当前位置:文档之家› 知识讲解_平面向量应用举例_基础

知识讲解_平面向量应用举例_基础

知识讲解_平面向量应用举例_基础
知识讲解_平面向量应用举例_基础

平面向量应用举例

【学习目标】

1.会用向量方法解决某些简单的平面几何问题.

2.会用向量方法解决简单的力学问题与其他一些实际问题.

3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力.

【要点梳理】

要点一:向量在平面几何中的应用

向量在平面几何中的应用主要有以下几个方面:

(1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义.

(2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0).

(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0).

(4)求与夹角相关的问题,往往利用向量的夹角公式cos ||||

θ?=

a b

a b .

(5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题.

要点诠释:

用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了 .

要点二:向量在解析几何中的应用

在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决.

常见解析几何问题及应对方法:

(1)斜率相等问题:常用向量平行的性质.

(2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程.

(3)定比分点问题:转化为三点共线及向量共线的等式条件.

(4)夹角问题:利用公式cos ||||

θ?=

a b

a b .

要点三:向量在物理中的应用

(1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象.

(2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积.

(3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论.

【典型例题】

类型一:向量在平面几何中的应用

例1.用向量法证明:直径所对的圆周角是直角.

已知:如下图,AB 是⊙O 的直径,点P 是⊙O 上任一点(不与A 、B 重合),求证:∠APB =90°.

证明:联结OP ,设向量b OP a OA =→=→,,则a OB -=→

且b a OP OA PA -=→-→=→,

OP OB PB --=→

-→=→

0||||222

2=-=-=→?→∴a b a b PB PA

⊥→∴PB PA ,即∠APB =90°.

【总结升华】解决垂直问题,一般的思路是将目标线段的垂直转化为向量的数量积为零,而在此过程中,则需运用向量运算,将目标向量用基底表示,通过基底的数量积运算式使问题获解,如本题便是将向量PA ,PB 由基底a ,b 线性表示.当然基底的选取应以方便运算为准,即它们的夹角是明确的,且长度易知.

举一反三:

【变式1】P 是△ABC 所在平面上一点,若PA PB PB PC PC PA ?=?=?,则P 是△ABC 的( ) A .外心 B .内心 C .重心 D .垂心 【答案】D

【变式2】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ?的值为________;

DE DC ?的最大值为________.

【解析】||||cos ,DE CB DE DA DE DA DE DA ?=?=???=2

||||||DA DA DA ?==1

||||cos ,DE DC DE DC DE DC ?=???

=||||cos DE DC EDC ?∠4

2EDC π

π??≤∠≤

???

=||cos DE EDC ∠

=||DF (F 是E 点在DC 上的投影) 1≤

当F 与C 点重合时,上式取到等号.

例2.如图所示,四边形ADCB 是正方形,P 是对角线DB 上一点,PFCE 是矩形,证明:PA EF ⊥

.

【思路点拨】如果我们能用坐标表示PA 与EF ,则要证明结论,只要用两向量垂直的充要条件进行验证即可.因此只要建立适当的坐标系,得到点A 、B 、E 、F 的坐标后,就可进行论证.

【解析】以点D 为坐标原点,DC 所在直线为x 轴建立如图所示坐标系,设正方形的边长为1,

||DP λ=,则)1,0(A ,)22,22(

λλP ,)22,1(λE ,)0,2

2(λF ,

于是(,1)PA =-

-

,2(1,)EF

=-

∵()(1)(1)()2222PA EF λ?=-?-+-?- 002

2

)221122(22=?-=-+-?-

=λλλλ ∴PA EF ⊥. 举一反三:

【变式1】在平面直角坐标系xOy 中,已知点A (―1,―2),B (2,3),C (―2,―1). (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足()0AB tOC OC -?

=,求t 的值. 【答案】(1

)(2)11

5

-

【解析】 (1)由题设知(3,5)AB =,(1,1)AC =-,则(2,6)AB AC +=,(4,4)AB AC -=. 所以||210AB AC +=||4

2AB AC -=

故所求的两条对角线长分别为

(2)由题设知(2,1)OC =--,(32,5)AB tOC t t -=++. 由()0AB tOC OC -?=,得(3+2t ,5+t)·(―2,―1)=0,

P

F

y x

E D C

B

A

O

从而5t=―11,所以115

t =-.

