当前位置:文档之家› 多项式除法及高次方程的解教程文件

多项式除法及高次方程的解教程文件

多项式除法及高次方程的解教程文件
多项式除法及高次方程的解教程文件

多项式除法及高次方

程的解

精品文档

收集于网络,如有侵权请联系管理员删除 例1 计算()

3(27)(2)x x x +-÷-

例2 用综合除法计算

(1);

(2)

例3、求324274x x x -+-被下列各式所除得的余数 1)1x - 2)3x + 3)32x +

例4、若3235x hx x k +-+恰好能被3x +整除,被1x +除余数为4,求,h k ,并将多项式3235x hx x k +-+进行因式分解。

例5、因式分解3244x x x --+

例6、解方程32211760x x x +--=

高次方程及解法

高次方程及解法 江苏省通州高级中学 徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则 -1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者( x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), (x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根 -1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷ (x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出 Q(P、Q 是因式P x-Q,即方程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P 互质整数),那么,P一定是首项系数a n 的约数,Q一定是常数项 a0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的

第三讲 简高次方程的解法

第三讲简 易高次方程的解法 在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程 x3-2x2-4x+8=0. 解原方程可变形为 x2(x-2)-4(x-2)=0, (x-2)(x2-4)=0, (x-2)2(x+2)=0. 所以 x1=x2=2,x3=-2. 说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样

=0可化为 bkx3+bx2+dkx+d=0, 即(kx+1)(bx2+d)=0. 方程ax4+bx3+cx+d=0也可以用类似方法处理. 例2 解方程 (x-2)(x+1)(x+4)(x+7)=19. 解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得 (x2+5x-14)(x2+5x+4)=19. 设 则 (y-9)(y+9)=19, 即y2-81=19. 说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之. 例3 解方程 (6x+7)2(3x+4)(x+1)=6. 解我们注意到 2(3x+4)=6x+8=(6x+7)+1, 6(x+1)=6x+6=(6x+7)-1, 所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令 y=6x+7,① 由(6x+7)2(3x+4)(x+1)=6得 (6x+7)2(6x+8)(6x+6)=6×12, 即 y2(y+1)(y-1)=72, y4-y2-72=0,

高次方程求根公式的故事

高次方程求根公式的故事 1545年意大利学者卡丹将一元三次方程ax3 +bx2+cx+d=0的求根公式公开发表,后来人们就把它叫做“卡丹公式(也有人译作“卡尔丹公式”)。事实上,发现公式的人并不是卡丹本人,而是塔尔塔利亚。 塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。 后来,意大利医生兼数学家卡丹请求塔尔塔利亚把解方程的方法告诉他,但遭到了拒绝。尽管卡丹千方百计地想探听塔尔塔利亚的秘密,但是在很长时间中塔尔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且说要推荐他去当西班牙炮兵顾问,还发誓对此保守秘密,于是塔尔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 六年后,卡丹不顾原来的信约,在他的著作中将经过改进的三次方程的解法公开发表。他在书中写道:“这一解法来自于一位最值得尊敬的朋友——布里西亚的塔尔塔利亚。塔尔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为“卡丹公式”,而塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。 卡丹没有遵守誓言,因而受到塔尔塔利亚及许多文献资料的指责。但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔尔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔尔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程根式解法的进程。 一元三次方程应有三个根。塔尔塔利亚公式给出的只是一个实根。又过了大

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

一元高次方程的求解

一元高次方程 一元三次方程求解 320x ax bx c +++= 其中,,a b c 是任意复数 ② 若令3 a x y =- ,则三次方程简化为 3 0y py q ++= ③ 其中33a p b =-,3 2327 ab a q c =-+ , 设123,,y y y 表示简化方程③的根,则据根与方程系数的关系,得1230y y y ++=。 若令3242712u p q v ?=--? ?=-??,2 11232 2123 z y v y vy z y vy v y ?=++??=++??。 对于适当确定的立方根,卡当公式是1z = 2z = 求解线性方程组123212312 12320y y y y v y vy z y vy v y z ++=??++=??++=?,得到11221 21212 3121() 31()31()3y z z y v z v z y v z v z ----?=+?? ?=+???=+?? , 于是,原三次方程的三个根为1y = 2y ω= ,3y ω= 其中23 427 q p ?=+ ,12ω=- (i =。 C 、一元四次方程求解 3. x 4 +bx 3+cx 2+dx+e =0. 设方程为x 4 +bx 3 +cx 2 +dx+e =0. (4)

