当前位置:文档之家› 系统辨识研究的现状_徐小平

系统辨识研究的现状_徐小平

系统辨识研究的现状_徐小平
系统辨识研究的现状_徐小平

系统辨识研究的现状

徐小平1,王 峰2,胡 钢1

(1.西安理工大学自动化与信息工程学院 陕西西安 710048;2.西安交通大学理学院 陕西西安 710049)

摘 要:综述了系统辨识问题的研究进展,介绍了经典的系统辨识方法及其缺点,引出了将集员、多层递阶、神经网络、遗传算法、模糊逻辑、小波网络等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。

关键词:系统辨识;集员;多层递阶;神经网络;遗传算法;模糊逻辑;小波网络

中图分类号:TP27 文献标识码:B 文章编号:1004-373X (2007)15-112-05

A Survey on System Identif ication

XU Xiaoping 1,WAN G Feng 2,HU Gang 1

(1.School of Automation and Information Engineering ,Xi ′an University of Technology ,Xi ′an ,710048,China ;

2.School of Science ,Xi ′an Jiaotong University ,Xi ′an ,710049,China )

Abstract :In this paper the advance in the study of system identification is summarized.First ,the traditional system identi 2fication methods and their disadvantages are introduced.Then ,some new methods based on set membership ,multi -level re 2cursive ,neural network ,genetic algorithms ,f uzzy logic and wavelet network are presented.Finally ,f urther research directions of system identification are pointed out.

K eywords :system identification ;set membership ;multi -level recursive ;neural network ;genetic algorithms ;f uzzy logic ;wavelet network

收稿日期:2007-04-16

基金项目:教育部博士学科基金(20060700007);

陕西省自然科学基金(2005F15)资助项目

1 引 言

辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。从1967年起,国际自动控制联合会(IFAC )每3年召开一次国际性的系统辨识与参数估计的讨论会。历届国际自动控制联合会的系统辨识会议均吸引了众多的有关学科的科学家和工程师们的积极参加。

系统辨识是建模的一种方法,不同的学科领域,对应

着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。1962年,L.A.Zadeh 给出辨识这样的定义[1]:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh 的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。而从实用性观点出发,对模型的要求并非如此苛刻,为此,对辨识又有一些实用性的定义。比如,1974年,P.E.ykhoff 给出辨识的定义[2]为:“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。”1978年,L.

Ljung 给辨识下的定义[3]

更加实用:“辨识有三个要素—数

据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。”总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。

本文首先介绍了经典的系统辨识方法,并指出其存在的缺陷,接着对近年来系统辨识的现代方法作以简单的综述,最后指出了系统辨识未来的发展方向。2 经典的系统辨识

经典的系统辨识方法[4-6]的发展已经比较成熟和完

2

11

善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。其中最小二乘法(L S)是一种经典的和最基本的,也是应用最广泛的方法。但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(G L S)、辅助变量法(IV)、增广最小二乘法(EL S)和广义最小二乘法(G L S),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR-L S)和随机逼近算法等。

随着人类社会的发展进步,越来越多的实际系统很多都是具有不确定性的复杂系统。而对于这类系统,经典的辨识建模方法难以得到令人满意的结果,即就是说,经典的系统辨识方法还存在着一定的不足:

(1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证;

(2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值;

(3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。

以上这些问题已经引起研究者们的广泛关注,在第七届国际自动控制联合会以后,众多学者在系统辨识方面的注意力主要集中在对不确定性的复杂系统的辨识上。以下就介绍一些近年来涌现出的一些现代的系统辨识方法。

3 现代的系统辨识

随着智能控制理论研究的不断深入及其在控制领域的广泛应用,从逼近理论和模型研究的发展来看,非线性系统建模已从用线性模型逼近发展到用非线性模型逼近的阶段。由于非线性系统本身所包含的现象非常复杂,很难推导出能适应各种非线性系统的辨识方法,因此非线性系统的辨识还没有构成完整的科学体系。下面简要介绍几种方法。

3.1 集员系统辨识法

在1979年集员辨识首先出现于Fogel[7]撰写的文献中,1982年Fogel和Huang又对其做了进一步的改进[8]。集员辨识是假设在噪声或噪声功率未知但有界UBB(Un2 known But Bounded)的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集(例如椭球体、多面体、平行六边体等)。不同的实际应用对象,集员成员集的定义也不同。集员辨识理论已广泛应用到多传感器信息融合处理、软测量技术、通讯、信号处理、鲁棒控制及故障检测等方面。

在实际应用中,飞行器系统是一个较复杂的非线性系统,噪声统计分布特性难以确定,要较好地描述未知参数的可行解,用统计类的辨识方法辨识飞行器动参数很难达到理想效果。采用集员辨识可解决这种问题。首先用迭代法给出参数的中心估计,然后对参数进行集员估计(即区间估计)。这种方法能处理一般非线性系统参数的集员辨识,已经成功地应用于飞行器动参数的辨识[9]。当系统数学模型精确已知,模型参数具有明显的物理意义或者物理参数具有明确的对应关系时,一般的辨识方法能够快速有效地进行故障检测与隔离。然而实际复杂系统,所建数学模型的未建模动态和统计特性未知噪声的存在,常用的参数辨识方法而不能达到故障检测与隔离的效果,采用集员辨识法则能够达到较好的效果。所给检测方法可快速且有效地检测出传感器故障、参数跳变故障和参数缓变故障等。该方法具有一定的适用性,他不需要知道数学模型参数的先验信息,未建模动态和未知噪声均可当作有界误差来处理[10]。集员辨识作为系统辨识的一种新的方法,且给系统辨识带来了巨大的方便,他已成为许多科研单位的研究课题。

3.2 多层递阶系统辨识法

多层递阶方法由韩志刚等[11,12]提出的,并且用他来解决实际问题中的不确定的复杂系统的一种现代系统辨识方法。多层递阶方法的主要思想为:以时变参数模型的辨识方法作为基础,在输入输出等价的意义下,把一大类非线性模型化为多层线性模型,为非线性系统的建模给出了一个十分有效的途径。

对于一个复杂系统的辨识,多层递阶方法可以利用层数的增加,通过多层的线性模型来描述所考虑的复杂系统,并且将预报模型分成基本结构部分和时变参数部分,然后基于模型等价的原理,分别对每层模型的时变参数进行辨识,直到参数为非时变时为止。这种方法的特点是:采用时变参数,能够对实际进行较好的拟合,精确地反映波动特性。从20世纪90年代以来,多层递阶方法的研究引起了许多学者的关注,其理论研究取得了长足的迅速发展。该方法也有广泛的应用前景,比如在气象领域、农业病虫害预报和金融系统等应用研究方面已硕果累累。3.3 神经网络系统辨识法

人工神经网络[13,14]是20世纪末迅速发展起来的一门高等技术。他已经在各个领域得到了广泛地应用,尤其是在智能系统中的非线性建模及控制器的设计、模式分类与模式识别、联想记忆和优化计算等方面得到了人们的极大兴趣。