类型二:向量在解析几何中的应用

例3.已知圆C :(x-3)2

+(y-3)2

=4及定点A (1,1),M 为圆C 上任意一点,点N 在线段MA 上,且

2MA AN =,求动点N 的轨迹方程.

【思路点拨】设出动点的坐标,利用向量条件确定动点坐标之间的关系,利用M 为圆C 上任意一点,即可求得结论. 【答案】x 2+y 2=1

【解析】设N (x ,y ),M (x 0,y 0),则由2MA AN =得(1―x 0,1―y 0)=2(x ―1,y ―1),

∴00122122x x y y -=-??-=-?,即00

3232x x y y =-??=-?.

代入(x ―3)2+(y ―3)2=4,得x 2+y 2=1.

【总结升华】本题考查轨迹方程,解题的关键是利用向量条件确定动点坐标之间的关系,属于中档题. 举一反三:

【变式1】已知△ABC 的三个顶点A (0,―4),B (4,0),C (―6,2),点D 、E 、F 分别为边BC 、

CA 、AB 的中点.

(1)求直线DE 、EF 、FD 的方程;

(2)求AB 边上的高CH 所在直线的方程. 【答案】(1)x ―y+2=0,x+5y+8=0,x+y=0(2)x+y+4=0 【解析】 (1)由已知得点D (―1,1),E (―3,―1),F (2,―2), 设M (x ,y )是直线DE 上任意一点,

则//DM DE .(1,1)DM x y =+-,(2,2)DE =--. ∴(-2)×(x+1)―(―2)(y ―1)=0, 即x ―y+2=0为直线DE 的方程.

同理可求,直线EF ,FD 的方程分别为 x+5y+8=0,x+y=0.

(2)设点N (x ,y )是CH 所在直线上任意一点,则CN AB ⊥. ∴0CN AB ?=.又(6,2)CN x y =+-,(4,4)AB =.

∴4(x+6)+4(y ―2)=0,

即x+y+4=0为所求直线CH 的方程. 【总结升华】(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.

(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等则对应坐标相等.

类型三:向量在物理学中“功”的应用

例4.一个物体受到同一平面内三个力F 1,F 2,F 3的作用,沿北偏东45°的方向移动了8 m ,其中|F 1|=2

N ,方向为北偏东30°;|F 2|=4 N ,方向为北偏东60°;|F 3|=6 N ,方向为北偏西30°,求合力F 所做的功.

【答案】

【解析】 以物体的重心O 为原点,正东方向为x 轴的正半轴建立直角坐标系.

如图,则1(1F =

,2F =

,3(F =-,

则1232,2F F F F =++=+.

又位移s =,

合力F

所做的功为2)(2W F s =?=?+?==J ). ∴合力F

所做的功为.

【总结升华】用向量的方法解决相关的物理问题,要将相关物理量用几何图形表示出来,再根据它的物理意义建立数学模型,将物理问题转化为数学问题求解,最后将数学问题还原为物理问题. 举一反三:

【变式1】已知一物体在共点力12(2,2),(3,1),F F ==的作用下产生位移13

(,)22

s =,则共点力对物体所做的功为( )

A 、4

B 、3

C 、7

D 、2 【答案】C

【解析】对于合力()5,3F =,其所做的功为59

722

W F S =?=+=.因此选C. 类型四:向量在力学中的应用

例5.如图,用两条同样长的绳子拉一物体,物体受到重力为G .两绳受到的拉力分别为F 1、F 2,夹角为θ.

(1)求其中一根绳子受的拉力|F 1|与G 的关系式,用数学观点分析F 1的大小与夹角θ的关系;

(2)求F 1的最小值;

(3)如果每根绳子的最大承受拉力为|G|,求θ的取值范围.

【答案】(1)θ增大时,|F 1|也增大(2)

||

2

G (3)[0°,120°] 【解析】(1)由力的平衡得F 1+F 2+G=0,设F 1,F 2的合力为F ,

则F=―G ,由F 1+F 2=F 且|F 1|=|F 2|,|F|=|G|,解直角三角形得111

||||

2cos 2||2||

F G F F θ==,

∴1||||2cos

2

G F θ

=

,θ∈[0°,180°],由于函数y=cos θ在θ∈[0°,180°]上为减函数,∴θ逐渐

增大时,cos

2

θ

逐渐减小,即

||2cos

2

G θ

逐渐增大,∴θ增大时,|F 1|也增大.

