当前位置:文档之家› 综合比较直流电桥与交流电桥的异同

综合比较直流电桥与交流电桥的异同

综合比较直流电桥与交流电桥的异同
综合比较直流电桥与交流电桥的异同

A B

C

D

G

R 1

R 2

R s

R x

E

I 1

I 2

图1 直流电桥

综合比较直流电桥与交流电桥的异同

08物理一班 刘娟娟 20081041146

Liujuanjuan

摘要:通过实验了解直流电桥与交流桥路的特点和调节平衡的方法以及用直流电桥、交流电桥测电阻

的方法,了解直流电桥与交流电桥的区别

Abstract : through the experiment about DC bridge and AC bridge circuit characteristics and regulation of balance and method of DC bridge, bridge methods of measuring resistance, understanding of DC bridge and the bridge between 关键词:直流电桥、交流电桥、电阻 Key words: DC bridge, bridge, resistance

引言:直流电桥是一种用比较方法测电阻的仪器,其主要特点是测量精度高。交流电桥是一种比较式仪器,在电测技术中占有重要地位。 仪器介绍

直流电桥是一种用比较方法测电阻的仪器,其主要特点是测量精度高。和伏安法测电阻相比,电桥法将两个量(电压和电流)的测量转换成了一个量的平衡检测。平衡检测对阻值的变化很敏感,利用电桥对阻值变化敏感的特点,通过某种电阻式传感器还可以进行温度、湿度、压强等非电量的测量。

直流电桥主要分为单电桥(惠斯通电桥)和双电桥(开尔文电桥)。 单电桥用于测量1Ω-106Ω范围内的电阻值的电阻,双电桥用于测量1Ω以下的低电阻。

交流电桥是一种比较式仪器,在电测技术中占有重要地位。交流电桥主要用于测量交流等效电阻及其时间常数;电容及其介质损耗;自感及其线圈品质因数和互感等电参数的精密测量,也可用于非电量变换为相应电量参数的精密测量。

常用的交流电桥分为阻抗比电桥和变压器电桥两大类。习惯上一般称阻抗比电桥为交流电桥。本实验中交流电桥指的是阻抗比电桥。交流电桥的线路虽然和直流单臂电桥线路具有同样的结构形式,但因为它的四个臂是阻抗,所以它的平衡条件、线路的组成以及实现平衡的调整过程都比直流电桥复杂。

图2 交流电桥原理

K R D I 0 E A 1 B 1 C 1 D 1 E F A 2 B 2 C 2 D 2

G R 1 R 2 R 3

R 4

I 1

I 2

I 3

I 1- I 3

一、直流电桥的基本原理和平衡条件

1、惠斯通电桥的基本电路如图1所示。

电阻R 1、R 2、R s 、Rx 组成电桥的四个桥臂,接有检流计的连线C 、D 两点的电位直接进行比较,当两点电位相等时,检流计G 中无电流通过,电桥达到平衡,平衡时,I 1R 1=I 2R 2、I 1R s =I 2R x 。

由上两式得出电桥的平衡条件

若已知R 1、R 2、R s ,则可求得

用惠斯通电桥测电阻R x 时,首先要调电桥的平衡。本实验中R 1、R 2、R s 均用电阻箱充任,都是可调的。

但调平衡时最好先固定比率系数(或叫倍率) , 然后再调R s 直至平衡。

2、双电桥(或开尔文电桥)的原理见图3。Rs 是已知标准低电阻,R x 是待测低电阻,二者都采用四端接法;R 1、R 2、R

3、R 4是已知中阻值电阻,可认为附加电阻对R 1—R 4无影响。

R s R a R x

图3

设总电流I 0在B 1点分为I 1和I 2两部分,I 1在C 1点又分为I 3及(I 1-I 3)两部分。当电桥平衡时,检流计中无电流,其两端电位U E 和U F 相等。由B 1点到E 点及B 1点到F 点的电压相等,可得

I 2 R 1=I 1R s + I 3 R 2

同理,根据E 点到C 2及F 点到C 2点的电压应相等,有

I 2 R 3=I 3R 4+ I 1 R x

设C 1点到B 2点的附加电阻为R a ,由C 1点到B 2点两条支路的压降应一样,得 I 3(R 2+R 4)=(I 1-I 3)R a 从以上三式联立解出 (1)

x s

R R R R =2112

R R K r =s x

R R R R 1

2=)(2

4

1342213R R R R R R R R R R R R R a a s x -+++=

如果令R 1=R 2,R 3=R 4,则上式右边第二项

于是可得到

(2)

在式(1)中,R a 是导线和接点引起得附加电阻,阻值无法得到,即使电桥平衡也不能根据式(1)得出R x ,解决的办法是使式(1)的右边第二项为零。所以,在实验中要始终保持R 3/R 1=R 4/R 2。为方便起见,一般取R 3=R 4,R 2=R 1。

二、 交流电桥的基本原理和平衡条件

图2是交流电桥的原理线路。它与直流单臂电桥原理相似。在交流电桥中,四个桥臂一般是由交流电路元件如电阻、电感、电容组成;电桥的电源通常是正弦交流电源;交流平衡指示仪的种类很多,适用于不同频率范围。频率为200Hz 以下时可采用谐振式检流计;音频范围内可采用耳机作为平衡指示器;音频或更高的频率时也可采用电子指零仪器;也有用电子示波器或交流毫伏表作为平衡指示器的。本实验采用高灵敏度的电子放大式指零仪,具有足够的灵敏度。指示器指零时,电桥达到平衡。

我们在正弦稳态的条件下讨论交流电桥的基本原理。在交流电桥中,四个桥臂由阻抗元件组成,在电桥的一个对角线cd 上接入交流指零仪,另一对角线ab 上接入交流电源。

当调节电桥参数,使交流指零仪中无电流通过时(即I 0=0),cd 两点的电位相等,电桥达到平衡,这时有

U ac =U ad U cb =U db

即: I 1Z 1=I 4Z 4 I 2Z 2=I 3Z 3 两式相除有:

3

34

42211Z I Z I Z I Z I =

当电桥平衡时,I 0=0,由此可得: I 1=I 2, I 3=I 4

所以 Z 1Z 3=Z 2Z 4

上式就是交流电桥的平衡条件,它说明:当交流电桥达到平衡时,相对桥臂的阻抗的乘积相等。 由图2可知,若第一桥臂由被测阻抗Z x 构成,则:

43

2

Z Z Z Z x ?=

当其他桥臂的参数已知时,就可决定被测阻抗Z x 的值。 1、交流电桥平衡的分析

在正弦交流情况下,桥臂阻抗可以写成复数的形式 ?

j Ze

jX R Z =+=

)(2

413422=-++R R

R R R R R R R a a s

x R R R R 1

3=

若将电桥的平衡条件用复数的指数形式表示,则可得 4231

4231????j j j j e Z e Z e Z e

Z ?=?

即 )(42)

(314231????++?=?j j e Z Z e

Z Z

根据复数相等的条件,等式两端的幅模和幅角必须分别相等,故有 Z 1Z 3=Z 2Z 4 φ1+φ3=φ2+φ4

上面就是平衡条件的另一种表现形式,可见交流电桥的平衡必须满足两个条件:一是相对桥臂上

阻抗幅模的乘积相等;二是相对桥臂上阻抗幅角之和相等。

由式3可以得出如下两点重要结论。

(1) 交流电桥必须按照一定的方式配置桥臂阻抗

如果用任意不同性质的四个阻抗组成一个电桥,不一定能够调节到平衡,因此必须把电桥各元件的性质按电桥的两个平衡条件作适当配合。

在很多交流电桥中,为了使电桥结构简单和调节方便,通常将交流电桥中的两个桥臂设计为纯电阻。

由式(3)的平衡条件可知,如果相邻两臂接入纯电阻,则另外相邻两臂也必须接入相同性质的阻抗。例如若被测对象Z x 在第一桥臂中,两相邻臂Z 2和Z 3为纯电阻的话,即φ2=φ3=0,那么由(3)式可得:φ4=φx ,若被测对象Z x 是电容,则它相邻桥臂Z 4也必须是电容;若Z x 是电感,则Z 4也必须是电感。

如果相对桥臂接入纯电阻,则另外相对两桥臂必须为异性阻抗。例如相对桥臂Z 2和Z 4为纯电阻的话,即φ2=φ4=0,那么由式(3)可知道:φ3=-φx ;若被测对象Z x 为电容,则它的相对桥臂Z 3必须是电感,而如果Z x 是电感,则Z 3必须是电容。

(2) 交流电桥平衡必须反复调节两个桥臂的参数

在交流电桥中,为了满足上述两个条件,必须调节两个桥臂的参数,才能使电桥完全达到平衡,而且往往需要对这两个参数进行反复地调节,所以交流电桥的平衡调节要比直流电桥的调节困难一些。

2、交流电桥的常见形式 (1)电容电桥

电容电桥主要用来测量电容器的电容量及损耗角,为了弄清电容电桥的工作情况,首先对被测电容的等效电路进行分析,然后介绍电容电桥的典型线路。

(2)电感电桥

电感电桥是用来测量电感的,电感电桥有多种线路,通常采用标准电容作为与被测电感相比较的标准元件,从前面的分析可知,这时标准电容一定要安置在与被测电感相对的桥臂中。根据实际的需要,也可采用标准电感作为标准元件,这时`标准电感一定要安置在与被测电感相邻的桥臂中,这里不再作为重点介绍。

一般实际的电感线圈都不是纯电感,除了电抗X L =ωL 外,还有有效电阻R ,两者之比称为电感线圈的品质因数Q 。即

Q=

R

L

ω )

3(

(3)电阻电桥

测量电阻时采用惠斯登电桥,如图4所示。可见桥路形式与直流单臂电桥相同,只是这里用交流电源和交流指零仪作为测量信号。

当检流计G 平衡时,G 无电流流过,cd 两点为等电位,则:

I 1= I 2,I 3= I 4

下式成立: I 1R 1=I 4R 4

I 2R 2 =I 3R 3

于是有

3

4

211R R R R

所以

R x =34

R R ·R 2

即R x =a

n

R R ·R b

由于采用交流电源和交流电阻作为桥臂,所以测量一些残余电抗较大的电阻时不易平衡,这时可改用直流电桥进行测量。

综上所述,直流电桥是一种利用比较法精确测量电阻的方法,也是电学中一种很基本的电路连接方式。交流电桥是由电阻,电容或电感等元件组成的桥式电路,交流电桥不但可以测交流电阻,电感,电容;还可以测量材料的介电常数,电容器的介质损耗,线圈间的互感系数和耗合系数,磁性材料的磁导率和液体的电导率。交流电桥的平衡条件比直流电桥的平衡条件多一个相位平衡。