由于人工神经网络具有良好的非线性映射能力、自学习适应能力和并行信息处理能力,为解决未知不确定非线性系统的辨识问题提供了一条新的思路。在辨识非线性系统时,人们可以根据非线性系统的神经网络辨识结构[15],利用神经网络所具有的对任意非线性映射的任意逼近能力来模拟实际系统的输入和输出关系,而且利用人工神经网络的自学习和自适应能力,人们可以方便地给出

311

工程上易于实现的学习算法,且经过学习训练得到系统的正向模型或逆向模型。在神经网络辨识中,神经网络(包括前向网络和递归动态网络)将确定某一非线性映射的问题转化为求解优化问题,而优化过程可根据某种学习算法通过调整网络的权值矩阵来实现,从而产生了一种改进的系统辨识方法[16,17]。对于BP算法存在局部极小值问题,也有许多改进的算法。如文献[18,19]等中提出的模拟退火法、趋药分类法、Alopex算法、遗传算法可以摆脱局部极小。但这些算法都是随机化的批量算法,不容易在线执行。文献[20]采用增广卡尔曼滤波学习法,该算法无需对学习速率进行猜测,并且收敛速度快、精度高,其基本思想是把网络权值作为一个相应动态系统的状态,运用增广卡尔曼滤波估计,可以得到较好的效果。

与传统的基于算法的辨识方法相比较,人工神经网络用于系统辨识具有以下优点:

(1)不要求建立实际系统的辨识格式,可以省去对系统建模这一步骤;

(2)可以对本质非线性系统进行辨识;

(3)辨识的收敛速度仅与神经网络的本身及所采用的学习算法有关;

(4)通过调节神经元之间的连接权即可使网络的输出来逼近系统的输出;

(5)神经网络也是系统的一个物理实现,可以用在在线控制。

因此,人工神经网络在非线性系统辨识中的应用具有很重要的研究价值和广泛的应用前景。

3.4 遗传算法系统辨识法

20世纪70年代初,美国密西根(Michigan)大学的霍兰(Holland)教授和他的学生提出并创立了一种新型的优化算法———遗传算法(Genetic Algorit hm,GA)[21]。遗传算法的基本思想来源于达尔文的进化论和门德尔的遗传学说。该算法借助于计算机的编程,一般是将待求的问题表示成串(或称染色体)。即为二进制码或者整数码串,从而构成一群串,并将他们置于问题的求解环境中。根据适者生存的原则,从中选择出适应环境的串进行复制(repro2 duction),并且通过交换(crossover)、变异(mutation)[22]两种基因操作产生出新的一代更加适应环境的串群。经过这样一代代的不断变化,最后收敛到一个最适应环境的串上,即求得问题的最优解。

遗传算法不依赖于问题模型本身的特性,以及不容易陷入局部最优和隐含并行性等特点,能够快速有效的搜索复杂、高度非线性和多维空间,为系统辨识的研究与应用开辟一条新的途径。将遗传算法用于线性离散系统的在线辨识[23],比较好地解决了最小二乘法难以处理的时滞在线辨识和局部优化的缺点。文献[24]利用改进的遗传算法,提出了一种辨识系统参数的方法,有效地克服了有色噪声的干扰,获得系统参数的无偏估计。文献[25]中采用适应值比例法与最优保留策略相结合的方法进行繁殖操作,同时又自适应地改变了交叉和变异的概率,成功地辨识了非线性系统模型。简单的遗传算法存在着收敛速度慢、容易陷入局部极值而导致未成熟收敛问题。许多学者对此做了大量工作,提出了相应的改进算法,取得了较好的效果[26]。由遗传算法(GA)、进化编码(EP)等构成的新的进化计算是近年来发展的很迅速、很有前途的一种优化算法,他借助于生物进化的优胜劣汰的原则,从空间的一群点开始搜索,不断的进化以求得最优解。新的进化计算法还具有较强的鲁棒性,并且不容易陷入局部解,所以人们可以用进化计算来解决系统辨识问题[27]。其主要思想是:用遗传算法操作保证搜索是在整个解空间进行的,同时优化过程不依赖于种群初值的选择,用进化编码操作保证求解过程的平稳性,该方法比分别用遗传算法和进化编码的效果都要好。另外,遗传算法在系统辨识中还有一些其他的应用[28-30]。

3.5 模糊逻辑系统辨识法

模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的和有效的方法,在非线性系统辨识领域中有十分广泛的应用。因而,模糊逻辑辨识法深受研究者的青睐。模糊逻辑辨识具有独特的优越性:能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。

1985年Takagi和Sugeno提出了T-S模糊模型[31,32],该模糊模型是以局部线性化为基础,通过模糊推理的方法实现了全局的非线性。该模型具有结构上简单、逼近能力强等特点,已经成为模糊逻辑辨识中常用的模型。典型的模糊结构辨识方法有:模糊网格法、自适应模糊网格法、模糊聚类法及模糊搜索树法等。其中模糊聚类法是目前最常用的模糊系统结构辨识方法,其中心问题是设定合理的聚类指标,根据该指标所确定的聚类中心可以使模糊输入空间划分最优。另外,还有一些把模糊理论与神经网络、遗传算法等相结合而形成的辨识方法[33]。

3.6 小波网络系统辨识法

小波网络是在小波分解的基础上提出的一种前馈神经网络[34],使用小波网络进行动态系统辨识,成为神经网络辨识的一种新的方法。小波网络类似于径向基网络,隐层结点的激活函数以小波函数基来代替,输入层到隐层的权值和阈值分别对应于小波的伸缩参数和平移参数。小波网络与其他前向神经网络一样都具有任意性的逼近非线性函数的能力。小波分析在理论上保证了小波网络在

411

非线性函数逼近中所具有的快速性、准确性和全局收敛性等优点。由小波变换的特点决定小波网络基函数具有可调的尺度参数,选用低尺度参数可以学习光滑函数,提高尺度可以较高精度地学习局部奇异函数。网络系数与小波分解有明确的联系,这样有助于在平移参数和尺度参数的物理意义上确定小波函数基的选择,为初始化小波网络系数提供了可能。

近十年来,随着小波分析理论的发展与成熟,小波网络作为一种有突出特点的前向神经网络受到越来越多的关注和重视。小波网络的形式和设计方法多种多样:如文献[35]是利用小波函数(或尺度函数)替换普通神经网络中的激励函数;文献[36]则是从多分辨分析的角度利用正交小波基构造网络;文献[37]则重点讨论了高维小波网络的设计问题。小波网络具有相对有效和简洁的建模方法(平移和伸缩小波母小波),能够构成框架、紧框架,甚至正交基,构造效率高,收敛速度快,并能解决一般的“维数灾”问题,逼近单变量函数的渐进最优逼近器[38]已经被大量应用于系统辨识中。在系统辨识中,尤其在非线性系统辨识[39]中的应用潜力越来越大,为不确定的复杂的非线性系统辨识提供了一种新的有效途径,其具有良好的应用前景。

4 结 语

近二十年来,系统辨识获得了长足的发展,已经成为控制理论的一个十分活跃而又重要的分支。从线性现象和线性系统的研究过渡到非线性现象和非线性系统的研究是科学发展的必然结果,这不仅是对科学家们一种新的挑战,而且也是人类社会向更高级形式演化的一种必然。随着智能控制理论、遗传算法理论等的不断成熟,逐渐形成了形式多样的现代的系统辨识方法,并且已在实际问题应用中取得了较好的使用效果。我们可以预见对不确定性的复杂系统的辨识研究很难或根本不可能找到一种统一的辨识方法来处理,这就需要人们分门别类地去研究,去解决所遇到的各种具体问题。系统辨识未来的发展趋势将是经典系统辨识方法理论的逐步完善,同时随着一些新型学科的产生,有可能形成与之相关的系统辨识方法,使系统辨识成为综合性多学科理论的科学。

参 考 文 献

[1]Zadeh L A.From Circuit Theory to System Theory[J].