(2)由上述可知,当θ=0°时,|F 1|有最小值为

||

2

G . (3)由题意,

1||

||||2

G F G ≤≤, ∴11

122cos 2

θ

≤≤,即1cos 122θ≤≤.

由于y=cos θ在[0°,180°]上为减函数,∴0602

θ

?≤

≤?,

∴θ∈[0°,120°]为所求.

【总结升华】生活中“两人共提一桶水,夹角越大越费力”,“在单杠上做引体向上,两臂的夹角越小就越省力”等物理现象,通过数学推理与分析得到了诠释. 举一反三:

【变式1】两个大小相等的共点力12,F F ,当它们间夹角为0

90时,合力的大小为20N ,则当它们的夹角为0

120时,合力的大小为( )

A 、40N

B 、

C 、 D

【思路点拨】力的合成关键是依平行四边形法则,求出力的大小,然后再结合平行四边形法则求出新的合力.

【解析】对于两个大小相等的共点力12,F F ,当它们间夹角为0

90时,合力的大小为20N 时,这二个力

的大小都是,对于它们的夹角为0

120时,由三角形法则,可知力的合成构成一个等边三角形,因

此合力的大小为N. 正确答案为B.

【总结升华】力的合成可用平行四边形法则,也可用三角形法则,各有优点,但实质是相通的,关键是要灵活掌握;对于第一个平行四边形法则的应用易造成的错解是110F =,这样就会错选答案D. 类型五:向量在速度中的应用

例6.在风速为km / h 的西风中,飞机以150 km / h 的航速向西北方向飞行,求没有风时飞机的航速和航向.

【思路点拨】这是航行中的速度问题,速度的合成与分解相当于向量的加法与减法,处理的方法和原则是三角形法则或平行四边形法则.

【答案】60°

【解析】设风速为ω,飞机向西北方向飞行的速度为v a ,无风时飞机的速度为v b ,则如图,v b =v a -ω,设||||a AB v =,||||BC ω=,||||b AC v =,过A 点作AD ∥BC ,过C 作CD ⊥AD 于D ,过B 作BE ⊥AD

于E ,则∠BAD=45°,||150AB =,||BC =.

所以||||||CD BE EA ===||DA =

从而||AC =CAD=30°.

所以没有风时飞机的航速为,航向为北偏西60°.

【总结升华】本题主要考查向量在物理学中的应用.此类问题一般采用向量加法、减法的平行四边形法则和三角形法则来解决,注意画图辅助思考. 举一反三:

【变式1】一艘船从A 点出发以/h 的速度向垂直于对岸的方向行驶,同时河水流速为2/km h ,求船实际航行的速度的大小与方向.