移项,得x 4+bx 3=-cx 2-dx -e , 右边为x 的二次三项式,若判别式为0,则可配成x 的完全平方. 解这个三次方程,设它的一个根为y 0,代入(5),由于两边都是x 的完全平方形式,取平方根,即得 解这两个关于x 的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的. 高中阶段对于三次四次方程的求解很少涉及,我们遇到的一般是比较有规律的高次方程。当高次不等式 数学家们当然应当给出完美的理论来解决高次方程的求解问题。有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 1 01100,0,n n n n a x a x a x a a --++???++=≠ 而1 011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a

高次方程及解法

高次方程及解法 江苏省通州高级中学徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则-1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者(x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1 解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), (x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根-1”,即方程中含有因式 ∴(x3+3x2-6x-8)÷(x+1)=x2+2x-8,对一元二次方程(x+1), x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出 Q(P、Q 是因式P x-Q,即方程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P 互质整数),那么,P一定是首项系数a n 的约数,Q一定是常数项a0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的高次方程,直接列出常数项所有约数,代入原方程逐一验算,使方程

任意高次方程求解方法

任意高次方程求解方法 对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理。但经常会遇到高次方程的问题,如何通过一种简便的方法快速得到高次方程的解,成为一个迫切的需求。本人发现了数列与高次方程的关系,可以通过数列与高次方程的关系可以得到高次方程的一个解。这种方法适用于任意高次有解的方程。任一高次方程: 可以变化为: 以上方程可以产生一个数列,通过数列前后项相除可以得到方程的近似解。 以下为求解结论: 二次方程: 所对应的数列为:方程有解的情况下对应的一个解为: 三次方程:所对应的数列为: 方程有解的情况下对应的一个解为: ???+?????+?????+?+??+?=0????+??????+??????+?+???=1 ????+???= 1 ???=? ??=???=??????+?????? ?=lim ?→?(??????) 0

依次类推 n次方程:所对应的数列为:方程有解的情况下对应的一个解为: 以上求解的方法基本为,将通用方程转化为数列对应方程,再由方程产生一个对应的数列,数列前项除后项可以得到方程的近似解,数列的项越靠后,这个近似解不断逼近方程的解.当迭代次数m趋向于无穷大时,这个值为方程的一个解,这个解大于0小于1.当方程无解时,方程对应的数列会循环或前后项相除的结果比较离散,不会逼近一个值. 以上的求解方法可以通过Execl去验算,目前只是发现了这个现象还没有很好证明,至于方程是否有解,也只能从演算的结果去判断。有兴趣的朋友可以一起(159探5246讨5840)。 但在实际应用中,迭代次数m取一定的值就可以得到方程的近似解,在要求不高时,可以很快得到方程的一以下为一个五次的方程,得到对应的数列,数列的前五位全选1,数列生成到12位。下面为数列前项除以后项得到的结果,发现这个结果是不断逼近方程的解X,精确到小数点后面五位为X=0.12497。再向后迭代会产生更精确的解。????+??????+??????+?+???=1 ??=???=?……??=?? ?=??????+????????+?+?????? ?=lim ?→?(??????)0

一元高次方程的求解

一元高次方程的求解 求解一元高次方程曾是数学史上的难题。让你去求解一个一元一次,二次方程方程也许是简单的,但三次,四次或者更高次的方程呢?为了解决这一问题,数学家们奋斗了几个世纪。让我们一起来看一下数学努力的成果。 n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式。如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一个根,或称为n 次多项式()f x 的一个根。 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根。 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算。这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积。” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法。 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++=① 的求解公式,如二次方程20(0)ax bx c a ++=≠②的求根公式那样。众所周知,方程②的解早在古代的巴比伦、埃及、中国、印度、希腊等国的数学著作中,都有不同的表述方式。一个n 次方程①的求根公式是指,①的根通过其系数经由加、减、乘、除以及乘方、开方的表示式,也称这种情况为方程有根式解。