Proc.IRE,1962,50(5):856-865.

[2]Eykhoff P.System Identification-Parameter and State Esti2

mation[M].John Wiley&Sons,1974.

[3]Ljung L.Convergence Analysis of Parametric Identification

Methods[J].IEEE Trans.on Automatic Control,1978,AC

-23:770-783.

[4]方崇智,萧德云.过程辨识[M].北京:清华大学出版

社,1988.

[5]侯媛彬.系统辨识及仿真[M].北京:科学出版社,2004.

[6]吴广玉.系统辨识与自适应[M].哈尔滨:哈尔滨工业大学

出版社,1987.

[7]Fogel E.System Identification via Membership Set Con2

straints with Energy Constrained Noise[J].IEEE Trans.

Automatic Control,1979,24(5):752-758.

[8]Fogel E,Huang Y F.On the Value of Information in System

Identification Bounded Noise Case[J].IEEE Trans.Auto2 matic Control,1982,18(2):229-238.

[9]王文正,蔡金狮.飞行器动参数的集员辨识[J].宇航学报,

1998,19(2):31-36.

[10]孙先仿,范跃祖,宁文如.故障检测的集员辨识[J].航空学

报,1998,19(3):371-374.

[11]韩志刚.多层递阶方法理论与应用的进展[J].控制与决

策,2001,16(2):129-132.

[12]韩志刚,蒋爱平.自适应辨识、预报和控制———多层递阶途

径[M].哈尔滨:黑龙江教育出版社,1995.

[13]焦李成.神经网络计算[M].西安:西安电子科技大学出版

社,1993.

[14]胡守仁.神经网络应用技术[M].长沙:国防科技大学出版

社,1993.

[15]Lippman R P.An Introduction to Computing with Neural

Net[J].IEEE ASSP Magazine,1989,4(2):4-22.

[16]Krzyza K A.Nonparametric Estimation and Classification

Using Radial Basis Function Nets and Empirical Risk Min2 imization[J].IEEE Trans.on Neural Networks,1996,7

(2):475-487.

[17]Narendra K S,Parthasarathy K.Identification and Control

of Dynamical System Using Neural Networks[J].IEEE Trans.on Neural Networks,1990,1(1):4-27.

[18]Venugopal K P,Pandya A S.Alopex Algorithm for Train2

ing Multilayer Neural Networks[C].IEEE Int.Conf.on NN,1991,21(2):196-201.

[19]Montana D J,Davis L.Training Feedforward Network U2

sing Genetic Algorithms[C].Int.J.Conf.on A I,1989,32

(5):762-767.

[20]Singhal S,Wu L.Training feed-forward networks with

the extended Kalman algorithms[C].IN:Proc.of the IEEE Int.Conf.on Acoustics,Speech and Signal Processing,

G lasgow,1989:1187-1190.

[21]Holland J H.Adaptation in Natural and Artificial Systems.

Chicago:The University of Michigan Press,1975.

[22]Poths J C,G iddens T D,Yadaw S B.The Development and

Evaluation of an Improved G enetic Algorithms Based on Migration and Selection[J].IEEE Trans.SMC,1994,24

(1):73-86.

[23]易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学

出版社,1999.

511

[24]李茶玲,孙德保.遗传算法在系统辨识中的应用[J ].华中

理工大学学报,1998,26(7):57-58.

[25]徐丽娜,李琳琳.遗传算法在非线性系统辨识中的应用研

究[J ].哈尔滨工业大学学报,1999,31(2):39-42.

[26]Potts J C ,Gradens T D ,Yadav S B.The Development and

Evaluation of an Improved Genetic Algriths Based on Mi 2gration and Artificial Selection [J ].IEEE Trans.on Sys 2tems ,Man and Cybernetics ,1994,24(1):73-68.

[27]李孝安.一种基于遗传算法与进化编码的系统辨识方法

[J ].控制与决策,1996,11(3):404-407.

[28]李红星.基于遗传算法的闭环系统辨识方法[J ].电气传

动,2000,31(3):57-60.

[29]Maclay D ,Dorey R.Applying G enetic Search Techniques to

Driver Train Modeling [J ].IEEE Control Systems ,1993,20(6):50-55.

[30]Kristinsson K.System Identification and Control Using

G enetic Algorithms [J ].IEEE Trans.on Systems ,Man and Cybernetics ,1992,22(5):1033-1046.

[31]Takagi

T ,Sugeno M.Fuzzy Identification of Systems and

Its Application to Modeling and Control [J ].IEEE Trans.on Systems ,Man and Cybernetics ,1985,15(1):116-132.[32]Johansen T A ,Murray -Smith R.On the Interpretation

and Identification of Dynamic Takagi -Sugeno Fuzzy Mod 2els [J ].IEEE Trans.on Fuzzy Systems ,2000,8(3):297

-313.

[33]Leec H ,Tengc C.Identification and Control of Dynamic

Systems Using Recurrent Fuzzy Network [J ].IEEE Trans.on Fuzzy Systems ,2000,8(4):349-366.

[34]Pati Y C.Analysis and Synthesis of Feedforward Neural

Networks Using Discrete Affine Wavelet Transformations [J ].IEEE Trans.on Neural Networks ,1993,4(1):73-85.

[35]Zhang Q.Wavelet Networks [J ].IEEE Trans.Neural Net 2

works ,1992,3(6):889-898.

[36]Bahavik R B ,Stephanopoulos G.Wave -net :A Multireso 2

lution ,Hieraehical Neural Network with Localized Learn 2ing [J ].A ICH E Journal ,1993,39(1):57-81.

[37]Zhang https://www.doczj.com/doc/4218140263.html,ing Wavelet Network in Nonparametric Esti 2

mation [J ].IEEE Trans.Neural Networks ,1997,8(2):227-236.

[38]Kreinovich V ,Sirisaengtaksin O ,Cabrera S.Wavelet Neural

Networks are Asymptotically Optimal Approximators for Functions of One Variable [C ].IEEE Int.Conf.on Neural Networks ,2002:2174-2179.

[39]Tsatsanis M K ,G iannakis G B.Time -varying System I 2

dentification and Model Validation Using Wavelets [J ].IEEE Trans.on Signal Processing ,1993,41(12):3512-3523.