【解析】如图所示,由向量的三角形法则知,对于v =水2/km h ,v =船/h ,得

4v ==船实际/k m h

,方向为逆水流与水流成0

30夹角. 【总结升华】对于船的航行问题关键是要注意运用向量的合成法则进行,当然要特别注意“船的实际航速和航向”和“船在静水中的航速和航向

平面向量基础知识

b a B A O a -b 平面向量基础知识 1.向量的概念 (1)向量的定义:既有大小又有方向的量叫做向量.向量可用字母a ,b ,c ,…等表示,也可用表示向量的有向线段的起点和终点的字母表示(起点写在前面,终点写在后面,上面划箭头)如AB 表示由起点A 到终点B 方向的向量. (2)向量的模:向量AB 的大小(即向量AB 的长度)叫做向量AB 的模,记作|AB |.又如向量a 的模记作|a |. 注意:向量的模是一个非负实数,是只有大小而没有方向的标量. (3)零向量、单位向量、平行向量、共线向量的概念. ①零向量:长度(模)为0的向量叫做零向量,记作0.零向量的方向可看作任意方向. ②单位向量:长度(模)为1个单位的向量叫做单位向量. ③平行向量:方向相同或相反的非零向量叫做平行向量,向量a 与b 平行可记作:a //b .因为平行向量都可移到同一条直线上,所以平行向量又叫做共线向量.我们规定0与任一向量平行. ④相等向量:长度相等且方向相同的向量叫做相等向量.向量a 与b 相等,记作a =b .相等向量一定共线,反之则不一定成立. 2.向量运算 (1)加法运算 ①定义:求两个向量和的运算叫做向量的加法,如已知向量a ,b , 作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a +b ,即a +b =AB +BC =AC . 这种根据向量加法的定义求向量和的方法,叫做向量加法的 三角形法则. 由图可知,以同一点A 为起点的两个已知向量a ,b 为邻边作 平行四边形ABCD ,则以A 为起点C 为终点的对角线AC 就是a 与b 的和,我们把这种作两个向量和的方法叫做向量加法的平行 四边形法则. ②运算性质: a + b =b +a (交换律); (a +b )+ c =a +(b +c )(结合律); a +0=0+a =a . (2)减法运算 ①相反向量:与向量a 长度相等,方向相反的向量叫做a 的相反向量. 记作a .零向量的相反向量仍是零向量;-(-a )=a ;a +(-a )=0 (即互为相反的两个向量的和是零向量.) ②减法定义:向量a 加上b 的相反向量叫做a 与b 的差,即a b =a +(-b ). 求两个向量的减法可转化为加法进行.若向量是用两个大写字母,则只需把减向量起点字母与终点字母交换顺序,就可将减法变为加法,如AB -BC =AB +CB 如图,已知,在平面内任取一点O ,作OA =a ,OB =b ,则BA =a -b .即a -b 可以表示为从向量b 的终点指向a 的终点的向量.此法则叫做两向量减 法的三角形法则. (3)实数与向量的积: ①定义:λa ,其中λ>0,λa 与a 同向,|λa |=|λ|?|a |; λ<0时,λa 与a 反方向,|λa |=|λ|?|a |;λ=0时,λa =0,当a =0,λa =0. ②运算律: B A C a +b a b B A C a +b a b D a b

北师大版数学高一 2.7《平面向量应用举例》教案(必修4)

2.7平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

(整理)5平面向量基础知识.

平面向量基础知识 第一课时:向量的概念 向量的定义(两要素) 向量与矢量、数量、标量的区别 作用点、实际意义(单位)、可比性 向量是矢量的抽象、数量是标量的抽象 向量的表示 几何表示 (几何中用点表示位置、用射线表示方向 起点到终点) 用有向线段表示向量使向量具有几何直观性 有向线段(三要素)与向量的区别 (人的身高不随位置改变而改变) 向量只与其起点和终点的相对位置有关,与起点和终点的绝对位置无关 符号表示 有向线段的起点与终点符号(大写)(具体) 小写符号(抽象) 手写必须带箭头 (“帽子”) 用符号表示向量使向量具有代数的属性 坐标表示 用坐标表示向量使向量具有算术的属性 向量的模及其表示 写法与读法 (“外套”) 模特殊的向量 零向量 定义、表示0、方向 单位向量 定义 方向的惟一性 与已知非零向量共线的单位向量常用表示符号e 、i 、j 、k 位置特殊的向量 位置向量 起点为坐标原点的向量 方向关系特殊的向量与表示 平行向量(共线向量 “平行向量”与“共线向量”是等意词) 垂直向量 相等向量 平移变换用之 相反向量 反向变换用之 零向量的规定:零向量与任一向量共线,零向量的相反向量是零向量 判断: 1、若两向量相等,则它们的起点与终点相同 2、AB BA =- 3、若a ∥b ,b ∥c ,则a ∥c 4、若AB CD =,则AB CD 5、若a 与b 不共线,则a ≠0,b ≠0 6、若AB ∥CD ,则A 、B 、C 、D 四点共线 7、若AB ∥AC ,则A 、B 、C 三点共线 8、若AB=CD ,则AB CD = ∥ =