高次方程及解法

高次方程及解法 ?????????江苏省通州高级中学?徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则-1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者(x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), Θ(x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根-1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷(x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程 x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常

元高次方程求解方法

一元高次方程的漫漫求解路 若有人问你:“你会解一元二次方程吗?”你会很轻松地告诉他:会的,而且非常熟练!任给一个一元二次方程 20,0,ax bx c a ++=≠ ① 由韦达定理,①的根可以表示为x =. 若进一步问你,会解一元三次方程或更高次数的方程吗?你可能要犹豫一会儿说,只会一些简单的方程.于是你就会想:一元三次方程或更高次数的方程,是否也像一元二次方程的情形一样,有一个公式,它可以用方程的系数,经过反复使用加减乘除和开方运算,把方程的根表示出来? 数学家们当然应当给出完美的理论来解决高次方程的求解问题.有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠.当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式.如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一 个根,或称为n 次多项式()f x 的一个根. 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根. 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算.这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积.” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法. 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++= ② 的求解公式,如二次方程①的求根公式那样.众所周知,方程①的解早在古代的巴比伦、埃

高次方程及解法

高次方程及解法 ?????????江苏省通州高级中学?徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程 求根。“± 解: 1-6=-5-6x-8)÷ x4+2x3-9x2-2x+8=0可分解因式为:(x-1)(x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1; 当(x+1)=0时,有x2=-1;当(x-2)=0时,有x3=2;当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项” 系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出因式P x-Q,即方 Q(P、Q是互质整数),那么,P一定程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P

是首项系数a n 的约数,Q 一定是常数项a 0的约数”,我们用“常数项约数”很快找到求 解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的高次方程,直接列出常数项所有约数,代入原方程逐一验算,使方程值为零的约数,就是方程的根。依次用原方程除以带根的因式,逐次降次,直至将高次方程降为二次或一次方程求 解。 432(x+3) +x+1 解:3±1,2±,根据“±1判根法”排除±1,这时,代人原方程验算的只能是P Q =32,或P Q =-32 f (32)=3?=??? ?????-?+??? ???-??? ??3232332323223??? ??-+-22278278=3?0=0 所以原方程中有因式(3X -2)。 (3x 3-2x 2+9x-6)÷(3x-2)=x 2+3 解方程式x 2+3=0x=23i ±, x 1= 23i ,x 2=-23i

一元高次方程求解方法

一元高次方程的漫漫求解路 若有人问你:“你会解一元二次方程吗?”你会很轻松地告诉他:会的,而且非常熟练!任给一个一元二次方程 2 0,0,ax bx c a ++=≠ ① 由韦达定理,①的根可以表示为2b x a -±=。 若进一步问你,会解一元三次方程或更高次数的方程吗?你可能要犹豫一会儿说,只会一些简单的方程。于是你就会想:一元三次方程或更高次数的方程,是否也像一元二次方程的情形一样,有一个公式,它可以用方程的系数,经过反复使用加减乘除和开方运算,把方程的根表示出来? 数学家们当然应当给出完美的理论来解决高次方程的求解问题。有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式。如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一 个根,或称为n 次多项式()f x 的一个根。 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根。 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算。这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积。” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法。 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++= ②