作者简介 徐小平 男,1973年出生,陕西蓝田县人,博士生。主要从事信号处理、小波分析、系统分析及辨识等方向的研究。

(上接第108页)

A/D 的采样频率为200k Hz 。理论可知,经过FF T 变换后,应该在10k Hz 以及对称的地方会有两根谱线。

本实例结果如图2所示。

图2 实验结果图

图2中100k Hz 为中心点,可以清晰地看到在

10k Hz 及其对称190k Hz 有两根谱线冒出,即为输入信号的

频率。结果同理论分析是完全一致的。4 结 语

在信号处理中,通过VC 和Matlab 混合编程将Mat 2

lab 数据处理的矩阵数组功能和信号处理函数库丰富的特

点,与VC ++灵活、直观、底层衔接良好的优点结合起来,可以得到高效准确的数据处理结果。尤其在系统方案论证的初期,可以利用Matlab 建立完整的系统仿真模型,通过VC ++从数据采集卡获得准确的真实测量值,从而给所研究的方向起到提纲楔领的作用。同时也可以帮助系统研制人员,快速深刻地理解到系统设计和研究的精髓。

参 考 文 献

[1]薛年喜.Matlab 在数字信号处理中的应用[M ].北京:清华

大学出版社,2003.

[2]高强,朱安国.Visual C ++高级编程技巧[M ].北京:人民邮

电出版社,2000.

[3]亓慧,张艳丽,陈振生.基于Matlab 与VC 混合编程的研究

[J ].现代电子技术,2004,27(19):11-12,15.

作者简介 戢小亮 女,1981年出生,硕士,西安邮电学院教师。主要从事信号与信息处理方面的研究。

6

11

系统辨识大作业1201张青

《系统辨识》大作业 学号:12051124 班级:自动化1班 姓名:张青 信息与控制工程学院自动化系 2015-07-11

第一题 模仿index2,搭建对象,由相关分析法,获得脉冲响应序列?()g k ,由? ()g k ,参照讲义, 获得系统的脉冲传递函数()G z 和传递函数()G s ;应用最小二乘辨识,获得脉冲响应序列? ()g k ;同图显示两种方法的辨识效果图;应用相关最小二乘法,拟合对象的差分方程模型;构建时变对象,用最小二乘法和带遗忘因子的最小二乘法,(可以用辨识工具箱) 辨识模型的参数,比较两种方法的辨识效果差异; 答:根据index2搭建结构框图: 相关分析法:利用结构框图得到UY 和tout 其中的U 就是题目中要求得出的M 序列,根据结构框图可知序列的周期是 1512124=-=-=n p N 。 在command window 中输入下列指令,既可以得到脉冲相应序列()g k :

aa=5;NNPP=15;ts=2; RR=ones(15)+eye(15); for i=15:-1:1 UU(16-i,:)=UY(16+i:30+i,1)'; end YY=[UY(31:45,2)]; GG=RR*UU*YY/[aa*aa*(NNPP+1)*ts]; plot(0:2:29,GG) hold on stem(0:2:29,GG,'filled') Grid;title('脉冲序列g(τ)') 最小二乘法建模的响应序列 由于是二阶水箱系统,可以假设系统的传递函数为2 21101)(s a s a s b b s G +++= ,已知)(τg ,求2110,,,a a b b

系统辨识之经典辨识法

系统辨识作业一 学院信息科学与工程学院专业控制科学与工程 班级控制二班 姓名 学号

2018 年 11 月 系统辨识 所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时 的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。 辨识的内容主要包括四个方面: ①实验设计; ②模型结构辨识; ③模型参数辨识; ④模型检验。 辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集 数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。 根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参 数模型辨识方法,另一类是参数模型辨识方法。 其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是 非参数模型。在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛 适用于一些复杂的过程。经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉 冲响应法。 1.阶跃响应法 阶跃响应法是一种常用非参数模型辨识方法。常用的方法有近似法、半对数法、切线法、两点法和面积法等。本次作业采用面积法求传递函数。 1.1面积法 ① 当系统的传递函数无零点时,即系统传递函数如下: G(S) = + ?11?1+?+ 1+1 (1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取 微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K后,要得到无 因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述: () ?1 () (1-2) 面积法原则上可以求出n为任意阶的个系数。以n为3为例。有: 3() 2() () {| →∞ =| →∞ =| →∞ = 0 (1-3) ()| →∞ = 1

最小二乘法在系统辨识中的应用

最小二乘法在系统辨识中的应用 王文进 控制科学与控制工程学院 控制理论与控制工程专业 2009010211 摘要:在实际的工程中,经常要对一个系统建立数学模型。很多时候,要面对一个未知的系统,对于这些未知系统,我们所知道的仅仅是它们的一些输入输出数据,我们要根据这些测量的输入输出数据,建立系统的数学模型。由此诞生了系统辨识这门科学,系统辨识就是研究怎样利用对未知系统的输入输出数据建立描述系统的数学模型的科学。系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用及其广泛的系统辨识方法。本文主要讲述了最小二乘估计在系统辨识中的应用。 首先,为了便于介绍,用一个最基本的单输入单输出模型来引入系统辨识中的最小二乘估计。 例如:y = ax + (1) 其中:y、x 可测,为不可测的干扰项,a未知参数。通过N 次实验,得到测量数据y k和x k ,其中k=1、2、3、…,我们所需要做的就是通过这N次实验得到的数据,来确定未知参数a 。在忽略不可测干扰项的前提下,基本的思想就是要使观测点y k和由式(1)确定的估计点y的差的平方和达到最小。用公式表达出来就是要使J最小: 确定未知参数a的具体方法就是令: J a = 0 , 导出 a 通过上面最基本的单输入单输出模型,我们对系统辨识中的最小二乘法有了初步的了解,但在实际的工程中,系统一般为多输入系统,下面就用一个实际的例子来分析。在接下来的表述中,为了便于区分,向量均用带下划线的字母表示。 水泥在凝固过程中,由于发生了一系列的化学反应,会释放出一定的热量。若水泥成分及其组成比例不同,释放的热量也会不同。 水泥凝固放热量与水泥成分的关系模型如下: y = a0+ a1x1+…+ a n x n + 其中,y为水泥凝固时的放热量(卡/克);x1~x2为水泥的几种成分。

最优估计大作业1.