图 4 交流电桥测量电阻

a b

c

直流24V的电源和交流24V的电源的区别

直流24V的电源和交流24V的电源的区别?时间:2011-01-05 09:45来源:未知作者:upszm 产品受关注度:711次 1)..<损耗> 直流电的传输损耗大,所以不适合长距离传输, ....交流电的传输损耗小,所以适合长距离传输, 2)..<使用>: 直流电电压稳定,无白躁声,故适於电子产品使用(例如电视机,收音机电脑等), ....交流电要经过整流/开关电源等变成直流电才能供电子产品使用 3)..<测量>: 12V交直流电的区别: ....a)用数字万能表测量,分别用20V交流电压及20V直流电压档测量,结果会不一样, ....b)简单测量法:用感应电笔(非普通用电笔)放在电线包皮外,12V交流电仍会有显示,12V 直流无显示, 4)..<安全>: 12V直流电比12V交流电对人体更安全, ....天气坏/人心情坏(人体电阻降低)等情况时,12V交流电仍有可能会电死人,12V直流电在100%情况不会电死人, 6)..<图型>: 直流电的图型(电压)是一条直线(可以说频率为0Hz),电压恒定(理想情况时), ....交流电的电压图型是正弦曲线(波浪型)(理想情况时),电压周期性,在每一时刻都不一样,频率=50Hz(国内)或60Hz(国外),但肉眼看通电后的电灯泡没有感觉, 7)..<公式>: 同是对一个电阻负载(灯泡)供电时,好似电流公式功率公式都相同无差别,对非电阻负载(电机等)供电时,参考以上两个回答(好像电流功率公式不一样,交流还要加上频率等变量), 8)..<附加>: 如果想在电线进行数据传输(例如国外的家居大厦之智能控制系统),只有交流电适合, ....直流电也有可能适合,但国内外基本上无对直流电此情况的研究(因为直流电的传输损耗故基本放弃此附加数据想法), 9)..<峰值>: 根据电压图型,12V交直流电的瞬间峰值电压不一样,瞬间峰值电压(12V直)≡12V,瞬间峰值电压(12V交流)=√2×12V 10)..<制作>:直流电制作简单多种方法,交流电制作复杂需专门机器,若为野外或战地无设备工具情况临时短时使用12V设备(例如通讯设备),要制作12V直流还可以采集1000个(大约数目未核实)番茄插上电极串连来临时短时使用,要无设备工具情况下制作12V交流电则无可能 另:汽车发动机好似是直接输出直流12V(或者24V)的,故有车时的野外或战时情况,12V直流设备易於使用(含仍可稍稍小部分改装从而使用台式电脑(CRT式显示器好似也可以小部分改装电源部分后使用) ), 另:在和平时代/城市地方,12V交流易於取得,12V直流电源较难取得(指高耗能中耗能设备) 在战时/野外地方,12V交流难取得(因需机器),12V直流相对而言,易於取得(例如太阳能充电/汽车/..) 11)..<变压>:如果想分别对12V交直流电进行变压处理,使用的原理不一样, ....对12V交流电:多数采用线圈变压器处理(包括电流感应器电压感应器(用於大厦总总电表使用)都是此原理),变压原理简单,变压设备复杂(指体积/制作工艺), ....对12V直流电:多数采用逆变器(电子)处理(包括冰箱稳压器/电脑UPS都是此原理),变压原理复杂,变压设备简单(体积小)或复杂(制作工艺复杂(除非机器生产)), 12)..<转换>: 12V交流电转为12V直流:简单(二极管+电容+稳压管) ....12V直流电转为12V交流:复杂(起震器/...)

交流电和直流电作用有什么区别

交流电和直流电作用有什么区别 交流电即交变电流,大小和方向都随时间做周期性变化的电流。直流电则相反。电网公司一般使用交流电方式送电,但有高压直流电用于远距离大功率输电、海底电缆输电、非同步的交流系统之间的联络等 高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3. 如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交

交流电与直流电区别

交流电和直流电的区别

交流电即交变电流,大小和方向都随时间做周期性变化的电流。 直流电则相反。电网公司一般使用交流电方式送电,但有高压直流电用于远距离大功率输电、海底电缆输电、非同步的交流系统之间的联络等高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3.

如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成

交流电焊机和直流电焊机区别

交流电焊机和直流电焊机区别 交流电焊机交流电焊机实质上是一种特殊的降压变压器。将220V和380V交流电变为低压的交流电,交流电焊机既是输出电源种类为交流电源的电焊机。焊接变压器有自身的特点,外特性就是在焊条引燃后电压急剧下降的特性。 交流电焊机使用时要正确接线,即电焊机的外壳与二次侧应可靠地保护接零或接地,防止外壳露点或高压窜入低压对人体造成触电危险,如下图所示,但它的焊钳端不能保护接零或接地,电焊机的电源线应为三心橡皮软线值,修复或更换损坏件,检查导线电缆的绝缘是否有损伤,使设备处于良好的技术状态。 为了适应不同材料和板厚的焊接要求,焊接电流能从几十安培调到几百安培,并可根据工件的厚度和所用焊条直径的大小任意调节所需的电流值。电流的调节一般分为两级:一级是粗调,常用改变输出线头的接法(Ⅰ位置连接或Ⅱ位置连接),从而改变内部线圈的圈数来实现电流大范围的调节,粗调时应在切断电源的情况下进行,以防止触电伤害;另一级是细调,常用改变电焊机内“可动铁芯”(动铁芯式)或“可动线圈”(动圈式)的位置来达到所需电流值,细调节的操作是通过旋转手柄来实现的,当手柄逆时针旋转时电流值增大,手柄顺时针旋转时电流减小,细调节应在空载状态下进行。各种型号的电焊机粗调与细调的范围,可查阅标牌上的说明。 直流焊机直流焊机一般分为可控硅整流和逆变两种,现在用的较多的是逆变焊机。 优点: 1.同规格400A焊机体积比交流焊机一般小一半以上,重量约为交流焊机的1/3左右,所有移动特别方便。 2.同规格的逆变焊机比交流焊机节约电能1/3以上,电费省很多哟。 3.酸性焊条、碱性焊条都可以焊接 4.电流调节很方便,只要旋一下电位器就可以,一般焊机还有电流预显功能 5. 三相供电,对电网影响较小。

交流电和直流电区别-交流电知识

交流电和直流电区别,交流电知识 交流电是大小和方向都随时间变化的一种电。交流电是用交流发电机发出的,在发电过程中,多对磁极是按一定的角度均匀分布在一个圆周上,使得发电过程中,各个线圈就切割磁力线,由于具有多对磁极,每对磁极产生的磁力线被切割产生的电压、电流都是按弦规律变化的,,所以能够不断的产生稳定的电流。交流电的频率一般是50赫兹,即每秒变化50次.当然也有其它频率.如电子线路中有方波的、三角形的等,但这些波形的交流电不是导体切割磁力线产生的,而是电容充放电、开关晶体管工作时产生的。 直流电的方向则不随时间而变化。通常又分为肪动直流电和稳恒电流。脉动

