回油不好

—压缩机停机期间起泡

(1) 压缩机回油不好

一小部分油与冷媒气混合,并在系统中循环。为避免系统内积存油和保证管道内最大的冷媒循环流速。一般认为,冷媒气质量流量1%以下油气混合物在系统中循环是允许的。例如,1.5HP的压缩机可能有每小时1公斤油的循环,这意味着有1.2倍的油加注量在系统内循环。

压缩机制造厂为获得冷媒与油的良好的互溶性,选定和认证一定的冷冻油。但是在机械设计上必须以最小的冷媒气体流速提供压缩机的良好回油,也就是管路尺寸特别是吸气管路尺寸必须谨慎选择。也就是管路直径大小须在压降和良好回油之间取得平衡。

这里我们建议如下最小冷媒流速:

—对水平管路(以及有坡度的管路)冷媒流速4m/s

—对上升管路冷媒流速8m/s

但最高流速必须小于15m/s以减小压降,避免冷媒流动噪声。

对于小于30米长的管路,无需设置存油弯。

建议安装水平管路在冷媒流动方向有一个每米0.8厘米的下坡度。

(2) 压缩机停机期间起泡现象

压缩机内冷冻油或多或少与冷媒气体之间有互溶性,这种互溶性与压力与温度有关。根据热力学原理,众所周知,一种气体能从系统内最热的地方转移到最冷的地方。情况是停机期间,压缩机是系统内的最冷的机件。因此在油达到完全饱和状态之后,冷媒会沉在压缩机壳体的底部。其后果将是压缩机零件磨损或是卡死。这将在以下进一步分析。压缩机起动时吸入压力下降,使油内的冷媒能够分解出来,或是沉在压缩机壳体底部的冷媒从油中蒸发出来,带出大量的油。此时压缩机壳体很快地被泡沫(油和冷媒混合物)所充满,并通气缸吸入,流出压缩机。全部油量可在数秒内流出压缩机。所以即使系统设计很好,如果压机不能回油,则其机械零件会严重磨损。关于这个问题的进一步的资料见“技术公报NO.10”:“液态冷媒在空调压缩机中的影响”

III 压缩机卡死

这类故障约占全部故障20%。大多数情况下,单相压缩机有这类故障,约占同类故障的40%。对大冷量压缩机而言,此类故障意味着由于电机功率引起的损坏和磨损

主要原因如下:

—液态冷媒转移到压缩机壳体

—在特殊运转情况下缺油

—起泡

—回液

—怀疑系统清洁度

(1) 液态冷媒转移

这是对卡死或机械磨损最通常的原因(见技术公报NO.10)。压缩机停机期间,这种转移总会发生,因为压缩机是系统内的最冷的地方。冷冻油与或多或少的冷媒根据压力与温度关系以及冷媒、冷冻油的性质互相混合。这样,油位就上升。油内冷媒超过饱和,液态冷媒就沉到壳体最下部,因为冷媒与油、冷媒混合物相比较,密度较大。在压缩机起动时,油泵不仅仅抽油,而且抽出液态冷媒,或是油/冷媒混合物,后二不是一种良好的润滑剂,因而形成机械部件的卡住或磨损。发生这种故障时,可以发现液体冷媒界位线。压缩机卡死时,电机绕组浸在液体内,因此过载保护器不会跳开。结果油在表面发生炭化,在壳体表面或是机械部件表面上表现出来。

为避免此类问题,建议如下:

—确保回气过热度,使在任何运转工况下不可能形成异常冷却或安装一个吸气管储液器。

—使用曲轴箱加热器,确保压缩机比系统内其他部件的温度为高。

(2) 缺油

压缩机留有50%的原始加油量,即认为是缺油故障。根据许多压缩机的分解,发现油可能由于短时间内的起泡而被吸出压缩机(特别是短管路系统)。这些油再回到压缩机需要较长的时间,因而引起压缩机磨损。这种现象也可以解释有些分解压缩机的油位超过50%,但比原始油量少,它也出现问题。

(3) 起泡

起泡现象已经解释过了,它表示润滑压缩机的油不够。除此之外,油/冷媒混合物又不是良好的润滑剂。因此机械磨损,有时是活塞/曲轴磨损在分解压缩机时被发现。

注:起泡现象一般在压缩机非常低的噪声情况下发生。因为泡沫在压缩机内部和周围起到一个声屏障的作用。

(4) 回液

起初,很难建立压缩机卡死和回液之间的关系。液态冷媒处于气缸中的前部位置。液击是试图增压液体造成的结果。当活塞处于压缩周期的终点时:会产生存在过量的油(泡沫状态)或过量的液态冷媒(很少可能)。

其后果如下:

—吸气阀的破损

—垫片破损

—润滑不良引起卡死

—多种损坏的组合

注:回液也会发生在排气侧(高压侧),它是由于液态冷媒转移到压缩机高压侧,直到排气阀片而形成的。回液能立即形成压缩机轴承负载,活塞等的负载瞬间增大,因此油膜破坏。在大冷量压缩机(三相电机)中,连杆由于巨大的载荷而断裂。其次,断裂阀片的一部分会冲入系统/压缩机内,形成其后全部故障中的一部分,或使压缩机卡死。

(5) 清洁度

如果微小粒子或粘性粒子附在运动零件上,即会形成压缩机卡死或部件的显著磨损。因此,建议一定要保证系统内任何装配部件以及管路准备的清洁度。特别是部件的打磨(管路、蒸发器)和清刷都很可能引起这类故障。

IV 压缩机运转时内部存在空气

此类故障约占全部故障5%。压缩机或长或短时间内暴露于或多或少温度的大气中,会形成压缩机吸入空气,以后会使压缩机机械或是电器磨损。这种吸入空气原因是由于吸气管路渗漏,系统没有低压控制表和冷却室内无温度报警。

其后果很容易引起压缩机损坏:

—油的变质

—马达和阀片过热

—压缩机内其他部件(油和/或马达)的逐渐损坏

当系统含有空气,与纯冷媒相比,排气压力增高,使排气温度超出压缩机设计许可温度。因而当流过排气阀片时油雾炭化,并在阀座上结炭,破坏阀片密封性能。虽然油是经过压缩机润滑认证的,这种现象还是加速进行。因为油对湿度特别敏感。由于部件和材料对湿度也很敏感,电机绝缘很易被损坏,并且使电机绕组温度超过最大允许值。所有上述故障都是湿度侵入和温度太高的结果。

V 内部泄漏

此类故障约占全部故障8%

主要根源如下:

—阀片或垫片破裂

—内排气管破裂

—阀座上有外来杂质

(1) 阀片或垫片破裂

除去可能存在的最终装配问题以外,大多数情况下这是早先说明的回液的结果。垫片破裂可能是系统回路堵塞而形成,使压力(或与吸气压力的压差)过大。回液是气缸内有油或液态冷媒结果,或是由于起泡而引起的,或是由于从冷凝器到压缩机液态冷媒转移而引起的。另一可能性是在气缸内早先循环时的冷媒发生凝结(对很冷的压缩机)。见技术公报NO.10

(2) 内排气管断裂

低压压缩机(壳体内低压)中内排气管设计或使排气消声器与压缩机壳体相连接。并且该内排气管也是压缩机内部悬挂系统中的一部分,这意味着在运输和装卸过程中以及压缩机每次开/停中处于受应力状态。野蛮运输/装卸情况会造成内部排气管断裂。每小时的过多开/停(大于10次/时)而且停车时间很短会在内排气管与压缩机壳体连接处发生损坏和断裂。有时发现内排气管与悬挂弹簧会一起断裂。

(3) 阀座上有外来杂质

任何进入气缸的杂质最后都到达阀座上。其结果是阀片阀座接触面不能密封,进而形成高低压之间的旁通路。再说一句,为防止此类问题,回路/部件的清洁度是非常重要的。

VI 其他故障

可能发生的其他故障约占全部故障的12%,其中每一种故障则小于全部故障的2%。

最经常发生的如下:

(1) 噪声

仅是噪声过大或是振动过大才认为是此类故障。有些是经过若干周/月运转后才发生噪声过大。许多原因可以解释此类故障,譬如由于液态冷媒存在下运行,机械部件的过度磨损或运输/装卸状态(例如损伤内排气管)。

(2) 压缩机不起动

RSIR(小型压缩机)或PSC(空调压缩机)都会遇到此类故障。

上述二种压缩机的马达对起动时或压差起动时供电电压都很敏感。也有可能会发现由于运输/装卸情况造成的电机定转子气隙偏差。

(3) 压缩机运转而无排气

经过意外伤害/野蛮装卸的压缩机会产生运输而无排气,和外部损伤。只有分解分析后才能得出结论。

(4) 压缩机使供电极与地导通

除上面已经解释的原因外,这类压缩机可能是接线柱之间存在金属异物所致(见真空状态下起动)。

VII 无故障

很奇怪,20%压缩机经分解后发现“完好”。

至今还不能提供充分的解释,只有几个推测可用来了解此类现象:

—起动时电压太低或电压降太大

—电器部件故障

—起动时阀座上有外来杂质,后来却没有了

所有上述一切都说明,必须收集完全和正确的信息资料也包括所有电器部件也要收集以保证进行完全的分析。这些电器部件可能与一个有故障的压缩机在一起使用过,所以可能已经损坏了。

故障分析

2 电器故障占全部故障29%

2 机械故障占全部故障34%

2 其他故障占全部故障17%

2 工作正常占全部故障20%

I 电器故障

1.1接电柱起弧

2 占全部故障6%

2 占全部故障20%

? 真空下起动

? 真空下做高电压试验

1.2 起动绕组烧毁

2 占全部故障20%

2 占全部故障80%

? 接线错误

? 继电器安装位置错误:垂直位置±15°

? 停开比:最大10次/时

工作时间比< 0.75

? 继电器型号用错

? 继电器故障

? 电压不对

1.3主绕组烧毁

2 占电器故障3.5%

? 压缩机型号不适用于系统

? 空气冷却条件不好

? 风扇马达损坏

? 空气循环流动不好

? 冷凝器堵塞(脏)

? 冷凝器太小

II 机械故障

2 占全部故障34%

? 主要原因与下列有关:

? 或是液态冷媒

? 或是系统清洁度

? 或是运输、装卸和停开比过大

II.1 卡死

2 占全部故障26%(占机械故障77%)

? 液体冷媒迁移

? 缺油

? 起泡

? 液击

? 清洁度

II.2 内部弹簧和/或内部排气管破裂

2 野蛮运输或装卸

2 停开比过大

* 最大10次/时

* 一般为6-8

II.3 内部泄漏

2 阀片或垫片破裂

2 清洁度:阀片与阀座之间有杂物

2 油结炭

III 其他故障

2 占全部故障的17%

? 噪声过高

? 不起动

? 管子和/或底脚损坏

? 压缩机曾打过空气:吸气侧泄漏(占全部故障5%)

IV 工作正常

2 占全部故障20%

至今无法解释,但可能与下列有关:

? 电器元件故障

? 电压太低不起动或起动电压降太大

? 由于瞬时至阀片和阀座之间存在杂质引起无排量

? 其他?

结论

对于极少数的质量问题我们不推卸我们的责任(没有任何产品是万无一失的),但我们认为我们有责任告诉我们的用户:我们在努力改进有关用户服务工作。

(责任编辑:admin)

压缩机故障过热分析

压缩机故障分析-―过热 排气温度过高和电机高温表明压缩机存在过热问题。电机高温源于冷却不足、负载过大和电源问题;而排气温度过高的原因在于制冷剂的性质、回气温度、冷却方式、冷凝压力、压缩比等,此外COP对排汽温度有明显影响。过热对压缩机具有很大危害,它不仅会缩短电机寿命、降低润滑油的润滑性能、加速润滑油变质,还会增加能耗,最终会损坏压缩机。 压缩机过热、排气温度 1.引言 压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。然而在实际使用中,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见,并已成为压缩机常见故障之一。 气缸排气温度是判断压缩机是否过热的重要指标之一。由于测量上的困难,实际应用中是通过测量排气管表面的温度(即排气管温度)来判断是否过热。由于润滑油到150°C时会变得很稀薄,在175°C左右将开始分解变质,因此气缸排气温度应该控制在150°C以内,而排气管温度通常比排气温度低10~40°C。因此,如果排气管温度超过135°C,一般认为压缩机已经处于严重过热状态;而如果排气温度低于120°C,压缩机温度正常。空调压缩机和冰箱压缩机的排气温度通常还要低一些。 2.危害 高温对压缩机电机和润滑油具有很大的危害。长时间过热,不仅会降低电机绝缘性能和可*性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。 润滑油碳化后润滑能力大大降低,将引起曲轴、连杆、活塞、活塞环等严重磨损,甚至会出现抱轴、卡缸等堵转现象以及由堵转而引起的连杆折断事故。碳化油还会在阀片和阀板上结碳,引起阀片泄漏和阀片断裂。润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的绝缘性能。酸化润滑油还会引起镀铜现象。 实际中,润滑油碳化总是伴随着酸解,因而磨损和腐蚀总是行影相随。磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。漆包线绝缘层被腐蚀后就可能出现一些微小的裸露点,很容易引起局部放电。如果金属粒形成导电回路,立即会短路或击穿,烧毁电机。 活塞环和活塞磨损后还容易引起回油困难和油压保护器动作。许多半封闭压缩机是*负压回油的,即曲轴箱压力低于电机腔压力时回油单向阀会打开,润滑油就能回到曲轴箱。活塞和活塞环磨损后,高压气体会泄漏到曲轴箱,曲轴箱负压状态受到破环,造成回油困难。这一问题常表现为:压缩机油位不断降低,最后油压保护器动作,压缩机停机,停机后油位会慢慢恢复。再次启动压缩机后,一切正常,但一段时间后上述现象再次出现。 此外,润滑油中混杂着细小的铁屑还会由于抽吸作用而聚集在油泵吸油管的油网外面,造成油网脏堵。 3. 电机过热 电机过热是相对于电机的正常工作温度而言的。电机正常工作温度不能超过其绝缘等级所对应的最高允许温度(见下表)。