高中数学教学论文 《高次方程的解法》

高次方程的解法 有很多中学生一谈起高次方程,就好比见天书一样。其实高次方程没什么难的,学数学应该学会举一反三。我们知道初中学了一元二次方程,有些学生只把二次方程的求根公式记住了,但这个求根公式怎么推导的呢,他没有理解。其实学数学应该学会理解,注重理解,而不在于死记公式。比如说我们学了一元二次方程,重要的不是这个求根公式,而是一元二次方程有几种解法。 一元二次方程有以下几种解法: 1、配方法(二次方程是配平方法):这一方法虽然是很好理解的,但我通过在网上了解有很多学生对一方法根本就不懂。因为我问到他们时,他们绝大多数都是只会这个求根公式,一问起是怎么推导的,他们根本就不知道。其实二次方程的求根公式就是用配方法导出来的,配方法是解方程的里面的,尤其是解高次方程里面的最重要的一个方法。如果能够彻底理解这一方法,不仅是二次方程这块好掌握,对以后解高次方程也有很大帮助。 比如说对于二次方程ax2+bx+c=0,我们知道可用配平方(完全平方公式)法配成缺少一次项系数的二次方程,即配成关于x的一次代数式的完全平方的行式,这样就可以通过直接开平方法解出此方程。那么二次方程我们能用配方法求解,我们是不是就考虑举一反三,三次方程ax3+bx2+cx+d=0是不是也可以采取配方来解,当然对于三次方程就应该是配立方法了。通过研究对于某些特殊的三次方程是可以通过配立方法来求解的,为什么说是要特殊的三次方程呢,因为三次方程和二次方程不一样,它有三个带未知数x的项,这样用配立方法化把二次项系数去掉的同时,不一定一次项系数也同时去掉。所以对于某特殊的三次方程也适用于配方法的。比如说x3+6x2+12x+9=0,通过配立方法,可以化成完全立方的形式(x+2)3+1=0,这样就可以解得该方程有一实根X=-3,所以我们学了二次方程的配方法后,可以把这种方法推广到三次方程,甚至更高次数的方程上(例如某些四次方程可以通过配四次方法来解……)。所以如果能够举一反三,学了二次方程以后。对于某些特殊的高次方程也应该会解。 2、因式分解法:这种方法适合一些根为整数的方程。可以解一些特殊的二次方程。比如说方程x2+x-2=0,可以分解因式为(x+2)(x-1)=0,那可以解得X1=-2,X2=1。同样我们应该考虑二次以上次数的方程也有可能适用此法。比如说一元三次方程x3+18x2+72x+64=0,仔细观察这个方程,发现该方程的三次项和常数项可以组合,用立方和公式公解,18x2+72x 这一部分可以提取公因式x,那么这两个代数式分解之后有公因式(x+4),那么又可以提取公因式(x+4),从而求出该一元三次方程的根。 综上所述,二次方程的某些方法,是可以推广到某些特殊的高次方程上面的。学了二次方程,如果会举一反三,对某些高次方程应该轻而易举就会解出来的。 其实不论二次方程的配平方法或者是因式分解法,其主旨思想都是降次,把二次降为一次就解出来了。实际上解高次方程的主旨思想也是降次,如果是三次的就想办法降为一次的或两次的。关键是怎么降次,降次的方法,下面通过举例说一下某些特殊高次方程的几种解法。 1、换元法: 例如四次方程(x+1)(x+2)(x+3)(x+4)+1=0,可以分成 (x+2)(x+3)和(x+1) (x+4)两个因式, 然后这两个因式分别乘出,得到 (x2+5x+6)(x2+5x+4)+1=0, 设x2+5x=y,代入方程,得:(y+6)(y+4)+1=0,

高次方程解法

高次方程解法 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则 -1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者( x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), (x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根 -1”,即方程中含有因 ∴(x3+3x2-6x-8)÷ (x+1)=x2+2x-8,对一元二次方式(x+1), ∴原高次方程x4+2x3-9x2-2x+8=0程x2+2x-8=0有(x+4)(x-2)=0, 可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出 Q(P、Q 是因式P x-Q,即方程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P 互质整数),那么,P一定是首项系数a n 的约数,Q一定是常数项 a0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的高次方程,直接列出常数项所有约数,代入原方程逐一验算,使方程

简易高次方程的解法

在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程 x3-2x2-4x+8=0. 解原方程可变形为 x2(x-2)-4(x-2)=0, (x-2)(x2-4)=0, (x-2)2(x+2)=0. 所以 x1=x2=2,x3=-2. 说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样 =0可化为 bkx3+bx2+dkx+d=0, 即 (kx+1)(bx2+d)=0. 方程ax4+bx3+cx+d=0也可以用类似方法处理. 例2 解方程 (x-2)(x+1)(x+4)(x+7)=19. 解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得 (x2+5x-14)(x2+5x+4)=19. 设 则 (y-9)(y+9)=19, 即y2-81=19. 说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之. 例3 解方程 (6x+7)2(3x+4)(x+1)=6. 解我们注意到 2(3x+4)=6x+8=(6x+7)+1, 6(x+1)=6x+6=(6x+7)-1, 所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令 y=6x+7,① 由(6x+7)2(3x+4)(x+1)=6得 (6x+7)2(6x+8)(6x+6)=6×12, 即 y2(y+1)(y-1)=72, y4-y2-72=0, (y2+8)(y2-9)=0. 因为y2+8>0,所以只有y2-9=0,y=±3.代入①式,解得原方程的根为 例4 解方程

