当前位置:文档之家› 电磁阀流量特性

电磁阀流量特性

电磁阀流量特性

流量特性

流量特性是指气阀在一定进口压力下,出口压力与出口流量之间的特性曲线通常,用有效截面积S值或流通能力Cv值来表示气阀的流通能力。

调节阀的特性及选择

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的范围之内,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

调节阀流量特性测试

过程控制系统实验报告实验项目: 调节阀流量特性测试学号: 1404210114 姓名: 邱雄 专业:自动化 班级: 3 2017年11月28日

一、实验目得 1、掌握阀门及对象特性测试得方法。 2、了解S值变化对阀门特性得影响。 3、根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下得调节阀流量特性。 2.测定二阶液位对象得阶跃响应特性。 三、实验系统得P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1、接通监控操作站、数据采集站电源预热相关设备。 2、启动监控操作系统设置“采集模式”。选中“采集模式”中得“模拟采 集”。 3、进入调节阀流量测试界面。 4、进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参 数得参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给 定值”为90%,使泵得出口压力(调节器操作面板得测量值)为90%。 6、测试UV-101气动调节阀流量特性。在前面已经打开了相应得球阀, 并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、 95、98、100%增加时与由100、98、95…0%减少时对应得流量(FT-101)。 7、改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度, 使流量(FT-101)为原来(MV全开时)得50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀得流量特性数据如下: UV-1 83 8992 95 98 100

F T-101 93、09 69、85 42、98 28、75 24、81 21、21 15、47 12、43 9、57 7、01 5、04 表(1) U V-1 89 83 80 75 60 30 0 FT-101 5、04 5、12 5、30 5、36 5、4 10、51 12、97 17、87 31、67 59、65 93、06 表(2) 图(1) 调节球阀M10开度,使流量(FT -101)为原来(MV 全开时)得50%,调节阀 开度此时为43。所得数据如下: UV-1 83 89 92 95 98 100 F T-101 49、71 45、12 34、56 25、71 22、01 20、02 14、66 12、50 9、81 7、12 5、04 表(3)

伺服阀的特性及性能参数

第三节 伺服阀的特性及性能参数 一.伺服阀规格的标称电波伺服阀的规格用额定电流I n 额定压力n p 和额定流量n Q 来标称。 额定电流系产生额定流量所需的任一极性的输入电流,它与压力或力矩马达两个线圈的连接形式(单接、串联、并联或差动连接)有关。额定压力系产生额定流量的供油压力。 额定流量有两种定义方法: 1)以额定空载流量0Q 作为额定流量,即以额定电流、额定压力下,负载压力为零时的空载流量来标称额定流量 ρ ρ s n xi d s vm d p I WK C p Wx C Q 220==式中ρ 2xi d WK C K =xi K -----以I 为输入、v x 为输出的伺服阀增益,m/A。 2)以规定负载压下的负载流量L Q 作为额定流量,即以额定电流、额 定压力和规定阀上压降v p 下的负载流量来标称额定流量 v n L s n L s vm d L p KI p p KI p p Wx C Q =?=?=)()(2ρ 式中L s v p p p ?=…………阀上总压降,Pa。 为了得到最低的输出功率,常取32s L p p =。由于高压伺服阀多为21=s p Mpa,中压伺服阀为6=s p MPa(或6.3MPa),于是7=v p 或2MPa。所以许多伺服阀常以v p 为7或2MPa 时的负载流量来标称额定流量。 对于四通阀来说,单个阀口的压降p ?为阀上压降的一半,因此也有一些中压伺服阀以规定阀口压降p ?=1MPa 时的负载流量来标称额