直流电中有交流成分,如彩电中的电源电路中大约300伏左右的电压就是脉动直流电成分可通过电容去除。稳恒电流则是比较理想的,大小和方向都有不变。 最本质的区别是: 交流电是按正弦曲线变化的.由于交流发电机,在发电过程中,多对磁极是按一定的角度均匀分布在一个圆周上,使得发电过程中,各个磁极切割磁力线的时候,具有互补性,所以能够不断的产生稳定的电流;交流电的频率一般是50赫兹,即每秒变化50次.当然也有其它频率. 直流电则不是按正弦曲线变化的.没有频率的变化. 交流电与直流电最直观的区别是方向变不变;直流电的电流方向是不随时问变化的,但大小可能变化;最特殊的直流电是大小方向都不变的稳恒电流。所谓交流,就是电流交替流动,其方向是交替变化的,最常见的是民用电,它是正(余)弦式交流电,电微电子电路中常见的有方波电流 电人就是所谓的触电,是指电流经过人体形成了回路而且达到了一定的强度所造成的。关键的问题是要形成回路,并且电压在一定的范围之内。要想身体感觉到被电了,电流要有一定的强度,一般人体通过的电流不大于30mA就不会出现生命危险。 直流电一般正负极均不接地,这时你手握其中一极,和另一极是绝缘的,形不成回路,就不会触电。因为人体和电极间有一个电容效应,如果电压过高,照样会触电。 一般的交流电,是指的220/380V的系统,采用的是中性点(变压器)接地系统,也就是零线接地。这时如果人体触碰到了相线(火线)就会通过大地和零线形成回路,流经人体的电流会远远大于30mA,就形成了触电。另外说明的是:不管什么电,只要流经人体电流不大,都不会触电。

交流电与直流电区别

交流电和直流电的区别 交流电即交变电流,大小和方向都随时间做周期性变化的电流。 直流电则相反。电网公司一般使用交流电方式送电,但有高压直流电用于远距离大功率输电、海底电缆输电、非同步的交流系统之间的联络等高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3.如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流

损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整.

直流电和交流电的区别

直流电源与交流电源的区别 损耗 直流电的传输损耗大,所以不适合长距离传输, 交流电的传输损耗小,所以适合长距离传输, 使用 直流电电压稳定,无白躁声,故适於电子产品使用(例如电视机,收音机电脑等), 交流电要经过整流/开关电源等变成直流电才能供电子产品使用 测量-12V交直流电的区别: a)用数字万能表测量,分别用20V交流电压及20V直流电压档测量,结果会不一样, b)简单测量法:用感应电笔(非普通用电笔)放在电线包皮外,12V交流电仍会有显示,12V 直流无显示, 安全 12V直流电比12V交流电对人体更安全,人体电阻降低情况时,12V交流电仍有可能会电死人,12V直流电在100%情况不会电死人, 图型 直流电的图型(电压)是一条直线(可以说频率为0Hz),电压恒定(理想情况时), 交流电的电压图型是正弦曲线(波浪型)(理想情况时),电压周期性,在每一时刻都不一样,频率=50Hz(国内)或60Hz(国外),但肉眼看通电后的电灯泡没有感觉, 公式 同是对一个电阻负载(灯泡)供电时,好似电流公式功率公式都相同无差别,对非电阻负载(电机等)供电时,参考以上两个回答(好像电流功率公式不一样,交流还要加上频率等变量), 附加 如果想在电线进行数据传输(例如国外的家居大厦之智能控制系统),只有交流电适合, 直流电也有可能适合,但国内外基本上无对直流电此情况的研究(因为直流电的传输损耗故基本放弃此附加数据想法), 峰值 根据电压图型,12V交直流电的瞬间峰值电压不一样,瞬间峰值电压(12V直)≡12V,瞬间峰值电压(12V交流)=√2×12V 制作 直流电制作简单多种方法,交流电制作复杂需专门机器,若为野外或战地无设备工具情况临时短时使用12V设备(例如通讯设备),要制作12V直流还可以采集1000个(大约数目未核实)番茄插上电极串连来临时短时使用,要无设备工具情况下制作12V交流电则无可能另:汽车发动机好似是直接输出直流12V(或者24V)的,故有车时的野外或战时情况,12V 直流设备易於使用(含仍可稍稍小部分改装从而使用台式电脑(CRT式显示器好似也可以小部分改装电源部分后使用) ),