4一元高次方程及其解法

《数学思维与能力训练》辅导讲义 姓名 辅导时间 一元高次方程及其解法 【知识要点】 1、 如果方程中只有一个未知数且两边都是关于未知数的整式,那么这个方程叫做一元 整式方程。 2、一元整式方程中含未知数的项的最高次数是n (n 是正整数),这个方程叫做一元n 次方程;其中次数n 大于2的方程统称为一元高次方程,简称高次方程。 3、如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程叫二项方程。 关于x 的一元n 次二项方程的一般形式为:ax n + b = 0 (a ≠0,b ≠0,n 为正整数) 当n 为奇数时,方程有且只有一个实数根 当n 为偶数时,如果ab < 0时,那么方程有两个实数根,且这两个根互为相反数 如果ab > 0时,那么方程没有实数根 4、一般地,只含有偶数次项的一元四次方程,叫做双二次方程 关于x 的双二次方程的一般形式为:ax 4 + bx 2 + c = 0 (a ≠0) 解双二次方程的一般过程是:换元、解一元二次方程、回代 【夯实基础】 [例题1] 1、下列方程是一元高次方程的是 ( ) ① (x 2 – 3x) 2 – 3 (x 2 – 3x) – 4 = 0 ② x (x 2 – 2x) – 3 = x 3 – 4 ③ 24= ④ 3318x x += ⑤ x (x + 1) (x + 2) (x + 3) = 0 A 、①② B 、③④ C 、④⑤ D 、①⑤

2、下列四个命题中正确的是( ) A、方程x 2– 3x – 4 = x中一次项是– 3x B、方程x 2 = 1的实数根只有1 C、关于x的方程2x 2 + mx = 0中有一根是零 D、方程(x + 2) (x + 3) = x (x + 2 )是一元二次方程 [例题2] 1、解方程x 3– 9x 2 + 20x = 0 2、解方程x 3– 4x 2– 4x + 16 = 0 3、解方程x 4– x 2– 20 = 0 4、解方程(x 2– x) 2– 4 (x 2– x) – 12 = 0 5、解方程(x 2 + 3x) (x 2 + 3x + 2) = 120

高次方程及其解法

求解程序编辑 高次方程的根的求解,可以利用bairstow法,通过简单的matlab程序,求得方程的所有复根(实根和虚根) 2定义编辑 整式方程未知数次数最高项次数高于2次的方程,称为高次方程。 3一般形式编辑 高次方程的一般形式为 anx^n+an-1x^n-1+-------+a1x+a0= 高次方程 等式两边同时除以最高项系数,得: anx^n/an+an-1x^n-1/an+--------+a1x/an+a0/an=0 所以高次方程一般形式又可写为 x^n+bnx^n-1+-------b1x+b0=0 4其它相关编辑 解法思想 通过适当的方法,把高次方程化为次数较低的方程求解. 根与系数 按这个高次方程的形式 x^n+bn-1x^n-1+-------b1x+b0=0,那么有 所有根相加等于系数bn-1的相反数 所有根两两相乘再相加等于系数bn-2 所有根三三相乘再相加等于系数bn-3的相反数 依次类推,直到所有根相乘,等于(-1)^nb0 成果 伽罗华(Galois,1811——1832),法国数学家。 伽罗华15岁进入巴黎有名公立中学学习,偏爱数学。后来想进工科大学,两次落榜只进一所代等的预备学校,此时,他专攻五次方程代数解法。第一年写了四篇文章,1828年,17岁的伽罗华写了《关于五次方程的代数解法问题》等两篇论文送交法国科学院,但被柯西(Cauchy,1789——1875)遗失,后来,他又把一篇文章送给傅利(Fourier,1768——1830)。不久,傅利就去世了,也就不了了之。1831年,伽罗华完成了《关于用根式解方程的可解性条件》一文,院士普阿松(Poisson,1781-1840)的审查意见却是“完全不能理解”,予以