定流量。 可见,不能笼统地谈额定流量,一定要明确是哪种定义及条件下的额定流量。选用或代用伺服阀时尤其要注意这一点。 〔实例〕某引进设备的钢带自动跑偏控制系统,实际油源压力 4.5MPa,采用阀口引进p ?=1MPa 时负载流量L Q =20L/min 的伺服阀。 现要改用额定压力3.6=s p MPa 的国产伺服阀,问代用阀的额定控制流量应多大? 注意,系统实际油源压力为4.5MPa,因为伺服阀的实际使用压力可以等于,也可以低于其额定压力。由题意知,原系统阀上总压降22=?=p p v MPa,不管代用什么阀,新阀的负载流量应等于原阀的负载流量,所以,如果新阀的额定压力为4.5MPa,则由式(4-15)比式(4-16)得新阀的空载流量应为 2 5.4200==v s L p p Q Q 现在所选代用阀额定压力为 6.3MPa,为了降压到4.5MPa 下使用时仍具有所需的流量,显然应选用额定空载流量更大一些的代用阀,即应取 5.355.43.625.4205.43.60'0===Q Q L/min 二.伺服阀的静态及动态特性 (一)伺服阀的静态特性 伺服阀的功率均为滑阀,而力(矩)马达及前置级为比例控制元件,因此伺服阀的一台特性基本上同滑阀的静态特性。以零开口流量型伺服阀为例,综述如下:

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

调节阀流量特性测试

过程控制系统实验报告 实验项目:调节阀流量特性测试 学号:1404210114 姓名:邱雄 专业:自动化 班级: 3 2017年11月28 日

一、实验目的 1.掌握阀门及对象特性测试的方法。 2.了解S值变化对阀门特性的影响。 3.根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下的调节阀流量特性。 2.测定二阶液位对象的阶跃响应特性。 三、实验系统的P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1.接通监控操作站、数据采集站电源预热相关设备。 2.启动监控操作系统设置“采集模式”。选中“采集模式”中的“模拟采集”。 3.进入调节阀流量测试界面。 4.进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参数的参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给定值”为90%,使泵的出口压力(调节器操作面板的测量值)为90%。 6.测试UV-101气动调节阀流量特性。在前面已经打开了相应的球阀,并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、95、98、100%增加时和由100、98、95…0%减少时对应的流量(FT-101)。 7.改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀的流量特性数据如下: 表(1) 表(2)

图(1) 调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,调节阀开度此时为43。所得数据如下: 表(3) 图(2)

浅谈各种节流阀的分析

1. 概述 节能和环保是人类亟待解决的两大问题。2002年8月26日至9月4日在南非约翰内斯堡举行了可持续发展世界峰会。在该次会议上国际制冷学会发表了《制冷业对于可持续发展和减缓大气变化的承诺》,在此文件中阐明制冷业主要的挑战来自全球气候变暖。造成制冷业影响全球气候变暖的80%的原因是二氧化碳的排放。这些间接的排放是部分是由制冷装置运行所需能量的生产引起的。制冷、空调和热泵这些设备所消耗的电能约占全世界生产电能的15%,这表明间接排放的影响是非常的严重。此文件还提出在下一个20年制冷业必须树立雄心去达到目标之一:每个制冷设备耗能减少30~50%。制冷业者为保护环境,应把节能贯穿到制冷设备的使用周期中去。作为制冷循环的四大部件之一,节流装置在系统中起着非常关键的作用,通过选择应用合适的节流机构与制冷系统匹配是整个制冷设备降低能耗的重要一环。本文将对节流机构的工作原理和运行能量匹配进行分析,重点对电子膨胀阀的工作原理进行分析。 2. 传统节流机构的工作原理及匹配 节流的工作原理是制冷工质流过阀门时流动截面突然收缩,流体流速加快,压力下降,压力下降的大小取决于流动截面收缩的比例。节流机构的作用: 1、节流降压。当常温高压的制冷剂饱和液体流过节流阀,变成低温低压的制冷剂液体并产生少许闪发气体。进而实现向外界吸热的目的。 2、调节流量:节流阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。当蒸发器热负荷增加时阀开度也增大,制冷剂流量随之增加,反之,制冷剂流量减少。 3、控制过热度:节流机构具有控制蒸发器出口制冷剂过热度的功能,既保持蒸发器传热面积的充分利用,又防止吸气带液损坏压缩机的事故发生。 4、控制蒸发液位:带液位控制的节流机构具有控制蒸发器液位的功能,既保持蒸发器传热面积的充分利用,又防止吸气带液降低吸气过热度。 若节流机构向蒸发器的供液量与蒸发负荷相比过大,部分液态制冷剂一起进入压缩机,引起湿压缩或冲缸事故。相反若供液量与蒸发器负荷相比太少,则蒸发器部分传热面积未能充分发挥其效能,甚至会造成蒸发压力降低,而且使制冷系统的制冷量降低,制冷系数减小,制冷装置能耗增大。节流机构流量的调节对制冷装置节能降耗起着非常重要的作用。大型中央空调冷水机组常用的节流机构有手动节流阀、孔板、热力膨胀阀、浮球+主节流阀。 2.1手动节流阀