直流电VS交流电及其发展历史

直流电、交流电及其发展历史 关于电能的输送方式,是采用直流输电还是交流输电,在历史上曾引起过很大的争论。美国发明家爱迪生、英国物理学家开尔文都极力主张采用直流输电,而美国发明家威斯汀豪斯和英国物理学家费朗蒂则主张采用交流输电。 在早期,工程师们主要致力于研究直流电,发电站的供电范围也很有限,而且主要用于照明,还未用作工业动力。例如,1882年爱迪生电气照明公司(创建于1878年)在伦敦建立了第一座发电站,安装了三台110伏“巨汉”号直流发电机,这是爱迪生于1880年研制的,这种发电机可以为1500个16瓦的白炽灯供电。 但是随着科学技术和工业生产发展的需要,社会对电力的需求也急剧增大。由于用户的电压不能太高,因此要输送一定的功率,就要加大电流(P=IU)。而电流愈大,输电线路发热就愈厉害,损失的功率就愈多;而且电流大,损失在输电导线上的电压也大,使用户得到的电压降低,离发电站愈远的用户,得到的电压也就愈低。直流输电的弊端,限制了电力的应用,促使人们探讨用交流输电的问题。爱迪生虽然是一个伟大的发明家,但是他没有受过正规教育,缺乏理论知识,难以解决交流电涉及到的数学运算,阻碍了他对交流电的理解,所以在交、直流输电的争论中,成了保守势力的代表。在他的反对下,交流电遇到了很大的阻碍。 但是为了减少输电线路中电能的损失,只能提高电压。在发电站将电压升高,到用户地区再把电压降下来,这样就能在低损耗的情况下,达到远距离送电的目的。而要改变电压,只有采用交流输电才行。1888年,由费朗蒂设计的伦敦泰晤士河畔的大型交流电站开始输电。他用钢皮铜心电缆将1万伏的交流电送往相距10公里外的市区变电站,在这里降为2500伏,再分送到各街区的二级变压器,降为100伏供用户照明。以后,俄国的多利沃──多布罗沃斯基又于1889年最先制出了功率为100瓦的三相交流发电机,并被德国、美国推广应用。事实成功地证实了高压交流输电的优越性。并在全世界范围内迅速推广。 20世纪50年代后,电力需求日益增长,远距离大容量输电线路不断增加,电网扩大,交流输电受到同步运行稳定性的限制,在一定条件下的技术经济比较结果表明,采用直流输电更为合理,且比交流输电有较好的经济效益和优越的运行特性,因而直流输电重新被人们所重视。 18世纪以来,奥斯物发现了电流的磁效应,法拉第发现了电磁感应原理。这就为电动机和发电机的制造奠定了理论和实验基础。就在法拉第发现电磁感应原理的第二年,受法拉第发现的启示,法国人皮克希应用电磁感应原理制成了最初的发电机。 法拉第向英国皇家学会报告了他的实验及其发现,从而使法拉第被公认为电磁感应现象的发现者,他也顺理成章地成为变压器的发明人。但实际上最早发明变压器的是美国著名科学家亨利。实际上,亨利这个实验是电磁感应现象的非常直观的关键性实验,亨利这个实验装置

交流电和直流电的区别是什么

交流电是大小和方向都随时间变化的一种电。 交流电是用交流发电机发出的,在发电过程中,多对磁极是按一定的角度均匀分布在一个圆 周上,使得发电过程中,各个线圈就切割磁力线,由于具有多对磁极,每对磁极产生的磁力线被切割产生的电压、电流都是按弦规律变化的,,所以能够不断的产生稳定的电流。交流电的频率一般是50赫兹,即每秒变化50次.当然也有其它频率.如电子线路中有方波的、三角形的等,但这些波形的交流电不是导体切割磁力线产生的,而是电容充放电、开关晶体管工作时产生的。 直流电的方向则不随时间而变化。通常又分为肪动直流电和稳恒电流。脉动直流电中有交流成分,如彩电中的电源电路中大约300伏左右的电压就是脉动直流电成分可通过电容去除。稳恒电流则是比较理想的,大小和方向都有不变。 最本质的区别是: 交流电是按正弦曲线变化的.由于交流发电机,在发电过程中,多对磁极是按一定的角度均匀 分布在一个圆周上,使得发电过程中,各个磁极切割磁力线的时候,具有互补性,所以能够不断的产生稳定的电流;交流电的频率一般是50赫兹,即每秒变化50次.当然也有其它频率. 直流电则不是按正弦曲线变化的.没有频率的变化. 交流电与直流电最直观的区别是方向变不变;直流电的电流方向是不随时问变化的,但大小可能变化;最特殊的直流电是大小方向都不变的稳恒电流。所谓交流,就是电流交替流动,其方向是交替变化的,最常见的是民用电,它是正(余)弦式交流电,电微电子电路中常见的有方波电流 电人就是所谓的触电,是指电流经过人体形成了回路而且达到了一定的强度所造成的。关键的问题是要形成回路,并且电压在一定的范围之内。要想身体感觉到被电了,电流要有一定的强度,一般人体通过的电流不大于30mA就不会出现生命危险。 直流电一般正负极均不接地,这时你手握其中一极,和另一极是绝缘的,形不成回路,就不会触电。因为人体和电极间有一个电容效应,如果电压过高,照样会触电。 一般的交流电,是指的220/380V的系统,采用的是中性点(变压器)接地系统,也就是零线接地。这时如果人体触碰到了相线(火线)就会通过大地和零线形成回路,流经人体的电流会远远大于30mA,就形成了触电。 另外说明的是:不管什么电,只要流经人体电流不大,都不会触电。

我们所用的电有两种类型(交流电和直流电)

交流电和直流电 我们所用的电有两种类型,即交流电和直流电。 一、下面用通俗性语言来讲述一下。 1、从字面上理解其方向: 交流: 想一想我们人是怎么交流的呢?一个人说话,众人听那不叫交流,那是演讲,两人或两人以上相互间有问有答,有来有往才叫作交流。交流电就是如此,流出去再流回来有来有往,所以交流电有两个方向,且没有正负之分(其实是无法分辩,也只能在瞬时说出其极性来) 直流: 一直,径直的流,永不回头。直流电只从正极流向负极,所以直流电只有一个方向。 2、从比喻中理解其幅度 初学电子知识,会感到电过于抽象,所以我们可以把电与熟知的东西进行比喻,因为电流与水流极其相似,因此我们可以把“电”当做“水”,“电路”就等于“水路”。当然我们也可以用其它东西来比喻。(详见下文) 回想一下渠水在流动的时候,我们站在渠的某处,水流过这里时水量的多少是不是随时间不断变化呀?一会儿多,一会儿少,其实电在流动过程中也是这样。交流电的大小(幅度)在不断的变化,而直流电(比如干电池)的大小基本不变。 电子技术专业里一般把幅度变化的电称为交流电,我们常提到的信号(比如声音信号、图像信号、温度信号等等)就是交流电,。而把幅度和方向不变化的电称为直流电,它的用途是为电路提供能源(即供电)。 3、从思考中理解交流电的频率 既然交流电方向在不断的变化(流出去又流回来),那么你知道它一秒钟要流回来几次呢?每秒(单位时间)多少次就是频率(天下人都知道),电学中用Hz(赫兹)来表示,比如我国照明用电规定为50Hz,它的意思是导线中的交流电每秒要流出再流回50次。 4、从故事中理解交流电的相位 张三和李四都是发电厂的职工,某天张三于7:40:35启动A发电机开始发电,而李四于7:40:36启动B发电机开始发电,这两组发电机都是220V交流发电机,且频率均为50Hz,请你思考一下,如果我们在7:41:00时分别测两组发电机的电压,大