空气压缩机常见故障分析报告及处理方法

1、故障原因:缺油 维修方法:首先对空气消声器进行检查,并对其进行清洗,然后观察油位,发现油位低于1/3油标位,马上加注了相同牌号的机油,再启动电源开关,试开,还是有敲击声。后来将运动机构部件的曲轴、连杆、活塞、汽缸一一拆开进行检查,发现是曲轴产生了裂纹,看得出快折断了,想必缺油已经有一段时间了。由于缺油,运动部件发生干摩擦,超负荷运行使各部件不同程度地受到损伤。我们对损伤的各运动部件进行清洗、研磨,严重的更换,再重新安装、试机,敲缸声消失了,排气量也正常了。可见机油是绝对不能缺少的,否则后患无穷。2、故障原因:空气消声滤清器及气阀严密性不好维修方法:排气量的降低还与空气消声滤清器及气阀的严密性有关。必须对空气消声滤清器勤清冼。对气阀板、阀片上的污垢进行清洗是有利于空压机保证正常排气量的。常规下每200小时就应清洗一次滤清器,每500~800小时应清洗一次气阀。 2、故障原因:润滑油质量不好 维修方法:润滑油质量不好会造成活塞环被吸住,从而降低排气量。因此,应选择高质量的润滑油。长期工作后,润滑油会含有杂质、灰尘等,因此还要进行过滤。一般来说,每500~800小时应更换一次机油,并对前一次使用的机油进行过滤。 3、故障原因:排气温度超高 维修方法:排气温度超高也会造成活塞环被吸住,导致排气量降低。只要降低温度,便可以解决问题。这里要注意两点:(1)环境温度不宜偏高,一般不超过40℃。(2)若气阀漏气,排出的高温气体又会返回汽缸。这时我们应仔细检查气阀,研磨阀板或更换阀片,排除漏气现象,这样才有可能解决温度超高问题。压缩机一旦发生故障,对压缩机原理和结构有比较熟悉的了解,那么对故障原因的分析及排除是不困难的。对故障的分析应从最容易、最方便的地方着手。以下介绍几种常见故障的分析及处理方法。 压缩机不加载: 1) 气管路上压力超过额定负荷压力,压力调节器断开。不必采取措施,气管路上的压力低于压力调节器加载(位)压力时,压缩机会自动加载;

往复压缩机常见故障分析及对策

2016届机械制造与自动化专业 毕业生毕业作业 课题名称:往复压缩机常见故障分析及对策学生姓名:张燕鸣 指导教师:卢学玉 江南大学网络教育学院 2016年7月

江南大学网络教育学院 毕业论文(设计)

目录 论文摘要 (4) 关键词 (4) 一.概述 (4) 二.液击过程分析 (4) 三.液击的判断方法 (5) 1.通过声音判断 (5) 2.通过观察进行判断 (5) 四.液击故障的现象 (5) 1.吸气阀片断裂 (5) 2.连杆断裂 (6) 3.电机烧毁 (6) 五.液击的原因分析 (6) 1. 回液 (6) 2.带液启动 (7) 3.冷冻机油太多 (7) 4. 设计时参数选择不当或使用不当 (7) 5.制冷剂充注方式方法不确 (7) 六.预防与处理对策 (7) 1.改善压缩机冷冻机油的回油途径 (8) 2.增加设备,使制冷剂气体和液体分离 (8) 3.设计合理的过度 (8) 4.安装曲轴箱加热器 (8) 5.抽空停机 (8) 七.结束语 (8) 感谢词 (9) 参考文献 (9)

往复压缩机常见故障分析及对策 摘要:往复式压缩机在制冷设备中比较常见,作为制冷系统中核心动力组成,因其所做机械运动是往复运动,在往复运动中压缩机运动部件会因摩擦时间长了而损坏;此外外部因素导致的压缩机发生故障和出现事故也屡见不鲜,主要针对往复式压缩机中的活塞式制冷压缩机最容易发生的故障之一液击进行详细的分析,液击现象出现后应该咋样判断,对液击形成的原因进行了说明,液击发生后应该咋样处理,防范和减少往复式压缩机出现的故障,对往复式压缩机长期的稳定的运行有所借鉴。 关键词:压缩机;制冷;液击;故障原因分析;排除措施 一.概述 往复式压缩机是把一定量的气体压缩后吸入和排出的一种容积式压缩机。它主要由机体、传动机构、压缩机构、润滑机构、冷却系统以及操作控制系统等构成。机体是往复式压缩机的基础部分,主要由机身、中体和曲轴构成;传动机构由离合器、联轴器或带轮以及连杆、曲轴等运动部件组成;压缩机构由气缸、活塞、进气阀门和出气阀门构成;润滑机构由油泵、油过滤器、油冷却器等构成;冷却系统主要有风冷和水冷两种,风冷由散热风扇和中间冷却器组成;水冷由冷凝器、管道阀门等组成;操作控制系统包括各种调节装置。仪器仪表、安全法以及各种保护装置。经过几十年的发展,往复式压缩机制造工艺已经很成熟、制造成本也越来越低,因此在冰箱、空调、冷库等还大量使用各种规格型号的往复式压缩机。因为其制造工艺比较成熟,结构相比螺杆、离心压缩机简单,而且对加工材料和压缩机的加工工艺要求比较低,费用节省,在各个领域得到广泛应用,能适应的压力范围和制冷量比较广,维修方便。但是,往复式压缩机在设备的使用过程中也存在着各种各样问题,如压缩机电机烧毁、压缩机的不正常震动和噪音、发生液击现象使零部件损坏、压缩机排气温度过高、压缩机密封故障导致的漏气、连杆活塞不正常的磨损等故障。这当中液击现象是往复式压缩机中最大的一种故障之一,严重时压缩机可能会受到伤害而损坏。 二.液击过程分析 在压缩机制冷系统中要是冷冻机油或制冷剂添加过多,系统蒸发器的热负荷就会不稳定,膨胀阀的调节的不合理,压缩机的吸气阀如果较快开启,制冷系统在设计的时候及设备安装调试的时候不合理等,都有可能会使压缩机产生液击现象。