节流阀的特点及应用一、概述节流阀是指通过改变通道面积达到控制或 ...

节流阀的特点及应用 一、概述 节流阀是指通过改变通道面积达到控制或调节介质流量与压力的阀门。节流阀在管路中主要作节流使用。最常见的节流阀是采用截止阀改变阀瓣形状后作节流用。但用改变截止阀或闸阀开启高度来作节流用是极不合适的,因为介质在节流状态下流速很高,必然会使密封面冲蚀磨损,失去切断密封作用。同样用节流阀作切断装置也是不合适的。常见的节流阀如图 1 所示。 介质在节流阀瓣和阀座之间流速很大,以致使这些零件表面很快损坏-即所谓气蚀现象。为了尽量减少气蚀影响,阀瓣采用耐气蚀材料(合金钢制造)并制成顶尖角为140~180的流线型圆锥体,这还能使阀瓣能有较大的开启高度,一般不推荐在小缝隙下节流。 二、特点 1、构造较简单,便于制造和维修,成本低。 2、调节精度不高,不能作调节使用。 3、密封面易冲蚀,不能作切断介质用。 4、密封性较差。 三、分类 一)、节流阀按通道方式可分为直通式和角式两种; 二)、按节流阀阀瓣的形状分. 节流阀的阀瓣有多种形状,常见的有: 1、钩形阀瓣,常用于深冷装置中的膨胀阀。如图 2a 所示。 2、窗形阀瓣,适用于口径较大的节流阀如图2b 所示。 3、塞形阀瓣,适用于中小口径节流阀,使用较普遍。如图 2C 所示。 图2 节流阀阀瓣形状 四、安装维护 节流阀的安装与维护应注意以下事项: 该阀经常需要操作,因此应安装在易于方便操作的位置上。 安装时要注意介质方向与阀体所标箭头方向保持一致。 节流口堵塞原因:

1、油液中的机械杂质或因氧化析出的胶质、沥青、碳渣等污物堆积在节流缝隙处。 2、由于油液老化或受到挤压后产生带电的极化分子,而节流缝隙的金属表面上存在电位差,故极化分子被吸附到缝隙表面,形成牢固的边界吸附层,吸附层厚度一般为5~8微米,因而影响了节流缝隙的大小。以上堆积、吸附物增长到一定厚度时,会被液流冲刷掉,随后又重新附在阀口上。这样周而复始,就形成了流量的脉动。 3、阀口压差较大时,因阀口温度高,液体受挤压的程度增强,金属表面也更易受摩擦作用而形成电位差,因此压差大时容易产生堵塞现象。 相关措施 1、选择水力半径大的薄刃节流口。 2、精密过滤并定期更换油液。 3、适当减小节流口前后的压差。 4、采用电位差较小的金属材料、选用抗氧化稳定性好的油液、减小节流口表面粗糙度。 五、节流阀的应用 节流阀是流量控制阀其中的一种,优点是结构简单、价格低廉、调节方便,但由于没有压力补偿措施,所以流量稳定性较差。常用于负载变化不大或对速度控制精度要求不高的定量泵供油节流调速液压系统中。有时也用于变量泵供油的容积节流调速液压系统中。 由于节流阀的流量不仅取决于节流口面积的大小,还与节流口前后的压差有关,阀的刚度小,故只适用于执行元件负载变化很小且速度稳定性要求不高的场合。 对于执行元件负载变化大及对速度稳定性要求高的节流调速系统,必须对节流阀进行压力补偿来保持节流阀前后压差不变,从而达到流量稳定。 节流阀的启闭件大多为圆锥流线型,通过它改变通道截面积而达到调节流量和压力。节流阀供在压力降极大的情况下作降低介质压力之用。 可调节节流阀:阀针和阀芯采用硬质合金制造,产品按API6A标准设计,具有耐磨、耐冲刷性能。主要用于井口采油(气)树设备, 滑套式节流阀:阀芯采用低噪音平衡型结构,开启轻便,产品按API6A标准设计,阀芯表面覆盖碳化钨,适合于有闪蒸、高压差,高压力,空化等条件苛刻的场合,使用寿命长,流量调节精度大大提高。适用于石油,天然气,化工,炼油,水电等行业。 元杉工业技术部提供