最优估计大作业 姓名:李海宝 学号:S314040186 导师:刘胜 专业:控制科学与工程

模糊逻辑卡尔曼滤波器在智能AUV导航系统中的自适应调 整 摘要 本论文基于全球定位系统(GPS)和几个惯性导航系统(INS)传感器描述了对于自主水下航行器(AUV)应用的一种智能导航系统的执行过程。本论文建议将简单卡尔曼滤波器(SKF)和扩展卡尔曼滤波器(EKF)一前一后地用于融合INS 传感器的数据并将它们与GPS数据结合到一起。传感器噪声特性里潜在的变化会引起SKF和EKF的初始统计假定的调整,本论文针对这一问题着重突出了模糊逻辑方法的使用。当这种算法包含实际传感器噪特性的时候,SKF和EKF只能维持他们的稳定性和性能,因此我们认为这种自适应机制同SKF与EKF一样有必要。此外,在提高导航系统的可靠性融合过程期间,故障检测和信号恢复算法也需在此要讨论。本论文建议的这种算法用于使真实的实验数据生效,这些数据都是从Plymouth大学和Cranfield大学所做的一系列AUV实验(运行低成本的锤头式AUV)中获得的。 关键词:自主水下航行器;导航;传感器融合;卡尔曼滤波器;扩展卡尔曼滤波器;模糊逻辑 1.引言 对于以科学、军事、商业为目的应用,如海洋勘察、搜索未爆弹药和电缆跟踪检查,AUV的发展需要相应导航系统的发展。这样的系统提供航行器位置和姿态的数据是很有必要的。在这样的系统中对精度的要求是最重要的:错误的位置和姿态数据会导致收集数据的一个毫无意义的解释,或者甚至AUV的一个灾难性故障。 越来越多来自整个世界的研究团队正利用INS和GPS来研发组合导航系统。然而,他们的工作中几乎都没有明确几个INS传感器融合的本质要求,这些传感器用于确保用户保持精度或甚至用来防止在与GPS融合之前导航系统这部分的完全失败。例如,金赛和惠特科姆(2003)使用一个切换机制来防止INS的完全失败。虽然这个方法简单易行,但是可能不适合用于维持一个确定的精度等级。 出于多传感器数据融合和集成的目的,几种估计方法在过去就已经被使用过。为此,SKF/EKF和它们的变形在过去就已经是流行的方法,并且一直到现在都对开发算法感兴趣。然而,在设计SKF/EKF过程中,一个显著的困难经常会被

系统辨识

一、 最小二乘法(LS ) 辨识系统Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+v(k) 辨识参数 L T L L T L LS y X X X 1)(-Λ =θ 其中 MAT 程序 >> x=[0 1 0 1 1 0 1 1 1]; >> n=403; >> M=[]; >> for i=1:n temp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); end x(1)=temp; end >> v=randn(1,400); >> z=[]; >> z(1)=-1; >> z(2)=0; >> for i=3:402 z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+v(i-2); end >> H=zeros(400,4); >> for i=1:400 H(i,1)=-z(i+1); H(i,2)=-z(i); H(i,3)=M(i+1); H(i,4)=M(i); end >> Estimate=inv(H'*H)*H'*(z(3:402))' 辨识参数为: Estimate = -1.4916

1.0364 0.4268 >> 二、最小二乘递推法(RLS) 辨识Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+v(k) 递推公式: 其中: MATLAB程序: >> x=[0 1 0 1 1 0 1 1 1]; n=403; M=[]; for i=1:n temp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); end x(1)=temp; end v=randn(1,400); z=[]; z(1)=-1; z(2)=0; for i=3:402 z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+v(i-2); end P=100*eye(4); Pstore=zeros(4,401); >> Pstore(:,1)=[P(1,1),P(2,2),P(3,3),P(4,4)]; >> Theta=zeros(4,401); Theta(:,1)=[3;3;3;3]; >> K=[10;10;10;10];

系统辨识大作业论文Use

中南大学 系统辨识大作业 学院:信息科学与工程学院 专业:控制科学与工程 学生姓名:龚晓辉 学号:134611066 指导老师:韩华教授 完成时间:2014年6月

基于随机逼近算法的系统辨识设计 龚晓辉1, 2 1. 中南大学信息科学与工程学院,长沙410083 2. 轨道交通安全运行控制与通信研究所, 长沙410083 E-mail: csugxh@https://www.doczj.com/doc/4218140263.html, 摘要:本文对系统辨识的基本原理和要素进行了详细阐述,介绍和分析了系统辨识中常用的最小二乘算法,极大似然法,神经网络算法和随机逼近算法。随机逼近算法只需利用输入输出的观测来辨识系统参数,在实际中有重要运用。本文对随机逼近算法进行了详细说明。同时,针对一个三阶系统设计了KW随机逼近算法进行了参数辨识,并且和递推最小二乘法进行了对比。实验证明在实际辨识过程中两种算法各有优缺点。 关键词: 系统辨识, 随机逼近法, 递推最小二乘法 1.引言 在我们所学的线性系统理论中,都是在系统模型已知的情况来设计控制率,使系统达到稳定性,准确性和快速性的要求。然而,在实际系统中,对象的模型往往是未知的。而且,非线性是普遍存在的,线性系统只是对非线性系统的一种近似。因此,了解对象准确的模型,对设计控制器及其重要。在一些实际对象中,如导弹,化学过程,生物规律,药物反应,以及社会经济等,这些对象使用机理分析法比较困难,但是通过使用辨识技术可以建立系统精确的模型,确定最优控制率[1]。如今,系统辨识技术已经在航空航天,海洋工程,生物学等各个领域获得了广泛运用。 2.系统辨识的基本思想与常用方法 辨识的目的是为了获得对象模型。对象的模型有多种表现形式,它包括直觉模型,图表模型,数学模型,解析模型,程序模型和语言模型。这些模型之间可以相互转换。我们在建立系统模型时,需要遵循目的性,实在性,可辨识性,悭吝性的基本原则。目的性指的是建模的目的要明确,实在性指的是模型的物理概念要明确。可辨识性指的是模型结构合理,输入信号持续激励,数据量充足。悭吝性指的是被辨识参数的个数要尽量少。 辨识对象模型要遵循上面的基本原则。它是将对象看成一个黑箱。从含有噪声的输入输出数据中,按照一个准则,运用辨识理论,从一组给定的模型中,确定一个与所测系统等价的模型,是现代控制理论的一个分支。系统辨识由数据、模型类和准则三要素组成。数据是由观测实体而得,它不是唯一的,受观测时间、观测目的、观测手段等影响。模型类就是模型结构,它也不是唯一的,受辨识目的、辨识方法等影响。而准则是辨识的优化目标,用来衡量模型接近实际系统的标准。它也不是唯一的,受辨识目的、辨识方法的影响。由于存在多种数据拟合

系统辨识最小二乘参数估计matlab

最小二乘参数估计 摘要: 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。这种算法在使用时,占用内存大,离线辨识,观测被辨识对象获得的新数据往往是逐次补充到观测数据集合中去的。在应用一次完成算法时,如果要求在每次新增观测数据后,接着就估计出系统模型的参数,则需要每次新增数据后要重新求解矩阵方程()Z l T l l T l ΦΦΦ-∧=1θ。 最小二乘辩识方法在系统辩识领域中先应用上已相当普及,方法上相当完善,可以有效的用于系统的状态估计,参数估计以及自适应控制及其他方面。 关键词: 最小二乘(Least-squares ),系统辨识(System Identification ) 目录: 1.目的 (1) 2.设备 (1) 3引言 (1) 3.1 课题背景 (1) 4数学模型的结构辨识 (2) 5 程序 (3) 5.1 M 序列子函数 ................................................................................. 错误!未定义书签。 5.2主程序............................................................................................... 错误!未定义书签。 6实验结果: ................................................................................................................................... 3 7参考文献: ................................................................................................. 错误!未定义书签。 1.目的 1.1掌握系统辨识的理论、方法及应用 1.2熟练Matlab 下最小二乘法编程 1.3掌握M 序列产生方法 2.设备 PC 机1台(含Matlab 软件) 3引言 3.1 课题背景 最小二乘理论是有高斯(K.F.Gauss )在1795年提出:“未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。”这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最