空气压缩机常见故障分析及解决措施(20200930091429)

空气压缩机常见故障分析及解决措施 一) 空压机有不正常的响声 二) 1、气缸内有响声 三) ① 气缸内掉入异物或破碎阀片,清除异物或破碎阀片; 四) ② 活塞顶部与气缸盖发生顶碰,应调整间隙; 五) ③ 连杆大头瓦、小头衬套及活塞横孔磨损过度,应更换之; 六) ④ 活塞环过分磨损,工作时在环槽内发生冲击,更换活塞环; 七) ⑤ 气缸内有水。 八) 2、阀内有响声 九) ① 进,排气阀组未压紧,应拧紧阀室方盖紧固螺母:; 十) ② 阀片弹簧损坏,及时更换; 十一) ③ 气阀结合螺栓、螺母松动,拧紧螺母; 十二) ④阀片与阀盖之间间隙过大,调整间隙,必要时更换阀片 十三) 3、曲轴箱内有响声 十四) ① 连杆瓦磨损过度,换新瓦, 十五) ② 连杆螺栓未拧紧,紧固之; 十六) ③ 飞轮未装紧或键配合过松,应装紧, 十七) ④ 主轴承损坏,更换轴承; 十八) ⑤ 曲轴上之挡油圈松脱,换新挡油圈。 十九) ( 二) 润滑系统的故障 二十) 1、击油针折断,应更换; 二十一) 2、油位过高或过低,调整油位至规定范围 二十二) 3、油牌号不对,应按说明书要求换油: 二十三) 4、润滑油太脏,应换洁净的润滑油。 二十四) ( 三) 、各级压力不正常(偏低或偏高) 二十五) 1、进、排气阀的阀片或弹簧损坏,漏气,应更换; 二十六) 2、进、排气阀的阀座上夹有脏物,漏气,清除脏物; 二十七) 3、空气滤清器堵塞严重,应清洗; 二十八)4、气管路有漏气或冷却器漏气,修理之;

二十九)5、活塞环,气缸磨损严重,漏气,应更换。 三十)(四)排气温度或冷却水排水温度过高(指水冷式) 三^一) 1、气缸拉毛使气缸过热,修理气缸,活塞; 三十二)2、排气阀漏气或阀弹簧,阀片损坏、更换损坏零件; 三十三)3、冷却水量不足,加大冷却水流量; 三十四)4、冷却水路堵塞,气缸、气缸盖,冷却器内积垢过厚或堵塞,清除水垢或堵塞物; 三十五)5、进、排气阀结炭,使气体通道不畅,清理结炭。 三十六)(五)排气压力表跳动 三十七)1、进、排气阀片或弹簧滞住,检修; 三十八)2、压力表损坏,更换之; 三十九)3、仪表管路有异物。清理吹除。 四十)(六)排气量减小 四^一) 1、气阀漏气,研磨修理或更换新件; 四十二)2、活塞环、刮油环、气缸磨损过度,更换磨损件; 四十三)3、空气滤清器堵塞,气管路漏气,清除滤网下粉尘,修理管路; 四十四)4、活塞上止点间隙过大,减少气缸垫、降低余隙容积, 四十五)5、空压机转速过低于额定转速,检查线路电压、频率检修或更换电机。 四十六)(七)机械故障 四十七)活塞环卡死,气缸发生干磨,曲轴连杆咬死,滚动轴承损坏、系装配间隙过小或润四十八)滑油太脏、油位过低,应调整装配间隙或更换添加润滑油。

制冷压缩机常见故障-电机烧毁

制冷压缩机常见故障-电机烧毁 【摘要】绕组烧毁是压缩机常见故障。绕组烧毁前的迹象不容易发现,而烧毁后一些导致烧毁的直接原因又被掩盖,给事后分析增加了难度。本文就电机负荷过大,电压异常,散热不足和绕组绝缘破坏几方面进行了分析,揭示了这些因素与电机损坏之间的关系。 【关键词】电机烧毁,绕组烧毁,压缩机故障, 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。 电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转;(2)金属屑引起的绕组短路; (3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6)用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1. 异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸

离心式空气压缩机运行故障分析及处理

离心式空气压缩机运行故障分析及处理 姓名:XXX 部门:XXX 日期:XXX

离心式空气压缩机运行故障分析及处理 国内工业生产已经步入机械自动化时代,机械控制系统是企业内部 生产调度的主要平台,满足了各类机械设备传动作业的控制需求。离心式空气压缩机是现代工业常见的一种设备,利用动能转换原理提升了设备内部的气体压力,维持着内外装置的稳定性运转。受到多方面因素的干扰,离心式空气压缩机故障率持续上升,对机械控制系统运行造成了诸多不便。本文分析了离心式空气压缩机工作原理,对其常见运行故障分析及处理方法进行总结,为机械自动化生产提供可靠的指导。 空气压缩机是能量转换的有效控制设备,通过把电动机运转产生的 机械能变为气体压力能,帮助机械设备内部系统正常地运转动作。伴随着我国空气压缩行业技术的快速发展,空气压缩机在结构布局及功能形式方面有了很大的改进,离心式空气压缩机成为了新一代空气压缩装备。由于石化工业生产对离心式压缩机原理掌握不足,实际生产控制存在着设备故障风险,详细分析离心式压缩机故障成因及处理方法,对机械设备自动化调度具有指导性作用。 1.离心式压缩机原理从不同的角度对压缩机进行划分,其可以划分的类别是多种多样的,如图1,常按照压缩机形式分为固定式、移动式、封闭式等类别,离心式压缩机是最为常用的设备之一。 1.1. 原理。离心式空气压缩机属于速度式压缩机,在用气负荷稳定时离心式空气压缩机工作稳定、可靠。离心式空气压缩机是由叶轮带动气体做高速旋转,使气体产生离心力,由于气体在叶轮里的扩压流动,从而使气体通过叶轮后的流速和压力得到提高,连续地生产出压缩空气。依据这一原理,离心式压缩机在机械传动系统中可提供足够的空气压力,促进