阀口及阻尼的压力流量特性-1

1 阀口的流量压力特性 流体力学中流经节流小孔的流量公式: p A C q d ?=ρ 2 式中,d C --阀口流量系数,与雷诺数Re 有关,Re>260时,滑阀的流量系数为常数,若阀口为锐边时,d C =0.61~0.65;若阀口为圆边或有很小倒角时,d C =0.8~0.9. 复习:雷诺数Re 的计算式:运动粘度水力直径流速?= = υ h vD Re ,水力直径湿周 过流面积 4D ?=h 式中,A —阀口的过流面积,p ?--阀口前后的压差。 图(a )所示为滑阀,阀口过流面积 Dx A π= (当h=0时) 图(b )所示为锥阀(阀座无倒角),阀口过流面积 )s i n (s i n ααπ2211 1D x x D A - = 当1D x <<时,απsin x D A 1= 图(c )所示为锥阀(阀座有倒角),阀口过流面积 )s i n (s i n ααπ221m m D x x D A -=, 其中221/)(D D D m +=,当m D x <<时,απsin x D A m = 图(d )所示为球阀,阀口过流面积 ()2 02 1001221x h D h x x h D A ++?? ? ??+=π,其中,2 12 02??? ??-=D R h 当R x D x <<<<,/21时,R x h D A /01π= 锥阀(球阀)的流量系数d C ,当雷诺数较大时,流量数为定值,d C =0.77~0.82. 图1 滑阀、锥阀、球阀

2 液压阻尼和液阻桥路控制 各种液压控制阀的工作原理实际上都是从阀芯的力学平衡条件出发,通过控制阀芯的位置来改变流动阻尼而进行控制,以达到调节压力或流量的目的。 2.1 液压阻尼的概念 阀口的流量压力特性可表示为 p By q ?= 式中,B 为液导率,例如滑阀的ρπ/2D C B d =,锥阀的ραπ/sin 2D C B d =; y 为阀口开度,称By 为液导,液导用字母G 表示,即G=By 参照电学中的欧姆定律R V I =,让流量q 对应电流I 、压差p ?对应电压V ,液阻对应电阻, 则阀口的流量压力特性表示为: R p By p q ?= ?= /1 式中,R 为液阻,By R 1 = ,(液阻R 与液导G 互为倒数),显然液阻R 随阀口开度y 的增大而减小,随y 的减小而增大,即液阻反比于阀口开度。 2.2 正开口四边滑阀控制油缸的液阻全桥分析 图2.1 正开口四边滑阀控制油缸的液阻全桥表示 图2.1(a )所示为正开口四边滑阀控制双出杆油缸,设阀中位时各边阀口的预开口为0y ,

2、控制阀流量特性解析

2、控制阀流量特性解 析 -CAL-FENGHAI.-(YICAI)-Company One1

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L),式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比; l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比 一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。 理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的

等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。 理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为 Q/Qmax=1/R[1+(R-1)l/L] 式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种。 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化