9、若AB=CD ,则||||AB CD = (既戴帽子,又穿外套) 两个向量平行,这两个向量可以在一条直线上,这与平面几何中的“平行”的含义不同;两个向量共线,这两个向量不一定在一条直线上,这与平面几何中的“共线”的含义也不同.而规定零向量与任一向量平行,使几何中的“平行公理”对于向量平行不再成立.(在几何中,“平行”和“共线、重合”绝不相同,而在向量中,“平行”和“共线”绝对一样) 向量的类型:自由向量、滑动向量、固定向量 第二课时:向量的加法 向量加法的定义 向量加法处理方法:三角形法则、平行四边形法则 (当两个向量共线时,平行四边形法则不适用,只适用三角形法则;当两个向量不共线时,平行四边形法则和三角形法则是一致的) 向量加法的特征:尾首相接,首尾相连(与接点的位置无关) 向量的和拆分 封闭折线的和向量 △ABC 中,G 是重心?GA +GB +GC =0 求和向量时需要把向量具体化、几何化 向量加法的运算律:交换律、结合律 向量加法的性质 1、两个向量的和为一个向量 2、若两个向量平行,则它们的和向量与它们也平行 3、若两个向量不平行,则它们的和向量与它们也不平行 4、||a |-|b ||≤|a +b |≤|a |+|b |, 当且仅当a 与b 同向,或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 反向或其中至少一个是零向量时,前一等号成立. 第三课时:向量的减法 向量减法的定义 向量减法是向量加法的逆运算 向量减法处理方法:三角形法则、平行四边形法则 向量减法的特征:首首相聚,被减被指(与起点的位置无关) 向量的差拆分 向量减法是向量加法的逆运算,即减去一个向量等于加上该向量的相反向量 求差向量时需要把向量具体化、几何化 向量减法的性质 1、两个向量的差为一个向量 2、若两个向量平行,则它们的差向量与它们也平行 3、若两个向量不平行,则它们的差向量与它们也不平行 4、||a |-|b ||≤|a -b |≤|a |+|b |, 当且仅当a 与b 反向或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 同向或其中至少一个是零向量时,前一等号成立.

平面向量基础知识复习+练习(含答案)

平面向量 1. 基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1)A] A2 A2A3 A n i A n A1A n . ⑵若a= ( X i, y i) ,b= ( X2, y2 )则 a b= ( X i x?, y i y ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量AB = a、AD = b为邻边作平行四边形ABCD ,则两条对角线的向量 AC = a + b, BD=b —a,DB = a —b 且有丨a I —I b I <| a b I <| a I + I b I . 向量加法有如下规律: a + b = b + a (交换律);a+(b+c)=(a+ b)+c (结合律);—F- —F —k —V- a + 0= a a + (—a )=0. 3 .实数与向量的积:实数与向量a的积是一个向量。 (1) I a I = I I?I a I ; (2) 当 >0时,a与a的方向相同;当v 0时,a与a的方向相反;当=0时, —t a = 0. (3) 若a= ( X i, y i),则a= ( X i, y i). 两个向量共线的充要条件: (1) 向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b= a . ―b- —te- (2) 若a= ( X i, y i) ,b= ( X2, y2 )则a // b x』2 x? y i 0 . 平面向量基本定理: 若e i、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有 —*■ 一对实数i, 2,使得a = i e i+ 2 e2.

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

平面向量应用举例

平面向量应用举例 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?= a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法: (1)斜率相等问题:常用向量平行的性质. (2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程. (3)定比分点问题:转化为三点共线及向量共线的等式条件. (4)夹角问题:利用公式cos |||| θ?= a b a b . 要点三:向量在物理中的应用 (1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象. (2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积. (3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论. 【典型例题】 类型一:向量在平面几何中的应用

平面向量基础知识

平面向量基础知识 一、向量的基本概念 1.向量定义中的两个要素: 2、向量的表示方法:几何表示、代数表示 3.向量AB的大小,也就是向量AB的长度(或称模),记作,a的模为a. 4.特殊向量:零向量、单位向量、平行(共线)向量、相等向量、相反向量. 规定:零向量与任一向量平行. 二、平面向量的线性运算 1.加法:平行四边形法则 三角形法则 2.减法: → → -b a= - 3.数乘: (1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下: ①|λa|=; ②当λ>0时,λa的方向与a的方向;当λ<0时,λa的方向与a的方向. (2)运算律:设λ、μ为实数,那么 ①λ(μa)= ②(λ+μ)a= ③λ(a+b)=. (3)向量共线条件:a,b共线(a≠0)? (4)A、B、C三点共线? ? 三、平面向量基本定理及表示 1.平面向量基本定理:基底的概念 2.平面向量的坐标运算 (1)平面向量的坐标 设i,j是与方向相同的两个向量,对于平面上任一向量a,,使得a=,有序数对叫做向量a的坐标,记作a=.