压缩机常见故障及解决方法

压缩机常见故障及解决方法 摘要:在科学技术日益发展的今天,压缩机在各个行业受到广泛应用,尤其是在大型的煤化行业、机械行业等行业中。压缩机状态的好坏直接决定着装置的安全运行。活塞式压缩机在运转过程中会出现烧瓦,注油器不上油及压力偏低气量不足等常见故障。如何迅速准确地判断并及时处理故障,直接影响压缩机的开工率和产品产量。本文主要分析压缩机的基本原理、常见故障及解决方法。 关键词:压缩机,故障,烧瓦,注油,压力偏低 1压缩机分类与简介 随着工业技术的发展。空压机的类别与型号不断更新,按原理和结构不同可以分为:活塞式、回转式,离心式与轴流式四种。 而根据应用不同又可分为不同的类型,如用于制冷的压缩机通常可分为[1]:一、封闭式压缩机:此类型压缩机由于功率小,主要用于冰箱、家用空调等电器中,它由电机(绕组、转子等)与机械(曲轴、活塞等)部分组成一体,置于密封的缸体中。一旦出现故障修复起来比较困难。二、半封闭和开启式压缩机:此类型压缩机由于功率大,广泛用于中央空调、冷库等大型制冷、空调净化等部门,由于电机与机械分为两部分,一经出现故障可便于拆装修理。 2压缩机的常见故障及解决方案 从气流的角度来讲,可能出现的故障是:风压过高或压缩空气温度过高;风量不足或风量过低。前者当保护装置失灵时,有可能引起积炭自燃、压力容器爆炸,而后者直接影响生产。图1为压缩机常见故障树。从压风机结构来看,造成压缩机故障主要有润

滑系统故障、冷却水路故障,压缩空气气路故障和机械故障四类[2]。 下面主要分析以下几点常见故障[3]: 2.1烧瓦 活塞式压缩机运转中出现烧瓦、主轴瓦或连杆大头瓦巴氏合金层烧伤或脱落,使轴瓦温度升高。产生高温并冒烟,巴氏合金熔化。 2.1.1 油温过低引起烧瓦 以往我们注意曲轴箱油温,都是担心油温过高引起烧瓦。比如说明书中注明油温不能超过60℃或7O℃,但确投有油温下限.忽略了油温过低也引起烧瓦。冬季停机之后压缩机曲轴箱油温降低,所以油非常粘稠,开机后发生烧瓦。因此,冬季采用稠度低的机油为好。 图l 压缩机常见故障树 2.1.2 曲轴箱油位过低引起烧瓦 油标下孔堵塞,油位低时不能发现油位下降,曲轴箱油位过低时.油泵断续吸入空

压缩机常见故障及维修办法

压缩机常见故障及维修方法 2007年05月29日星期二19:25 压缩机是空调器制冷系统最重要的部件,由于压缩机不同于冷凝器、蒸发器之类的非运动部件,在系统工作中要高速运转,又是一种机电一体化的高精度装置,所以在实际使用中经常会发生故障。 故障现象: 1、绕组短路、断路和绕组碰机壳接地:这类故障都是由压缩机的电机部分引起的,其故障现象断路时为电源 正常,压缩机不工作;短路和碰壳时通电后保护器动作,或烧保险丝;要注意的是如果绕组匝间轻微短路时,压缩机还是能够工作的,但工作电流很大,压缩机的温度很高,过不了多久,热保护器就会动作。绕组短路和绕组碰机壳接地一般用万用表即可检查;绕组短路特别是轻微短路,由于绕组的电阻本身就很小,所以不容易 判定,应根据测量电流来判定。 2、压缩机抱轴、卡缸:压缩机如果失油或有杂质进入往往会引起抱轴或卡缸,其故障现象为,通电后压缩机 不运转,保护器动作。 3、压缩机吸、排气阀关闭不严:如果压缩机的吸、排气阀门损坏,即使制冷剂充足系统也不能建立高低压或 难以建立合格的高低压,系统不制冷或制冷效果很差。 4、压缩机的震动和噪音:这类问题在维修工作中经常发生,一般对制冷性能并没有多大影响,但会使用户感 觉不正常,引起的原因往往是管道和机壳相碰、压缩机的固定螺栓松动和减震块脱落等。 5、热保护器损坏:热保护器是压缩机的附件,故障一般为断路或动作温度点变小。断路会引起压缩机不工作;动作温度点变小会引起压缩机工作一段时间后就停机并反复如此,该问题往往容易和绕组匝间轻微短路相混淆,区别是热保护器损坏时工作电流是正常的,绕组短路时电流偏大。 维修方法: 压缩机电机部分出现问题、压缩机吸、排气阀关闭不严和热保护器故障应采取更换的办法。 压缩机抱轴、卡缸故障可以先尝试维修,具体方法为以下几种: (1)敲击法: 开机后用木锤敲压缩机下半部,使压缩机内部被卡部件受到震动而运转起来。 (2)电容起动法: 可以用一个电容量比原来更大的电容接入电路启动。 (3)高压启动法: 可以用调压器将电源电压调高后启动。 (4)卸压法: 将系统的制冷剂全部放空后启动。 如果上述方法都不能奏效,就只有更换了。 压缩机的震动和噪音问题处理时,应检查并分开相互碰击的部件;检查并紧固压缩机地脚螺栓,要注意压缩机的地脚螺栓是不能完全拧到底的,设计要求必须保持1mm左右的间隙,维修过程中就有将压缩机地脚螺栓拧死 而引起压缩机剧烈震动的事例;要检查减震块是否脱落、粘帖是否牢*,也可以试着增加减震块,具体位置用尝试法,帖在那里效果好就帖那里。 压缩机故障的判断及处理: 1.如何识别全封闭式压缩机机壳上的3只接线柱?

离心式空气压缩机运行故障分析及处理详细版

文件编号:GD/FS-1032 (操作规程范本系列) 离心式空气压缩机运行故障分析及处理详细版 The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

离心式空气压缩机运行故障分析及 处理详细版 提示语:本操作规程文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 国内工业生产已经步入机械自动化时代,机械控制系统是企业内部生产调度的主要平台,满足了各类机械设备传动作业的控制需求。离心式空气压缩机是现代工业常见的一种设备,利用动能转换原理提升了设备内部的气体压力,维持着内外装置的稳定性运转。受到多方面因素的干扰,离心式空气压缩机故障率持续上升,对机械控制系统运行造成了诸多不便。本文分析了离心式空气压缩机工作原理,对其常见运行故障分析及处理方法进行总结,为机械自动化生产提供可靠的指导。

空气压缩机是能量转换的有效控制设备,通过把电动机运转产生的机械能变为气体压力能,帮助机械设备内部系统正常地运转动作。伴随着我国空气压缩行业技术的快速发展,空气压缩机在结构布局及功能形式方面有了很大的改进,离心式空气压缩机成为了新一代空气压缩装备。由于石化工业生产对离心式压缩机原理掌握不足,实际生产控制存在着设备故障风险,详细分析离心式压缩机故障成因及处理方法,对机械设备自动化调度具有指导性作用。 1.离心式压缩机原理 从不同的角度对压缩机进行划分,其可以划分的类别是多种多样的,如图1,常按照压缩机形式分为固定式、移动式、封闭式等类别,离心式压缩机是最为常用的设备之一。 1.1.原理。离心式空气压缩机属于速度式压缩