系统辨识与自适应控制论文

XXXXXXXXXX 系统辨识与自适应控制课程论文 题目:自适应控制综述与应用 课程名称:系统辨识与自适应控制 院系:自动化学院 专业:自动化 班级:自动化102 姓名: XXXXXX 学号: XXXXXXXXX 课程论文成绩: 任课教师: XXXXX 2013年 11 月 15 日

自适应控制综述与应用 一.前言 对于系统辨识与自适应控制这门课,前部分主要讲了系统辨识的经典方法(阶跃响应法、频率响应法、相关分析法)与现代方法(最小二乘法、随机逼近法、极大似然法、预报误差法)。对于系统辨识,简单的说就是数学建模,建立黑箱系统的输入输出关系;而其主要分为结构辨识(n)与参数辨识(a、b)这两个任务。 由于在课上刘老师对系统辨识部分讲的比较详细,在此不再赘述,下面讨论自适应控制部分的相关内容。 对于自适应控制的概念,我觉得具备以下特点的控制系统,可以称为自适应控制系统: 1、在线进行系统结构和参数辨识或系统性能指标的度量,以便得到系统当前状态的改变情况。 2、按一定的规律确定当前的控制策略。 3、在线修改控制器的参数或可调系统的输入信号。 二.自适应控制综述 1.常规控制系统与自适应控制系统比较 (1)控制器结构不同 在传统的控制理论与控制工程中,常规控制系统的结构主要由控制器、控制对象以及反馈控制回路组成。 而自适应控制系统主要由控制器、控制对象、自适应器及反馈控制回路和自适应控制回路组成。 (2)适用的对象与条件不同 传统的控制理论与控制工程中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论采用频域方法,还是状态空间方法,对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确地描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满意的控制效果。 然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的.对于这类事先难以确定数学模型的系统,通过事先整定好控制器参数的常规控制往往难以对付。 面对上述系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就 是自适应控制所要研究解决的问题.自适应控制的基本思想是:在控制系统的运行过程中,系统本身不断地测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而作出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。按这种思想建立起来的控制系统就称为自适应控制系统。

系统辨识与自适应控制作业

系统辨识与自适应控制 学院: 专业: 学号: 姓名:

系统辨识与自适应控制作业 一、 对时变系统进行参数估计。 系统方程为:y(k)+a(k)y(k-1)=b(k)u(k-1)+e(k) 其中:e(k)为零均值噪声,a(k)= b(k)= 要求:1对定常系统(a=0.8,b=0.5)进行结构(阶数)确定和参数估计; 2对时变系统,λ取不同值(0.9——0.99)时对系统辨识结果和过程进行 比较、讨论 3对辨识结果必须进行残差检验 解:一(1): 分析:采用最小二乘法(LS ):最小二乘的思想就是寻找一个θ的估计值θ? , 使得各次测量的),1(m i Z i =与由估计θ? 确定的量测估计θ??i i H Z =之差的平方和最小,由于此方法兼顾了所有方程的近似程度,使整体误差达到最小,因而对抑制误差是有利的。在此,我应用批处理最小二乘法,收敛较快,易于理解,在系统参数估计应用中十分广泛。 作业程序: clear all; a=[1 0.8]'; b=[ 0.5]'; d=3; %对象参数 na=length(a)-1; nb=length(b)-1; %na 、nb 为A 、B 阶次 L=500; %数据长度 uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i) yk=zeros(na,1); %输出初值 x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值 xi=randn(L,1); %白噪声序列 theta=[a(2:na+1);b]; %对象参数真值 for k=1:L phi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi 矩阵 y(k)=phi(k,:)*theta+xi(k); %采集输出数据 IM=xor(S,x4); %产生逆M 序列 if IM==0 u(k)=-1; else u(k)=1; end S=not(S); M=xor(x3,x4); %产生M 序列

自适应控制大作业

自适应控制结课作业 班级: 组员: 2016年1月

目录 1 遗忘因子递推最小二乘法 (1) 1.1最小二乘理论 (1) 1.2带遗忘因子的递推最小二乘法 (1) 1.2.1白噪声与白噪声序列 (1) 1.2.2遗忘因子递推最小二乘法 (2) 2.2仿真实例 (3) 2 广义最小方差自校正控制 (5) 2.1广义最小方差自校正控制 (5) 2.2仿真实例 (6) 3 参考模型自适应控制 (9) 3.1参考模型自适应控制 (9) 3.2仿真实例 (12) 3.2.1数值积分 (12) 3.2.2仿真结果 (12) 参考文献 (16)

1 遗忘因子递推最小二乘法 1.1最小二乘理论 最小二乘最早的想法是高斯在1795年预测行星和彗星运动轨道时提出来的,“未知量的最大可能的值是这样一个数值,它使各次实际观测和计算值之间的差值的平方乘以度量其精确度的数值以后的和为最小”。这一估计方法原理简单,不需要随机变量的任何统计特性,目前已经成为动态系统辨识的主要手段。最小二乘辨识方法使其能得到一个在最小方差意义上与实验数据最好拟合的数学模型。由最小二乘法获得的估计在一定条件下有最佳的统计特性,即统计结果是无偏的、一致的和有效的。 1.2带遗忘因子的递推最小二乘法 1.2.1白噪声与白噪声序列 系统辨识中所用到的数据通常含有噪声。从工程实际出发,这种噪声往往可以视为具有理想谱密度的平稳随机过程。白噪声是一种最简单的随机过程,是由一系列不相关的随机变量组成的理想化随机过程。白噪声的数学描述如下:如果随机过程()t ξ均值为0,自相关函数为2()σδτ,即 2()()R ξτσδτ= 式中,()δτ为单位脉冲函数(亦称为Dirac 函数),即 ,0 ()0,0τδττ∞=?=? ≠?,且-()1d δττ∞ ∞ =? 则称该随机过程为白噪声,其离散形式是白噪声序列。 如果随机序列{}()V k 均值为零,且两两互不相关,即对应的相关函数为: 2,0 ()[()()]0,0v n R n E v k v k n n σ?==+=?=? 则这种随机序列称为白噪声序列。其谱密度函数为常数2(2)σπ。白噪声序列的功率在π-到π的全频段内均匀分布。 建立系统的数学模型时,如果模型结构正确,则模型参数辨识的精度将直接依赖于输入信号,因此合理选用辨识输入信号是保证能否获得理想的辨识结果的