(2)平面向量的坐标运算 ①设a=(x1,y1),b=(x2,y2),则有 a+b= a-b= λa= ②设A(x1,y1),B(x2,y2),则有AB= ③向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),则a,b共线? 四.平面向量数量积 1.定义:已知两个非零向量a,b,我们把数量叫做a与b的数量积(或内积). 叫做a在b方向上的投影,叫做b在a方向上的投影. 2.a·b的几何意义: 数量积a·b等于a的长度|a|与b在a方向上的投影|b|cosθ的乘积. 3.数量积的运算律:已知向量a,b和实数λ,则 ①a·b= ②(λa)·b== ③(a+b)·c= 4.坐标表示:设a=(x1,y1),b=(x2,y2),则 a·b= 5.模长公式:设a=(x,y),则 |a|==. 6.垂直条件:设a,b为非零向量,则 a⊥b?? 7.夹角公式:设a=(x1,y1),b=(x2,y2),夹角为θ,则 θ cos= =

高中数学平面向量知识点总结及常见题型范文

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与 终点的大写字母表示,如:几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行a = ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共 线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同 一直线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的 平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大小相等,方向相同),(),(2211y x y x =???==?21 2 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量

高中数学平面向量知识点总结

高中 数 学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的 起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法 ),(y x yj xi a 向量的大小即向量的模(长度) ,记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向 量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在 有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以 移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可 以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记 为b a 大小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量

平面向量基础知识点+思维导图练习

思维导图——平面向量

知识点默写——平面向量 1、平面向量: 2、向量的模:,记作 3、(1)零向量:;(2)单位向量: ;(3)相反向量(负向量):; 4、相等向量: ,记作 5、平行向量(共线向量): 6、 向量的加法( ) 向量的减法( ) 7、数乘向量:实数λ与向量a 的积是一个向量,记作 .数乘向量的含义: 8、 (1)||a λ= (2)当0λ>时,a λ 的方向与a 的方向,长度为a 的 倍;当0λ<时, a λ 的方向与a 的方向,长度为a 的倍;当0λ=或0a = 时, a λ= . a b a 2a 12 a a - 2a - 12 a -

9、向量运算满足的运算律(1)加法交换律:;(2)加法结合律: ; (3)数乘向量运算律:()a λμ= ,()a λμ+= , ()a b λ+= , 10、(1)平面向量的坐标表示 在平面直角坐标系中,分别取与x 轴,y 轴方向相同的两个单位向量i ,j ,根据平行四边形法则,对平面上任一向量a ,有且只有一对实数x ,y ,使得a xi y j =+ ,我们把(,)x y 叫做向量a 在平面直角坐标系xOy 中的坐标,记作 . (2)设点11(,)A x y ,点22(,)B x y ,则向量AB 的坐标为 ,记作AB = . (3)向量(,)a x y = ,则向量的模||a = .(3)若原点(0,0)O ,(,)A x y ,则OA = . (4)设向量11(,)a x y = ,向量22(,)b x y = ,则a b += ,a b -= . (5)若11(,)a x y = ,λ为实数,则a λ= . 11、若1122(,),(,)a x y b x y == ,则//a b ? ;若1122(,),(,)a x y b x y == ,则a b ⊥? ; 12、化简:BD AB AC +-= .