压缩机常见三种详细故障分析报告

压缩机常见三种详细故障分析 压缩机常见故障分析(1)——电机烧毁 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转; (2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6) 用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 堵转时的电流(堵转电流)大约是正常运行电流的4-8倍。电机启动瞬间,电流的峰值可接近或达到堵转电流。由于电阻放热量与电流的平方成正比,启动和堵转时的电流会使绕组迅速升温。热保护可以在堵转时保护电极,但一般不会有很快的响应,不能阻止频繁启动等引起的绕组温度变化。频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。

压缩机常见故障分析及处理方案

一、对于活塞式压缩机,什么事余隙容积?由哪几部分组成? 二、活塞式压缩机排气量不足的原因有哪些 (1)气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量。属于正常磨时,需及时更换易损件,如活塞环等。 (2)填料函不严产生漏气使气量降低。其原因首先是填料函 本身制造时不合要求;其次可能是由于在安装时,活塞杆与填料函中心对中不好,产生磨损、拉伤等造成漏气。一般在填料函处加注润滑油,它起润滑、密封、冷却作用。 (3)压缩机吸排气阀的故障对排气量的影响。阀座与阀片间 掉入金属碎片或其它杂物,关闭不严,形成漏气。这不仅影响排气量,而且还影响间级压力和温度的变化。阀座与阀片接触不严形成漏气而影响了排气量,一是制造质量问题,如阀片翘曲等,二是由于阀座与阀片磨损严重而形成漏气。 (4)气阀弹簧力匹配不好。弹力过强会使阀片开启迟缓,弹

力太弱则阀片关闭不及时,这些不仅影响了气量,而且会影响到 功率的增加,以及气阀阀片和弹簧的寿命。同时,也会影响到气 体压力和温度的变化。 (5)压紧气阀的压紧力不当。压紧力小,则要漏气,当然太紧 也不行,会使阀罩变形损坏。一般压紧力p=kD2P2π/4,D 为阀腔直径,P2 为最大气体压力,k>1,一般取1.5~2.5,低压时k=1.5~2,高压时k=1.5~2.5。这样取k 值,实践证明是好的。气阀有故障,阀盖必然发热,同时压力也不正常。 三、活塞式压缩机排气温度高的原因有哪些?处理措施有哪些? 造成活塞压缩机机排气温度过高的原因如下: 1、一级吸气温度高。 2、级间冷却器冷却效率低,致使后一级的吸气温度高。 3、气阀有漏气现象,使排出的高温气体又漏回气缸,重新压缩后,排出温度就更高。 4、由于后一级漏气,本级的压缩比升高,致使排气温度升高。 5、活塞环磨损或质量不好,活塞两侧吸、排气之间相互窜气。 6、气缸水套及冷却水管上有水垢、水污,影响冷却效率。 故障解决方法: 1、在滤清器处搭阴棚或用淋水法降低一级吸气温度,夏天尤其就注意。当吸气温度超过额定值时,不能运转。 2、修理中间冷却器。

制冷系统中压缩机常见故障及原因分析

制冷系统中压缩机常见故障及原因分析 前言 在制冷系统中,压缩机是用来提高气体压力和输送气体的机械。从能量的观点来看,压缩机是属于将原动机的动力能转变为气体压力能的机器。随着科学技术的发展,压力能的应用日益广泛,使得压缩机在国民经济建设的许多部门中成为必不可少的关键设备之一。压缩机在运转过程中,难免会出现一些故障,甚至事故。故障是指压缩机在运行中出现的不正常情况,一经排除压缩机就能恢复正常工作,而事故则是指出现了破坏情况。两者往往是关联的,若碰到故障不及时排除便会造成重大事故。以下就压缩机常见故障及其发生原因进行了分析。一、排气量不足: 排气量不足是与压缩机的设计气量相比而言。主要可从下述几方面考虑: 1 进气滤清器的故障:积垢堵塞,使排气量减少;吸气管太长,管径太小,致使吸气阻力增大影响了气量,要定期清洗滤清器。 2 压缩机转速降低使排气量降低:空气压缩机使用不当,因空气压缩机的排气量是按一定的海拔高度、吸气温度、湿度设计的,当把它使用在超过上述标准的高原上时,吸气压力降低等,排气量必然降低。 3 气缸、活塞、活塞环磨损严重、超差、使有关间隙增大,泄漏量增大,影响到了排气量。属于正常磨时,需及时更换易损件,如活塞环等。属于安装不正确,间隙留得不合适时,应按图纸给予纠正,如无图纸时,可取经验资料,对于活塞与气缸之间沿圆周的间隙,如为铸铁活塞时,间隙值为气缸直径的0.06/100~0.09/100;对于铝合金活塞,间隙为气径直径的0.12/100~0.18/100;钢活塞可取铝合金活塞的较小值。 4 填料函不严产生漏气使气量降低。其原因首先是填料函本身制造时不合要求;其次可能是由于在安装时,活塞杆与填料函中心对中不好,产生磨损、拉伤等造成漏气;一般在填料函处加注润滑油,它起润滑、密封、冷却作用。 5 压缩机吸、排气阀的故障对排气量的影响。阀座与阀片间掉入金属碎片或其它杂物,关闭不严,形成漏气。这不仅影响排气量,而且还影响间级压力和温度的变化;阀座与阀片接触不严形成漏气而影响了排气量,一个是制造质量问题,如阀片翘曲等,第二是由于阀座与阀片磨损严重而形成漏气。 6 气阀弹簧力与气体力匹配的不好。弹力过强则使阀片开启迟缓,弹力太弱则阀片关闭不及时,这些不仅影响了气量,而且会影响到功率的增加,以及气阀阀片、弹簧的寿命。同时,也会影响到气体压力和温度的变化。 7 压紧气阀的压紧力不当。压紧力小,则要漏气,当然太紧也不行,会使阀罩变形、损坏,一般压紧力可用下式计算:p=kπ/4 D2P2,D为阀腔直径,P2

(完整版)制冷压缩机的故障排除与处理

制冷压缩机的故障排除与处理 ①【制冷压缩机工作原理】 * 制冷压缩机是空调系统的核心部件他的作用是 l、从蒸发器中吸收蒸气,以保证蒸发器内一定的蒸发压力; 2、提高压力(压缩),以创造在较高温度下冷凝的条件; 3、输送制冷剂,使制冷剂完成制冷循环。 * 压缩机的种类很多,根据工作原理的不同,空调压缩机可以分为定排量压缩机和变排量压缩机。 l、定排量压缩机的排气量是随着发动机的转速的提高而成比例提高的,它不能根据制冷的需求而自动改变功率输,而且对发动机油耗的影响比较大。它的控制一般通过采集蒸发器出风口的温度信号来实现,当温度达到设定的温度,压缩机停止工作;当温度升高后,压缩机开始T二作。定排量压缩机也受空调系统压力的控制,当管路内压力过高时,压缩机停止工作。 2、变排量压缩机可以根据设定的温度自动调节功率输出。空调控制系统不采集蒸发器m风口的温度信号,而是根据空调管路内压力变化信号来控制压缩机的压缩比从而自动调节m 风口温度。在制冷的全过程中,压缩机始终是工作的,制冷强度的调节完全依赖装在压缩机内部的压力调节阀来控制。当空调管路内高压端压力过高时,压力调节阀缩短压缩机内活塞行程以减小压缩比,这样就会降低制冷