直流电和交流电的区别与交流电电压计算公式

直流电与交流电的区别 交流电定义: 强度与方向都随时间做周期性变化的电流叫做交变电流,简称交流电。电流的方向、大小会随时间改变。发电厂的发电机就是利用动力使发电机中的线圈运转,每转180°发电机输出电流的方向就会变换一次,因此电流的大小也会随时间做规律性的变化,此种电源就称为"交流电源"。简记为AC,如:家用电源。 直流电则就是电流方向不呈时间做周期性变化的电流,则为直流 直流分为交变直流标准直流脉冲直流等 电池的以及开关电源输出的,我们一般认为就是标准直流,而交变直流类似交流电,但她不呈周期变化,但电流方向会对调只就是不就是周期性的,而脉冲直流则为周期性的冲击电流,电流方向就是一定的。 一般我们只考虑标准直流。所以,直流电一般认为就是标准直流。即类似电池输出的电源。 交流电就是有频率的,通常电网接入供电为50HZ(比如中国)或60HZ(比如美国),电压有110V(比如美国)与220V(比如中国)等。 交流电在中国以220V 50HZ接入送电,她的50HZ频率,可以使用普通的工频变压器(则一般的变压器)进行变压,比较方便,而直流电想变压,则需要用开关电源,而开关电源相当贵,所以对于电网公司来说,投入太大了。 此外,由于接入用户的电力,相电压(火零线之间的电压)为220V,线电压(两不同绕组的火线之间电压)为380V。

而高压侧,一般变电台变压器输入电压为10KV(千伏)或20KV 35KV这3类为主,其中20KV最多。 由于高压输送,根据P=UI得知,功率一定时,电压越高电流则越小,而电流在导体能通过的能力,就是由导体截面积决定的。 这样高压输送,意味着可以用更小的导线,节约成本。 正因为如此,所以交流50HZ 60HZ这些频率的交流送电,变压成本更低。所以更适合国情。 但就是,超高压,比如远距离送电,跨省的这些,都就是直流输送,直流输送可以更加高效的利用导线的有效面积,主要就是交流电纯在感抗而影响效率的。但直流送电一般只用在远距离,比如西电东送,这样总体上瞧可以更加节约成本,但就是两端需要建设整流设备以及逆变设备将交流变为直流以及将直流变为交流并网。所以如果就是断距离传输,则成本太高了。只适合长距离传输。 我国三相四线制的线电压就是380V,相电压就是220V、。也就就是通常所说的两根火线380V。一火一零就是相电压220V。 线电压=相电压*3的2次方根,即220*1、732=381、04 两相之间的相位差为60度,所以乘以1、732。 对于对称的三相负载来说,计算三相的总功率就是用一相的功率乘以3。 怎样计算一相的功率呢?用一相的电压(就就是相电压)*一相的 电流 (说明:这里求的就是纯电阻电路的功率)

怎样区分交流、直流电

直流电定义:是指方向和时间不作周期性变化的电压或电流。交流电定义:指大小和方向随时间作周期性变化的电压或电流。 好像听上去有些抽象,我来帮你解释一下:先来说一下什么叫做方向,这里面的方向不是指的咱们平常说的那个方向,呵呵,可不是东西南北啊,它这里面说的这个方向是相量图上面说的方向,或者说正负,正是一个方向,负是一个方向(其实就是以0为界(上正下负),往上的方向为正方向,往下的方向为负方向),下面说电压,我想电压的概念你已经知道过了吧,就是一点对另一点的电位差,或者说是一点和另一点电压的差值,现在不管是直流电也好,交流电也罢,其实都是两点之间的电压,直流电的电压是正极相对于负极的电压,交流电的电压是火线相对于零线的电压,但是呢,你也看到定义了,直流电的电压或者电流是不随时间变化的(不随时间变化就是说不论你时间再长,我正极的电压一直比负极的电压高,其实这个就是别直流电和交流电的根本区别),我们一般都认为负极的电压为0,正极的电压比负极高,也就是说正极的电压是一直高于0V的,这说明什么呢,正极的电压一直在正的方向上(刚才说过了,0以上是正方向,0以下是负方向),也就是说不论时间再长,我正极的电压一直都在一个方向上,方向没有发生变化,现在你理解直流电了吗?一句话说了就是说正极电压一直比负极高的就是直流电。OK,下面说说交流电,刚才告诉你了直流电,下面说交流电就很方便了,刚才说正极电压一直比负极电压高的是直流电,那么正极电压有时比负极电压高有时比负极电压低的就是交流电,也就是说不一定谁比谁高,有时你高,有时他高,这就是交流电(刚才为了让你容易理解在交流的时候用到了正极与负极的概念,其实在交流电中是没有正极与负极的概念的,你知道就行了,交流用到的概念是火线与零线),我刚才说正极的电压有时比负极的电压高有时又比负极的电压低,现在改一下,你注意一下:火线的电压有时比零线的电压高,有时又比零线的电压低,我现在已经把名称给换过来了,在交流电中,零线的电压一直是0(记住是一直是0,它是不会变化的),这一点和直流电是很相似的,但是火线的电压有时候比0大,有时候又比0小,注意了,这里就牵扯到方向的问题了,这就是为什么交流电的定义里说交流电的电压和电流的方向会随着时间变化,注意了,只有火线的电压才会变化,零线不会变,那么因为零线的电压一直是0,而火线的电压有时候比0大,有时候比0小,所以电流的方向也是变化的,因为我们知道,电流的方向是从高电位(可能电位这个概念你不了解,你可以理解为高电压,你可以私下了解一下这个概念)向低电位流动,他们两个的电压说不定谁比谁高,所以电流方向也在变化,好了,说了这么多你一分也没有给!!哈哈哈哈!!希望你能理解!电这东西比较抽象,学起来确实有点难度,但是等你真正明白了以后其实一切都很简单,祝你学习愉快