初中数学竞赛:简易高次方程的解法

初中数学竞赛:简易高次方程的解法 在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答. 例1 解方程 x3-2x2-4x+8=0. 解原方程可变形为 x2(x-2)-4(x-2)=0, (x-2)(x2-4)=0, (x-2)2(x+2)=0. 所以 x1=x2=2,x3=-2. 说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样 =0可化为 bkx3+bx2+dkx+d=0, 即 (kx+1)(bx2+d)=0. 方程ax4+bx3+cx+d=0也可以用类似方法处理. 例2 解方程 (x-2)(x+1)(x+4)(x+7)=19. 解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得 (x2+5x-14)(x2+5x+4)=19. 设

则 (y-9)(y+9)=19, 即y2-81=19. 说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之. 例3 解方程 (6x+7)2(3x+4)(x+1)=6. 解我们注意到 2(3x+4)=6x+8=(6x+7)+1, 6(x+1)=6x+6=(6x+7)-1, 所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令 y=6x+7,① 由(6x+7)2(3x+4)(x+1)=6得 (6x+7)2(6x+8)(6x+6)=6×12, 即 y2(y+1)(y-1)=72, y4-y2-72=0, (y2+8)(y2-9)=0. 因为y2+8>0,所以只有y2-9=0,y=±3.代入①式,解得原方程的根为 例4 解方程 12x4-56x3+89x2-56x+12=0.

特殊的高次方程的解法教学教材

特殊的高次方程的解 法

特殊的高次方程的解法 教学目标 1.根据方程的特征,运用适当的因式分解法求解一元高次方程. 2.通过学习增强分析问题和解决问题的能力. 教学重点及难点 用因式分解法求解一元高次方程. 教学流程设计 复习引入例题分析巩固练习 布置作业课堂小结 教学过程设计 一、情景引入 1.复习 (1)将下列各式在实数范围内分解因式: ①x2-4x+3;② x4-4; ③x3-2x2-15x;④ x4-6x2+5;

⑤(x2-x)2-4(x2-x)-12. 教师指出: 在分解④、⑤题时,应利用换元的思想,分别把x2和x2-x看成y,于是就有y2-6y+5和y2-4y-12.从而把四次多项式转化为二次三项式,使问题易于解决. (2)提问: ①解二项方程的基本方法是什么?(开方) ②解双二次方程的基本方法是什么?(换元) 分析:不管是开方还是换元都是通过“降次”达到化归目的. 2.观察: (1)若令①x2-4x+3;② x4-4;③x3-2x2-15x;④ x4-6x2+5; ⑤(x2-x)2-4(x2-x)-12的右边都为0,请指出哪些是高次方程? (2)这些高次方程如何求解? 分析:后面四个都是高次方程,②x4-4=0是二项方程,利用开方法求解;④、⑤都可以利用换元法把它转化为一元二次方程;而③x3-2x2-15x=0则是利用因式分解法降次. 所以,这节课我们一起来学习用因式分解法把一元高次方程转化成一元一次方程或一元二次方程. 二、学习新课

1.例题分析 例6 解下列方程 (1)5x 3=4x 2; (2)2x 3+x 2-6x=0. [说明] 只有方程整理成一边为零时,才能用因式分解法解方程. 例7 解下列方程 (1)x 3-5x 2+x-5=0; (2)x 3-6=x-6x 2. 2.问题拓展 (1)解方程 x 3-2x 2-4x +8=0. 解 原方程可变形为 x 2(x-2)-4(x-2)=0, (x-2)(x 2-4)=0, (x-2)2(x+2)=0. 所以 x 1=x 2=2,x 3=-2. (2)归纳: 当ad=bc≠0时,形如ax 3+bx 2+cx +d=0的方程可这样解决: 令0≠==k d c b a ,则a=bk,c=dk,于是方程ax 3+bx 2+cx+d=0 可化为 bkx 3+bx 2+dkx+d=0,

相关主题
文本预览
相关文档 最新文档