阀门特性

调节阀介绍,等百分比特性,线性特性,抛物线特性 调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。本手册主要介绍电动调节阀和气动调节阀两种。 调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节并通常分为直通单座式和直通双座式两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。 流通能力Cv是选择调节阀的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。 根据流通能力Cv值大小查表,就可以确定调节阀的公称通径DN。 调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下: (1)等百分比特性(对数) 等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。 (2)线性特性(线性) 线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。

(3)抛物线特性 流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。 从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

调节阀流量特性分析及应用选型

调节阀流量特性分析及应用选型 点击次数:102 发布时间:2011-4-5 简介 调节阀是工业生产过程中一种常用的调节机构,它的作用就是按照调节器发出的控制信号的大小和方向,通过执行机构来改变阀门的开度以实现调节流体流量的功能,从而把生产过程中被调参数控制在工艺所要求的范围内,从而实现生产过程的白动化。调节阀是自动化控制系统中一个十分重要且不可或缺的组成部分,正确的选择和使用调节阀,直接关系到整个自动控制系统的控制质量,直接影响生产产品的质量。然而,自动控制系统不能正常投人运行的,有许多是由于调节阀的选型不当造成的,因此,如何正确选择合适的调节阀,必须引起我们每一位自动化控制技术人员的高度重视。调节阀所反应出来的问题大多集中在调节阀的工作特性和结构参数上,如流通能力、公称通径及流量特性等。在这些参数中,流通能力更重要,它的大小直接反映调节阀的容觉,它是设计选型中的主要参数。因此,调节阀的选择主要从以上几个因素进行考虑。本人根据工作中调节阀的选型经验简单介绍一下调节阀的选型原则及注意事项。 2 调节阀的工作原理 在有流体流动的管道中,调节阀是一节流件,假设流体是不可压缩且充满管道,根据伯努利方程式和流体的连续性定律可知:通过阀门的体积流量 Q v与阀门的有效流通截面积 A 和通过阀门前后的压降ΔP(ΔP=P1-P2)的平方根成正比,与流体的密度ρ和阀门的阻力系数ζ的平方根成反比,即: 其中 n——为常数,C——调节阀的流量系数,又叫流通能力。 根据调节阀的流量方程式可得出如下结论: (l)在流体的密度ρ和阀门上的压降ΔP 一定的情况下,调节阀的流量系数 C 与流量 Q v,C 值的大小反映了阀能通过的流量的大小。 (2)流量系数 C 与流通面积 A 成正比,流通能力随流通截面的增减而增减。 (3)流量系数 C 与阀门的阻力系数ζ的平方根成反比,增大阀门的阻力系数ζ就是阀门的流通能力减小,如果阀门的口径相同,则不同结构的阀门阀门的阻力系数ζ就不相同,流通系数 C 也就不同。 3 调节阀结构形式的选择 调节阀结构形式的选择,应根据实际生产中工艺条件(温度、压力、流量等)、工艺介质的性质(如粘度、腐蚀性、有无毒害等)、调节系统的要求(调节范围、泄漏量、噪音)以及防止调节阀产生汽蚀现象等因素综合加以考虑。平常在我们实际使用中,应用最多的是普通单座调节阀、双座调节阀、套筒调节阀、蝶阀等。一般来讲,在流量小、压差小、要求泄漏量小的场合,选择单座调节阀即