交流电与直流电的区别

交流输电和直流输电的区别和应用 高二物理《交变流电》这一章节中,我们向学生讲授子交流输电,有学生问起直流是否好可以输电啊? 直流输电和交流输电有何不同、区别 ?我们为何没有用直流输电呢? 当学生这么问时,我们教师就应该向学生详细地说一下现实中有关交流输电和直流输电的有关知识. 输电是发电和用电的中间环节,现代输电工程中并存着两种输电方式,高压交流输电和压直流输电,两种方式各有自己的长处和不足,同时使用它们,可以取得更大的经济效益. 1 输电方式的变化 人类输送电力,已有100多年的历史了.输电方式是从直流输电开始的,1874年俄国彼得堡第一次实现了直流输电,当时输电电压仅100V ,随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6 000V ,但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难,由于不能直接给直流电升压,使得输电距离受到极大的限制.不能满足输送容量增长和输电距离增加的要求. 19世纪80年代末发明了三相交流发电机和变压器.1891年,世界上第一个三相交流发电站在德国劳风竣工,以3 104 V 高压向法兰克福输电,此后,交流输电就普遍的代替了直流输电.但是随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交变电流遇到了一系列不可克服的技术上的障碍,与此同时,大功率换流器(整流和逆流)的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到了人们的重视.1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电的装置;1954年在瑞典,从本土到果特兰岛,建立起了世界上第一条远距离高压直流输电工程· 2、直流输电系统 在直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交变电流.如图1所示为高压直流输电的典型线路示意图.在输电线路的始端,发电系统的交变电流经换流变压T 1.T 2升压后,送到整流器 H 1、 H 2中去.整流器 的主要部件是可控硅变流器和进行交直流变换的整流阀, 它的功能是将高压交变电流变为高压直流电后,送人输电 线路,直流电通过输 电线路L 1,和L 2:送到逆变器 H 3,和H 4中.逆变器的结构与整流器相同而作用刚好相 反,它把高压直流电变为高压交变电流.再经过变压器 T 3,和T 4降压,交流系统A 的电能就输送到交流系统B 中.在直流输电系统中,通过改变换流器的控制状态,也 可以把交流系统B 中的电能送到系统A 中去,也就是说整流器和逆变器是可以相互转换的. 3 交变电流和直流电的优缺点比较 高压直流输电与高压交流输电相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交变电流和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值.交变电流的优点主要表现在发电和配电方面:利用建立在电磁

直流电交流电之争

直流电VS交流电及其发展历史 2007-06-22 13:37:29| 分类:工作|举报|字号订阅 关于电能的输送方式,是采用直流输电还是交流输电,在历史上曾引起过很大的争论。美国发明家爱迪生、英国物理学家开尔文都极力主张采用直流输电,而美国发明家威斯汀豪斯和英国物理学家费朗蒂则主张采用交流输电。 在早期,工程师们主要致力于研究直流电,发电站的供电范围也很有限,而且主要用于照明,还未用作工业动力。例如,1882年爱迪生电气照明公司(创建于1878年)在伦敦建立了第一座发电站,安装了三台110伏“巨汉”号直流发电机,这是爱迪生于1880年研制的,这种发电机可以为1500个16瓦的白炽灯供电。 但是随着科学技术和工业生产发展的需要,电力技术在通信、运输、动力等方面逐渐得到广泛应用,社会对电力的需求也急剧增大。由于用户的电压不能太高,因此要输送一定的功率,就要加大电流(P=IU)。而电流愈大,输电线路发热就愈厉害,损失的功率就愈多;而且电流大,损失在输电导线上的电压也大,使用户得到的电压降低,离发电站愈远的用户,得到的电压也就愈低。直流输电的弊端,限制了电力的应用,促使人们探讨用交流输电的问题。爱迪生虽然是一个伟大的发明家,但是他没有受过正规教育,缺乏理论知识,难以解决交流电涉及到的数学运算,阻碍了他对交流电的理解,所以在交、直流输电的争论中,成了保守势力的代表。爱迪生认为交流电危险,不如直流电安全。他还打比方说,沿街道敷设交流电缆,简直等于埋下地雷。并且邀请人们和新闻记者,观看用高压交流电击死野狗、野猫的实验。那时纽约州法院通过了一项法令,用电刑来执行死刑。行刑用的电椅就是通以高压交流电,这正好帮了爱迪生的大忙。在他的反对下,交流电遇到了很大的阻碍。 但是为了减少输电线路中电能的损失,只能提高电压。在发电站将电压升高,到用户地区再把电压降下来,这样就能在低损耗的情况下,达到远距离送电的目的。而要改变电压,只有采用交流输电才行。1888年,由费朗蒂设计的伦敦泰晤士河畔的大型交流电站开始输电。他用钢皮铜心电缆将1万伏的交流电送往相距10公里外的市区变电站,在这里降为2500伏,再分送到各街区的二级变压器,降为100伏供用户照明。以后,俄国的多利沃──多布罗沃斯基又于1889