强度。当高压端压力下降到一定程度,低压端压力上升到一定程度时,压力调节阀则增大活塞行程以提高制冷强度。 ②【制冷压缩机的故障与分析制冷系统中压缩机常见故障及原因分析】 在制冷系统中,压缩机是用来提高气体压力和输送气体的机械。从能量方面分析,压缩机是将动力能转换为压力能的设备。压缩机在运转中,难免会出现故障。以下就压缩机常见故障及其发生原因进行了分析。 ㈠. 1吸气温度不正常 压缩机吸气温度是指从压缩机吸气截止阀前面的温度计读出的制冷剂温度。为了保证压缩机的安全运转,防止产生液击现象,要求吸气温度比蒸发温度高一点,即应具有一定的过热度。过热度的大小可通过调节膨胀阀开启度来实现。 应避免吸气温度过高或过低。吸气温度过高,即过热度过大,将导致压缩机排气温度升高。吸气温度过低,则说明制冷剂在蒸发器中蒸发不完全,既降低了蒸发器换热效率,湿蒸汽的吸人又会形成压缩机液击。吸气温度正常情况下应比蒸发温度高5一10℃. ㈠. 2吸气温度过高 正常情况下压缩机缸盖应是半边凉、半边热。若吸气温度过高则缸盖全部发热。如果吸气温度高于正常值,排气温度也会相应升高。 吸气温度过高的原因主要有:

空气压缩机常见故障分析及解决措施.doc

一) 空压机有不正常的响声 1、气缸内有响声 ① 气缸内掉入异物或破碎阀片,清除异物或破碎阀片; ② 活塞顶部与气缸盖发生顶碰,应调整间隙; ③ 连杆大头瓦、小头衬套及活塞横孔磨损过度,应更换之; ④ 活塞环过分磨损,工作时在环槽内发生冲击,更换活塞环;; ⑤ 气缸内有水。 2、阀内有响声 ① 进,排气阀组未压紧,应拧紧阀室方盖紧固螺母:; ② 阀片弹簧损坏,及时更换; ③ 气阀结合螺栓、螺母松动,拧紧螺母; ④ 阀片与阀盖之间间隙过大,调整间隙,必要时更换阀片 3、曲轴箱内有响声 ① 连杆瓦磨损过度,换新瓦, ② 连杆螺栓未拧紧,紧固之; ③ 飞轮未装紧或键配合过松,应装紧, ④ 主轴承损坏,更换轴承; ⑤ 曲轴上之挡油圈松脱,换新挡油圈。 ( 二 ) 润滑系统的故障 1、击油针折断,应更换; 2、油位过高或过低,调整油位至规定范围 3、油牌号不对,应按说明书要求换油: 4、润滑油太脏,应换洁净的润滑油。 ( 三 ) 、各级压力不正常( 偏低或偏高 ) 1、进、排气阀的阀片或弹簧损坏,漏气,应更换; 2、进、排气阀的阀座上夹有脏物,漏气,清除脏物; 3、空气滤清器堵塞严重,应清洗; 4、气管路有漏气或冷却器漏气,修理之;

5、活塞环,气缸磨损严重,漏气,应更换。 ( 四 ) 排气温度或冷却水排水温度过高( 指水冷式 ) 1、气缸拉毛使气缸过热,修理气缸,活塞; 2、排气阀漏气或阀弹簧,阀片损坏、更换损坏零件; 3、冷却水量不足,加大冷却水流量; 4、冷却水路堵塞,气缸、气缸盖,冷却器内积垢过厚或堵塞,清除水垢或堵塞物; 5、进、排气阀结炭,使气体通道不畅,清理结炭。 ( 五 ) 排气压力表跳动 1、进、排气阀片或弹簧滞住,检修; 2、压力表损坏,更换之; 3、仪表管路有异物。清理吹除。 ( 六 ) 排气量减小 1、气阀漏气,研磨修理或更换新件; 2、活塞环、刮油环、气缸磨损过度,更换磨损件; 3、空气滤清器堵塞,气管路漏气,清除滤网下粉尘,修理管路; 4、活塞上止点间隙过大,减少气缸垫、降低余隙容积, 5、空压机转速过低于额定转速,检查线路电压、频率检修或更换电机。 (七)机械故障 活塞环卡死,气缸发生干磨,曲轴连杆咬死,滚动轴承损坏、系装配间隙过小或润 滑油太脏、油位过低,应调整装配间隙或更换添加润滑油。 空气压缩机的故障及排除方法 故障现 故障原因处理方法 象 1、气压表失灵。1、观察气压表,如果指示压力不足,可让发动机中速运转数分 2、空气压缩机与发动机之间的传钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声 动皮带过松打滑或空气压缩机到很强烈,说明气压表损坏,这时应修复气压表。 储气罐之间的管路破裂或接头漏2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带 气。是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有