2003版系统辨识最小二乘法大作业

西北工业大学系统辩识大作业 题目:最小二乘法系统辨识

一、 问题重述: 用递推最小二乘法、加权最小二乘法、遗忘因子法、增广最小二乘法、广义最小二乘法、辅助变量法辨识如下模型的参数 离散化有 z^4 - 3.935 z^3 + 5.806 z^2 - 3.807 z + 0.9362 ---------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 噪声的成形滤波器 离散化有 4.004e-010 z^3 + 4.232e-009 z^2 + 4.066e-009 z + 3.551e-010 ----------------------------------------------------------------------------- = z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187 采样时间0.01s 要求:1.用Matlab 写出程序代码; 2.画出实际模型和辨识得到模型的误差曲线; 3.画出递推算法迭代时各辨识参数的变化曲线; 最小二乘法: 在系统辨识领域中 ,最小二乘法是一种得到广泛应用的估计方法 ,可用于动态 ,静态 , 线性 ,非线性系统。在使用最小二乘法进行参数估计时 ,为了实现实时控制 ,必须优化成参数递推算法 ,即最小二乘递推算法。这种辨识方法主要用于在线辨识。MATLAB 是一套高性能数字计算和可视化软件 ,它集成概念设计 ,算法开发 ,建模仿真 ,实时实现于一体 ,构成了一个使用方便、界面友好的用户环境 ,其强大的扩展功能为各领域的应用提供了基础。对 4324326.51411.5320120232320 Y s s s s G U s s s s ++++== ++++432 120120232320 E N W s s s s == ++++

系统辨识复习资料

1请叙述系统辨识的基本原理(方框图),步骤以及基本方法 定义:系统辨识就是从对系统进行观察和测量所获得的信息重提取系统数学模型的一种理论和方法。 辨识定义:辨识有三个要素——数据、模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型 辨识的三大要素:输入输出数据、模型类、等价准则 基本原理: 步骤:对一种给定的辨识方法,从实验设计到获得最终模型,一般要经历如下一些步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最后经过验证获得最终模型。 基本方法:根据数学模型的形式:非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、谱分析法。参数辨识——现代辨识方法(最小二乘法等) 2随机语言的描述 白噪声是最简单的随机过程,均值为零,谱密度为非零常数的平稳随机过程。 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数: 谱密度: 白噪声序列,白噪声序列是白噪声过程的离散形式。如果序列 满足: 相关函数: 则称为白噪声序列。 谱密度: M 序列是最长线性移位寄存器序列,是伪随机二位式序列的一种形式。 M 序列的循环周期 M 序列的可加性:所有M 序列都具有移位可加性 辨识输入信号要求具有白噪声的统计特性 M 序列具有近似的白噪声性质,即 M 序列“净扰动”小,幅度、周期、易控制,实现简单。 3两种噪声模型的形式是什么 第一种含噪声的被辨识系统数学模型0011()()()()n n i i i i y k a y k i b u k i v k ===-+-+∑∑,式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0 ()()()T y k k v k ψθ=+。其中,()()()()()()()=1212T k y k y k y k n u k u k u k n ψ------????L L ,,,,,,, ) ()(2τδστ=W R +∞ <<∞-=ωσω2)(W S )}({k W Λ,2,1,0,)(2±±==l l R l W δσ2)()(σωω== ∑ ∞-∞=-l l j W W e l R S ???≠=≈+=?0 , 00,Const )()(1)(0ττττT M dt t M t M T R bit )12(-=P P N

系统辨识大作业加学习心得

论文 系统辨识 姿态角控制 1.系统辨识概述 辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。社会科学和自然科学领域已经投入相当多的人力去观察、研究有关的系统辨识问题。 系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示可观系统(或将要改造的系统)本质特征的一种演算,并用这个模型吧对客观系统的理解表示成有用的形式。当然可以刻有另外的描述,辨识有三个要素:

数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识所研究的问题恰好是这些问题的逆问题。通常,预先给定一个模型类{}M(即给定一类已知结构的模型),一类输入信号u和等价准则(,)JLyyM(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择是误差函数J达到最小的模型,作为辨识所要求的结果。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的 一、控制对象 本文采用了控制不同电机转速组合的方法,对四轴旋翼蝶形飞行器进行姿态控制,使四旋翼蝶形飞行器在不同姿态下飞行时具有较好的性能。为了实现四轴旋翼蝶形飞行器的飞行控制,对飞行的控制系统进行了初步的设计,并给出了设计流程。同时利用matlab对四轴旋翼

系统辨识方法

系统辨识方学习总结 一.系统辨识的定义 关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观 测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。L.Ljung也给 “辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。出了一个定义: 二.系统描述的数学模型 按照系统分析的定义,数学模型可以分为时间域和频率域两种。经典控制理论中微 分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程 和离散状态空间方程也如此。一般在经典控制论中采用频域传递函数建模,而在现代控 制论中则采用时域状态空间方程建模。 三.系统辨识的步骤与内容 (1)先验知识与明确辨识目的 这一步为执行辨识任务提供尽可能多的信息。首先从各个方面尽量的了解待辨识的 系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。 对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。 (2)试验设计 试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度 的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。主要涉及以下两个问 题,扰动信号的选择和采样方法和采样间隔 (3)模型结构的确定 模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的, 对所辨识系统的眼前知识的掌握程度密切相关。为了讨论模型和类型和结构的选择,引 入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。所谓模型结 构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。在单输入单 输出系统的情况下,系统模型结构就只是模型的阶次。当具有一定阶次的模型的所有参 数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。 (4)模型参数的估计 参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶 段就称为模型参数估计。

系统辨识最小二乘法大作业 (2)

系统辨识大作业 最小二乘法及其相关估值方法应用 学院:自动化学院 学号: 姓名:日期:

基于最小二乘法的多种系统辨识方法研究 一、实验原理 1.最小二乘法 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。 设单输入-单输出线性定长系统的差分方程为 (5.1.1) 式中:为随机干扰;为理论上的输出值。只有通过观测才能得到,在观测过程中往往附加有随机干扰。的观测值可表示为 (5.1.2) 式中:为随机干扰。由式(5.1.2)得 (5.1.3) 将式(5.1.3)带入式(5.1.1)得 (5.1.4) 我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。 设 (5.1.5) 则式(5.1.4)可写成 (5.1.6) 在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。假定是不相关随机序列(实际上是相关随机序列)。 现分别测出个随机输入值,则可写成个方程,即 上述个方程可写成向量-矩阵形式 (5.1.7) 设 则式(5.1.7)可写为

(5.1.8) 式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出 (5.1.9) 如果噪声,则 (5.1.10) 从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。可用最小二乘法来求的估值,以下讨论最小二乘法估计。 2.最小二乘法估计算法 设表示的最优估值,表示的最优估值,则有 (5.1.11) 写出式(5.1.11)的某一行,则有 (5.1.12) 设表示与之差,即 - (5.1.13)式中 成为残差。把分别代入式(5.1.13)可得残差。设 则有 (5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数 (5.1.15) 为最小来确定估值。求对的偏导数并令其等于0可得 (5.1.16) (5.1.17)