交流输电和直流输电的区别和应用

交流输电和直流输电的区别和应用 高二物理《交变流电》这一章节中,我们向学生讲授了交流输电,有学生问起直流是否好可以输电啊?直流输电和交流输电有和不同、区别?我们为何没有用直流输电呢?当学生这么问时,我们教师就应该向学生详细的说一下现实中有关交流输电和直流输电的有关知识。 输电是发电和用电的中间环节,现代输电工程中并存着两种输电方式,高压交流输电和高压直流输电,两种方式各有自己的长处和不足,同时使用它们,可以取得更大的经济效益。 一、输电方式的变化 人类输送电力,已有一百多年的历史了。输电方式是从直流输电开始的,1874年俄国彼得堡第一次实现了直流输电,当时输电电压仅100V ,随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V ,但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难,由于不能直接给直流电升压,使得输电距离受到极大的限制。不能满足输送容量增长和输电距离增加的要求。 19世纪80年代末发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国劳风竣工,以3 104V 高压向法兰克福输电,此后,交流输电就普遍的代替了直流输电。但是随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流电遇到了一系列不可克服的技术上的障碍,大功率换流器(整流和逆流)的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到了人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电的装置;1954年在瑞典,从本土到果特兰岛,建立起了世界上第一条远距离高压直流输电工程。 二、直流输电系统 在直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。如图所示为高压直流输电的典型线路示意图。在输电线路的始端,发电系统的交流电经换流变压器1T 、2T 升压后,送到整流器1H 、2H 中去。整流器的主要部件是可控硅变流器和进行交直流变换的整流阀,它的功能是将高压交流电变为高压直流电后,送入输电线路, 直流电通过输电线路1L 和2L 送到逆变 器3H 和4H 中。逆变器的结构与整流器 相同而作用刚好相反,它把高压直流电 变为高压交流电。再经过变压器3T 和4 T 降压,交流系统A 的电能就输送到交流 系统B 中。在直流输电系统中,通过改 变换流器的控制状态,也可以把交流系 统B 中的电能送到系统A 中去,也就是 说整流器和逆变器是可以相互转换的。

直流电和交流电的区别

直流電和交流電的區別? https://www.doczj.com/doc/4212236515.html,/question/?qid=1306070404301 直流電和交流電的區別?高壓直流輸電方式與高壓交流輸電方式相比,有明顯的優越性.歷史上僅僅由於技術的原因,才使得交流輸電代替了直流輸電.下面先就交流電和直流電的主要優缺點作出比較,從而說明它們各自在應用中的價值. 交流電的優點主要表現在發電和配電方面: (1)利用建立在電磁感應原理基礎上的交流發電機可以很經濟方便地把機械能(水流能、風 能…)、化學能(石油、天然氣…)等其他形式的能轉化為電能; (2)交流電源和交流變電站與同功率的直流電源和直流換流站相比,造價大為低廉; (3)交流電可以方便地通過變壓器升壓和降壓,這給配送電能帶來極大的方便.這是交流電與 直流電相比所具有的獨特優勢. 直流電的優點主要在輸電方面: ①輸送相同功率時,直流輸電所用線材僅為交流輸電的2/3~l/2 直流輸電採用兩線制,以大地或海水作回線,與採用三線制三相交流輸電相比,在輸電線載面積相同和電流密度相同的條件下,即使不考慮趨膚效應(skin depth effect),也可以輸送相同的電功率,而輸電線和絕緣材料可節約1/3. 如果考慮到趨膚效應和各種損耗(絕緣材料的介質損耗、磁感應的渦流損耗、架空線的電暈損耗等),輸送同樣功率交流電所用導線截面積大於或等於直流輸電所用導線的截面積的 1.33倍.因此,直流輸電所用的線材幾乎只有交流輸電的一半.同時,直流輸電杆塔結構 也比同容量的三相交流輸電簡單,線路走廊占地面積也少. ②在電纜輸電線路中,直流輸電沒有電容電流產生,而交流輸電線路存在電容電流,引起損 耗. 在一些特殊場合,必須用電纜輸電.例如高壓輸電線經過大城市時,採用地下電纜;輸電線經過海峽時,要用海底電纜.由於電纜芯線與大地之間構成同軸電容器,在交流高壓輸線路中,空載電容電流極為可觀.一條200kV的電纜,每千米的電容約為0.2μF,每千米需供給充電功率約3×103kw,在每千米輸電線路上,每年就要耗電2.6×107kw·h.而在直流輸電中,由於電壓波動很小,基本上沒有電容電流加在電纜上. ③直流輸電時,其兩側交流系統不需同步運行,而交流輸電必須同步運行:交流遠距離輸電 時,電流的相位在交流輸電系統的兩端會產生顯著的相位差;並網的各系統交流電的頻率雖然規定統一為50HZ,但實際上常產生波動.這兩種因素引起交流系統不能同步運行,需要用複雜龐大的補償系統和綜合性很強的技術加以調整,否則就可能在設備中形成強大的迴圈電流損壞設備,或造成不同步運行的停電事故.在技術不發達的國家裏,交流輸電距離一般不超過300km而直流輸電線路互連時,它兩端的交流電網可以用各自的頻率和相位運行,不需進行同步調整. ④直流輸電發生故障的損失比交流輸電小:兩個交流系統若用交流線路互連,則當一側系統 發生短路時,另一側要向故障一側輸送短路電流.因此使兩側系統原有開關切斷短路電流

直流电与交流电

直流电与交流电的区别 交流电即交变电流,大小和方向都随时间做周期性变化的电流。直流电则相反。电网公司一般使用交流电方式送电,但有高压直流电用于远距离大功率输电、海底电缆输电、非同步的交流系统之间的联络等 高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3. 如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw?h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整. ④直流输电发生故障的损失比交流输电小.两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障一侧输送短路电流.因此使两侧系统原有开关切断短路电流的能力受到威胁,需要更换开关.而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故障侧交流系统的短路电流与没有互连时一样.因此不必更换两侧原有开关及载流设备. 在直流输电线路中,各级是独立调节和工作的,彼此没有影响.所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能.但在交流输电线路中,任一相发生永久性故障,必须全线停电.

相关主题
文本预览
相关文档 最新文档