空压机常见故障及处理方法

本文详细分析了空气压缩机的常见故障现象、故障原因及处理方法。如,在发动机运转,空气压缩机向储气罐充气的情况下,气压表指示气压达不到起步压力值(空气压力不足)。出现这种情况的原因可能是: 1、气压表失灵。 2、空气压缩机与发动机之间的传动皮带过松打滑或空气压缩机到储气罐之间的管路破裂或接头漏气。 3、油水分离器、管路或空气滤清器沉积物过多而堵塞。 4、空气压缩机排气阀片密封不严,弹簧过软或折断,空气压缩机缸盖螺栓松动、砂眼和气缸盖衬垫冲坏而漏气。 5、空气压缩机缸套与活塞及活塞环磨损过甚而漏气。 那么相对应的处理方法是: 1、观察气压表,如果指示压力不足,可让发动机中速运转数分钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声很强烈,说明气压表损坏,这时应修复气压表。 2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有松动、破裂或漏气处。 3、如果空气压缩机不向储气罐充气,检查油水分离器和空气滤清器及管路内是否污物过多而堵塞,如果是堵塞,应清除污物。 4、经过上述检查,如果还找不到故障原因,则应进一步检查空气压缩机的排气阀是否漏气,弹簧是否过软或折断,气缸盖有无砂眼、衬垫是否损坏,根据所查找的故障更换或修复损坏零件。 5、检查空气压缩机缸套、活塞环是否过度磨损。 6、检查并调整卸荷阀的安装方向与标注(箭头)方向是否一致。 具体的各类空气压缩机的故障及排除方法详见下表1——1。 表1——1 空气压缩机的故障及排除方法 故障现象故障原因处理方法 空气压缩机空气压力不足 1、气压表失灵。 2、空气压缩机与发动机之间的传动皮带过松打滑或空气压缩机到储气罐之间的管路破裂或接头漏气。 3、油水分离器、管路或空气滤清器沉积物过多而堵塞。 4、空气压缩机排气阀片密封不严,弹簧过软或折断,空气压缩机缸盖螺栓松动、砂眼和气缸盖衬垫冲坏而漏气。 5、空气压缩机缸套与活塞及活塞环磨损过甚而漏气。 1、观察气压表,如果指示压力不足,可让发动机中速运转数分钟,压力仍不见上升或上升缓慢,当踏下制动踏板时,放气声很强烈,说明气压表损坏,这时应修复气压表。 2、如果上述试验无放气声或放气声很小,就检查空气压缩机皮带是否过松,从空气压缩机到储气罐、到控制阀进气管、接头是否有松动、破裂或漏气处。

压缩机常见故障分析

姓名:张少朋班级:过控09-1 班 学号:06092877

压缩机常见故障分析 压缩机常见故障分析(1)——电机烧毁电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。 电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转;(2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6)用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加, 以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大, 是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 2.金属屑引起的短路 绕组中夹杂的金属屑是短路和接地绝缘值低的罪魁祸首。压缩机运转时的正常振动,以及每次启动时绕组受电磁力作用而扭动,都会促使夹杂于绕组间的金属屑与绕组漆包线之间的相对运动和摩擦。棱角锐利的金属屑会划伤漆包线绝缘层,引起短路。 金属屑的来源包括施工时留下的铜管屑,焊渣,压缩机内部磨损和零部件损坏(比如阀片破碎)时掉下的金属屑等。对于全封闭压缩机(包括全封闭涡旋压缩机),这些金属屑或碎粒会落在绕组上。对于半封闭压缩机,有些颗粒会随气体和润滑油在系统中流动,最后由于磁性聚集在绕组中;而有些金属屑(比如轴承磨损以及电机转子与定子磨损(扫膛)时产生的)会直接落在绕组上。绕组中聚集了金属屑后,发生短路只是一个时间问题。 3.接触器问题 接触器是电机控制回路中重要部件之一,选型不合理可以毁坏最好的压缩机。按负载正确选择接触器是极其重要的。 接触器必须能满足苛刻的条件,如快速循环,持续超载和低电压。它们必须有足够大的面积以散发负载电流所产生的热量,触点材料的选择必须在启动或堵转等

双螺杆式空气压缩机超温故障原因分析

双螺杆式空气压缩机超温故障原因分析 https://www.doczj.com/doc/422603253.html,中国二手设备网2009-3-27 文字选择:大中小 摘要:以GA25OW-8.5机型为例,对润滑系统及油路元件、冷却系统、空气吸程和排程及控制管路元件等导致双螺杆式空气压缩机超温故障的原因进行分析,并提出相应的解决办法及预防措施。 设备管理,设备维修,检测诊断0uY中国设备管理网 https://www.doczj.com/doc/422603253.html,3ZY 关键词:双螺杆式空气压缩机超温故障润滑冷却系统元件分析 设备管理,设备维修,检测诊断0uY中国设备管理网 https://www.doczj.com/doc/422603253.html,3ZY 双螺杆式空气压缩机具有极其优越而可靠的性能,振动小、噪音低、效率高、无易损件,且运行管理费用较低,在同等排气压力下,具有活塞式空气压缩机无可比拟的性能优势。但我们在运行中曾多次发生超温故障,现以GA25OW-8.5机型(工作原理见系统流程图)为例,分析双螺杆式空气压缩机的超温故障原因,并提出解决办法和预防措施。正常情况下,螺杆主机的排气温度应在75-85℃之间,排气温度低于压力露点时会产生结露现象,使系统内出现较多的水分,润滑油乳化,影响润滑效果;排气温度过高,则会对许多元件造成损坏,严重的还会烧毁主机。螺杆式空压机都设计有超高温保护功能,一旦排气温度超过110℃就会报警,温度高至120℃时自动停机。图示机型中,温度传感器测得机头排气温度超出110℃时发出报警,同时在仪表盘上查得报警温度及报警时间。

设备管理,设备维修,检测诊断0uY中国设备管理网 https://www.doczj.com/doc/422603253.html,3ZY 双螺杆式空气压缩机的降温措施是将润滑油从机体的下端及两端喷入压缩室,与吸入的空气一同参与压缩后,从主机的底部排到油气分离器。它除了对螺杆及轴承、齿轮等机件进行润滑外,同时还将大量的热带出。但热量还没有被转移时,在下次喷油动作之前,还需经过油冷却器冷却后才能完成降温。因此,超温故障的发生,多与润滑和冷却系统的异常有关。下面逐一分析。 设备管理,设备维修,检测诊断0uY中国设备管理网 https://www.doczj.com/doc/422603253.html,3ZY 一、润滑系统及油路元件 设备管理,设备维修,检测诊断0uY中国设备管理网 https://www.doczj.com/doc/422603253.html,3ZY 润滑油量不足或油路元件工作异常都会使油温升高,从而引起超温故障。 设备管理,设备维修,检测诊断0uY中国设备管理网 https://www.doczj.com/doc/422603253.html,3ZY (一)系统缺油。可检查油气分离器油位,在停机泄压后,润滑油处于静态时,油位应处于高油位标志(黄色区域内),在设备运行过程中,油位不能低于低油位标志(红色区域),应处于正常油位标志(绿色区域内)。如发现油量不足或观察不到油位时,应立即停车加油。 设备管理,设备维修,检测诊断0uY中国设备管理网 https://www.doczj.com/doc/422603253.html,3ZY (二)供油不足。首先检查油过滤器、油气分离器是否堵塞。油气分离器为多层玻璃纤维制成,过滤精度可达0.1 um,作用是将压缩空气中的油雾过滤下来,防止润滑油流失。环境较差,粉尘较多时,应适当缩短更换周期。图示机型中,油气分离器设计有压差开关及报警功能(压差高至0.08MPa时报警),可通过检测油气分离器的压差自动判断油气分离器是否堵塞,如是,则应及时更换油气分离器。油过滤器一般情况下2000小时应更换。 设备管理,设备维修,检测诊断0uY中国设备管理网 https://www.doczj.com/doc/422603253.html,3ZY

相关主题
文本预览
相关文档 最新文档