系统辨识经典辨识方法

经典辨识方法报告 1. 面积法 辨识原理 分子多项式为1的系统 1 1 )(11 1++++= --s a s a s a s G n n n n Λ……………………………………………() 由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。大多数自衡的工业过程对象的y(t)可以用下式描述来近似 1)() ()()(a 111=++++--t y dt t dy a dt t y d a dt t y d n n n n K ……………………………() 面积法原则上可以求出n 为任意阶的各系数。以n=3为例,注意到 1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dt t y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得 ?-=++t dt t y t y a dt t dy a dt t y d a 01223 )](1[)() ()(…………………………………() 定义 ?-=t dt t y t F 01)](1[)(……………………………………………………………() 则由式()给出的条件可知,在t →∞ ?∞ -=01)](1[a dt t y ……………………………………………………………() 将式a 1y(t)移到等式右边,定义 )()]()([)() (a 201123 t F dt t y a t F t y a dt t dy t =-=+?…………………………………() 利用初始条件()当t →∞时 )(a 22∞=F …………………………………………………………………… () 同理有a 3=F 3(∞) 以此类推,若n ≥2,有a n =F n (∞) 分子、分母分别为m 阶和n 阶多项式的系统

系统辨识之最小二乘法

方法一、最小二乘一次性算法: 首先对最小二乘法的一次性辨识算法做简要介绍如下: 过程的黑箱模型如图所示: 其中u(k)和z(k)分别是过程的输入输出,)(1-z G 描述输入输出关系的模型,成为过程模型。 过程的输入输出关系可以描述成以下最小二乘格式: )()()(k n k h k z T +=θ (1) 其中z(k)为系统输出,θ是待辨识的参数,h(k)是观测数据向量,n(k) 是均值为0的随机噪声。 利用数据序列{z (k )}和{h (k )}极小化下列准则函数: ∑=-=L k T k h k z J 12])()([)(θθ (2) 使J 最小的θ的估计值^ θ,成为最小二乘估计值。 具体的对于时不变SISO 动态过程的数学模型为 )()()()()(11k n k u z B k z z A +=-- (3) 应该利用过程的输入、输出数据确定)(1-z A 和 )(1-Z B 的系数。 对于求解θ的估计值^θ,一般对模型的阶次 a n , b n 已定,且b a n n >;其次将(3)模 型写成最小二乘格式 )()()(k n k h k z T +=θ (4) 式中 ?????=------=T n n T b a b a b b b a a a n k u k u n k z k z k h ],,,,,,,[)](,),1(),(,),1([)(2121 θ (5)

L k ,,2,1 = 因此结合式(4)(5)可以得到一个线性方程组 L L L n H Z +=θ (6) 其中 ???==T L T L L n n n n L z z z z )](),2(),1([)](),2(),1([ (7) 对此可以分析得出,L H 矩阵的行数为),max(b a n n L -,列数b a n n +。 在过程的输入为2n 阶次,噪声为方差为1,均值为0的随机序列,数据长度)(b a n n L +>的情况下,取加权矩阵L Λ为正定的单位矩阵I ,可以得出: L T L L T L z H H H 1^ )(-=θ (8) 其次,利用在Matlab 中编写M 文件,实现上述算法。 此次算法的实现,采用6阶M 序作为过程黑箱的输入;噪声采用方差为1,均值为0的随机数序列;黑箱模型假设为:y(k)-1.5y(k-1)+0.7y(k-2)=2u(k-1)+0.5u(k-2),则系统输出为Z(k)-1.5Z(k-1)+0.7Z(k-2)=2U(k-1)+0.5U(k-2)+n (k );模型的阶次2,2==b a n n ;数据长度取L=200。 程序清单如下见附录:最小二乘一次性算法Matlab 程序 运行结果如下: 图1 最小二乘一次性算法参数真值与估计值 其中re 为真值,ans 为估计值^ θ 结果发现辨识出的参数与真值之间存在细微误差,这是由于系统噪声以及数据长度L 的限制引起的,最小二乘辨识法是一种无偏估计方法。 方法二、最小二乘递推算法: 最小二乘一次性算法计算量大,并且浪费存储空间,不利于在线应用,由此引出最小

系统辨识与自适应控制读书报告

系统辨识与自适应控制读书报告 1、概述 20世纪60年代,自动控制理论发展到了很高的水平。与此同时,工业大生产的发展,也要求将控制技术提高到更高的水平。现代控制理论的应用是建立在已知受控对象的数学模型这一前提下的,而在当时对受控对象数学模型的研究相对较为滞后。现代控制理论的应用遇到了确定受控对象合适的数学模型的各种困难。因此,建立系统数学模型的方法——系统辨识,就成为应用现代控制理论的重要前提。在另一方面,随着计算机科学的飞速发展,计算机为辨识系统所需要进行的离线计算和在线计算提供了高效的工具。在这样的背景下,系统辨识问题便愈来愈受到人们的重视,成为发展系统理论,开展实际应用工作中必不可少的组成部分。 “系统辨识”是研究如何利用系统试验或运行的、含有噪声的输入输出数据来建立被研究对象数学模型的一种理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。 自适应系统利用可调系统的输入量、状态向量及输出量来测量某种性能指标,根据测得的性能指标与给定的性能指标的比较,自适应机构修改可调系统的参数或者产生辅助输入量,以保持测得的性能指标接近于给定的性能指标,或者说测得的性能指标处于可接受性能指标的集合内。自适应系统的基本结构如图1所示。图中所示的可调系统可以理解为这样一个系统,它能够用调整它的参数或者输入信号的方法来调整系统特性。 未知扰动已知扰动 图1 自适应系统的基本结构 2、系统辨识的方法

系统辨识及自适应控制实验..

Harbin Institute of Technology 系统辨识与自适应控制 实验报告 题目:渐消记忆最小二乘法、MIT方案 与卫星振动抑制仿真实验 专业:控制科学与工程 姓名: 学号: 15S004001 指导老师: 日期: 2015.12.06 哈尔滨工业大学 2015年11月

本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用; 第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响; 第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。 一、系统辨识 1. 最小二乘法的引出 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。设单输入-单输出线性定长系统的差分方程为: ()()()()()101123n n x k a x k a k n b u k b u x k n k +-+?+-=+?+-=,,,, (1.1) 错误!未找到引用源。 式中:()u k 错误!未找到引用源。为控制量;错误!未找到引用源。为理论上的输出值。错误!未找到引用源。只有通过观测才能得到,在观测过程中往往附加有随机干扰。错误!未找到引用源。的观测值错误!未找到引用源。可表示为: 错误!未找到引用源。 (1.2) 式中:()n k 为随机干扰。由式(1.2)得 错误!未找到引用源。 ()()()x k y k n k =- (1.3) 将式(1.3)带入式(1.1)得 ()()()()()()()101111()n n n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+?+-=+-+?+ -++-∑ (1.4) 我们可能不知道()n k 错误!未找到引用源。的统计特性,在这种情况下,往往把()n k 看做均值为0的白噪声。 设 错误!未找到引用源。 (1.5)

相关主题
文本预览
相关文档 最新文档