调节阀流量特性选择

调节阀的流量特性如何选择 控制阀的流量特性是介质流过控制阀的相对流量与相对位移(控制阀的相对开度)间的关系,一般来说改变控制阀的阀芯与阀座的流通截面,便可控制流量。但实际上由于多种因素的影响,如在截流面积变化的同时,还发生阀前后压差的变化,而压差的变化又将引起流量的变化。 在阀前后压差保持不变时,控制阀的流量特性称为理想流量特性;控制阀的结构特性是指阀芯位移与流体流通截面积之间的关系,它纯粹由阀芯大小和几何形状决定,与控制阀几何形状有关外,还考虑了在压差不变的情况下流量系数的影响,因此,控制阀的理想流量特性与结构特性是不同的。 理性流量特性主要由线性、等百分比、抛物线及快开四种。在实际生产应用过程中,控制阀前后压差总是变化的,这时的流量特性称为工作流量特性,因为控制阀往往和工艺设备串联或并联使用,流量因阻力损失的变化而变化,在实际工作中因阀前后压差的变化而使理想流量特性畸变成工作特性。 控制阀的理想流量特性,在生产中常用的是直线、等百分比、快开三种,抛物线流量特性介于直线与等百分比之间,一般可用等百分比来代替,而快开特性主要用于二位式调节及程序控制中。因此,控制阀的特性选择是指如何选择直线和等百分比流量特性。 目前控制阀流量特性的选择多采用经验准则,可从下述几个方面考虑: 1、从调节系统的质量分析 下图是一个热交换器的自动调节系统,它是由调节对象、变送器、调节仪表和控制阀等环节组成。 K1变送器的放大系数,K2调节仪表的放大系数,K3执行机构的放大系数,K4控制阀的放大系数,K5调节对象的放大系数。 很明显,系统的总放大系数K为:K=K1*K2*K3*K4*K5 K1、K2、K3、K4、K5分别为变送器、调节仪表、执行机构、控制阀、调节对象的放大系数,在负荷变动的情况下,为使调节系统仍能保持预定的品质指标;则希望总的放大系数在调节系统的整个操作范围内保持不变。通常,变送器、调节器(已整定好)和执行机构的放大系数是一个常数,但调节对象的放大系数却总是随着操作条件变化而变化,所以对象的特性往往是非线性的。因此,适当选择控制阀的特性,以阀的放大系数的变化来补偿调节对象放大系数的变化,而使系统的总放大系数保持不变或近似不变,从而提高调节系统的质量。 因此,控制阀流量特性的选择应符合: K4*K5=常数 对于放大系数随负荷的加大而变小的现象,假如选用放大系数随负荷加大而变大的等百分

2、控制阀流量特性解析

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量 特性的偏差大小直接影响自动控制系统的稳定, 位希望所选用的控制阀具有标准的固有流量特性,而控制 阀生产企业 要想制造出完全符合标准的固有流量特性控制 阀是非常困难的,因直线流量特性相对简单, 所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相 对行程之间的关系,数学表达式为 Q/Qmax = f (l/L ), 式中:Q/Qmax —相对流量。指控制阀在某一开度时的流 量Q 与全开流量 Qmax 之比; l/L —相对行程。指控制阀在某一开度时的阀芯行 程l 与全开行 程L 之比 一般来讲,改变控制阀的流通面积便可以控制流量。 但实际上由于多种因素的影响,在节流面积发生变化的同 时,还会产 引起流量的变化,为了便于分析,先假定阀前、阀后 压差 不变,此时的流量特性称为理想流量特, 理想流量特性主要有等百分比(也称对数)、直线两种 常用特性,理想等百分比流量特性定义为:相对行程的等 值增量产生相对流量系数的等百分比增加的流量特性,数 学表达式为Q/Qmax = R l/L-1) 。 性。使用单 且应用较少, 生阀前、阀后压力的变化,而压差的变化又将 性。

理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为Q/Qmax=1/R[1+( R-1) I/L] 式中F—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%-100%寸各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化也大,调节作用灵敏有效。由于上述原因,在实际工况中多数场合优选等百分比流量特, 性。

流量控制阀工作原理及其特点

流量控制阀工作原理及其特点 流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的产品特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。 真空阀门 目录 一、真空充气阀类 1、DDC-JQ系列电磁真空带充气阀

2、DDC-JQ-B系列电磁真空带充气阀 3、DYC-Q系列低真空电磁压差充气阀 4、GYC-JQ系列高真空电磁压差式充气阀 5、GQC系列电磁高真空充气阀 6、GDC-Q5型、GDC-5型电磁真空阀 二、真空挡板阀类 1、GDC-J型系列电磁高真空挡板阀 2、GDQ型系列气动高真空挡板阀 3、GD-J型系列高真空挡板阀 4、GDQ-J(b)型系列电、气动高真空挡板阀(带波纹管密封) 5、GDQ-J(b)-A型系列气动高真空挡板阀(带波纹管密封) 6、GD-J(b) 型系列手动高真空挡板阀(带波纹管密封) DDC-JQ系列电磁真空带充气阀 DDC-JQ型系列电磁真空带充气阀是安装在机械式真空泵上的专用阀门。阀门与泵接在同一电源上,泵的开启与停止直接控制了阀的开启与关闭。当泵停止工作或电源突然中断时,阀能自动将真空系统封闭,并将大气通过泵的进气口充入泵腔,避免泵油返流污染真空系统。 适用的工作介质为空气及非腐蚀性气体。 注:快卸及活套法兰连接方式请参阅DDC-JQ-B系列电磁真空带充气阀(内有DN100规格). 主要技术性能 适用范围(Pa) 105~1x10-2 <6.7x10-4 阀门漏率(Pa.L/S)

调节阀的流量特性

调节阀的流量特性、流通能力的计算与选择 摘要:企业的能源计量已成为节能减排的重要方式,而流量调节阀作为流量控制中的重要方法,文章详细介绍了调节阀的流量特性,直线特性、等百分比特性及介于两者之间的抛物线特性的流量调节阀的作用及如何选型。 关键词:调节阀;流量特性;流通能力;等百分比特性;直线特性 调节阀作为一个执行器将来自控制器的信号,变成控制量作用在对象上。它是控制系统的重要组成部分,在选择使用时,应和选用传感器、变送器一样,从现有的商品中,选择能满足要求的产品。 下面介绍调节阀的流量特性和口径的计算。 1 调节阀的流量特性及其选择 1.1 调节阀的流量特性 调节阀的流量特性是指流过调节阀介质的相对流量与调节阀的相对开度之间的关系,即: 式中: Q/Q max:相对流量,即调节阀某一开度下的流量与全开流量之比; L/L max:相对开度,即调节阀某一开度下的行程与全开行程之比。 调节阀流量特性是由调节阀阀芯形状决定的。阀芯形状有柱塞阀和开口阀两类,而每一类都分为直线特性、等百分比特性和抛物线特性。此外还有平板形的快开特性。图1 是阀芯形状示意图,图2 是理想流量特性图。

图1 阀芯形状 图2 理想流量特性(1)直线特性;(2)等百分比特性;(3)快开特性;(4)抛物线特性 所谓理想流量特性是指阀前后压差在流量改变时保持不变条件下,所得到的流量特性,这自然应在实验条件下才能形成恒定的压差。 从图2 可以看出,各流量特性线,当开度为零时,相对流量为3.3%,可知在相对开度为零时为最小流量,且此最小流量与最大流量之比为3.3%,或者说最大流量与最小流量之比为30。直线流量特性的斜率等于常数,与相对流量值无关;等百分比流量特性的斜率与相对流量成正比;抛物线特性介于直线和等百分比特性之间。 1.2 调节阀流量特性的选择 工程所用调节阀的特性有直线特性、等百分比特性及介于两者之间的抛物线特性,此外还有快开特性。对于直通调节阀可用等百分比特性阀代替抛物线特性阀,而快开特性阀只应用于双位控制和程序控制中。因此,在选择阀门特性时,更多的是指如何选择等百分比特性阀和直线特性阀。 (1)等百分比特性阀应用场合:①管道阻力大时,或者阀前后压差变化比较大的情况,使用等百分比特性阀;②当系统负荷大幅度变化时,且各开度处的流量相对值变化为一定值,因此选用等百分比特性阀具有较强的适应性。

流量调节阀的工作原理以及选型

流量调节阀的工作原理以及选型 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀阀体置于供暖系统上的某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设置温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一K V值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提

相关主题
文本预览
相关文档 最新文档