平面向量的应用举例

平面向量应用举例 课型:新课 设计人: 设计时间:2011.3.2 使用时间: 学习目标: 1.通过应用举例,学会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题 2.通过本节的学习,体验向量在解决几何和物理问题中的工具作用,增强积极主动的探究意识,培养创新精神。 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几 何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问 题加以解决. 学习过程: 例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.已知:平行四边形ABCD . 求证:2 2 2 2 2 2 AC BD AB BC CD DA +=+++. 利用向量的方法解决平面几何问题的“三步曲”? (1) 建立平面几何与向量的联系, (2) 通过向量运算,研究几何元素之间的关系, (3) 把运算结果“翻译”成几何关系。 变式训练:ABC ?中,D 、E 、F 分别是AB 、BC 、CA 的中点,BF 与CD 交于点O ,设,.AB a AC b == (1)证明A 、O 、E 三点共线; (2)用,.a b 表示向量AO 。 例2,如图,平行四边形ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗? 例3.如图,一条河的两岸平行,河的宽度500d =m ,一艘船从A 处出发到河对岸.已知船的速度|v 1|=10km/h ,水流的速度|v 2|=2km/h ,问行驶航程最短时,所用的时间是多少(精确到 0.1min)? 变式训练:两个粒子A 、B 从同一源发射出来,在某一时刻,它们的位移分别为(4,3),(2,10)A B s s ==, (1)写出此时粒子B 相对粒子A 的位移s; (2)计算s 在A s 方向上的投影。 当堂检测 1.已知0 60,3,2===?C b a ABC 中,,求边长c 。 2.在平行四边形ABCD 中,已知AD=1,AB=2,对角线BD=2,求对角线AC 的长。 3.在平面上的三个力321,,F F F 作用于一点且处于平衡状态, 2121,2 2 6,1F F N F N F 与+= =的夹角为o 45, 求:(1)3F 的大小;(2)1F 与3F 夹角的大小。 课后练习与提高 一、选择题 1.给出下面四个结论: ① 若线段AC=AB+BC ,则向量AC AB BC =+; ② 若向量AC AB BC =+,则线段AC=AB+BC ; ③ 若向量AB 与BC 共线,则线段AC=AB+BC; ④ 若向量AB 与BC 反向共线,则 BC AB BC AB +=+.其中正确的结论有 ( ) A. 0个 B.1个 C.2个 D.3个 2.河水的流速为2s m ,一艘小船想以垂直于河岸方向10s m 的 速度驶向对岸,则小船的静止速度大小为 ( ) A.10s m B. 262s m C. 64s m D.12s m 3.在ABC ?中,若)()(CB CA CB CA -?+=0,则ABC ?为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.无法确定 二、填空题 4.已知ABC ?两边的向量21,e AC e AB ==,则BC 边上的中线向量AM 用1e 、2e 表示为 5.已知10321321=++=++OP OP OP ,OP OP OP ,则1OP 、 2OP 、3OP 两两夹角是 反思总结:

平面向量应用举例#精选.

平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 [展示投影] 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 [展示投影]例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

平面向量基础知识梳理

平面向量基础知识梳理 一、向量的概念: ⒈有向线段: 叫做有向线段. ⒉向量: 叫做向量. 向量通常用有向线段→ AB 或a 表示. ⒊向量的模:向量→ AB 的 又叫做向量的模,记作 . ⒋两个重要概念: ①零向量: 叫做零向量.记作 . 注意:零向量没有规定它的方向,因此零向量的方向是任意的. ②单位向量: 叫做单位向量. 注意:单位向量的方向与它所在向量的方向相同. ⒌相等向量: 叫做相等向量. 向量a 与b 相等记 作 . ⒍平行向量: 叫做平行向量. 向量a 与b 平行可记 作 . 规定:0 与任一向量平行.即0 ∥a ,→ AB ∥0 ,0 ∥0 . ⒎共线向量: 叫做共线向量. 注意:若a 与b 是共线向量,则a 与b 的方向 ,它们所在的直线 它们的夹角是 . ⒏相反向量: 叫做相反向量. a 的相反向量是 ,? a 的相反向量是 ,0 的相反向量是 . ⒐两个非零向 量 a 和 b 的夹 角: . 二、向量的运算: ⒈向量的加法: ⑴向量a 与b 的和的定义:

⑵向量加法法则:①三角形法则(请画图于右)→AB +→ BC (首尾相连) ②平行四边形法则(请画图于右)→ AB +→ AC (起点相同) ⑶向量加法运算律:①交换律: ②结合律: ⑷特例:0 +a = ,a +0= ,00 += . ⑸向量加法的坐标运算:设a =(x 1,y 1),b =(x 2,y 2),则b a += . ⒉向量的减法: ⑴向量a 与b 的差的定义:向量a 加上b 的相反向量叫做a 与b 的差,记作 a +(?b )=a ?b . a ?b 是怎样的一个向量?答: . ⑵向量减法法则:设a =→OA ,b =→ OB , 则a ?b =→ OA -→ OB = .(请画图于右). 重要结论:设AB ,AD 是两个不共线向量,则以AB 、AD 为邻边的平行 四边形的两条对角线的长分别是这两个向量和与差的模. ⑶特例:0 -a = ,a -0= ,00 -= . ⑷向量减法的坐标运算:设a =(x 1,y 1),b =(x 2,y 2),则b a -= . ⒊实数与向量的积: ⑴定义:实数λ与向量a 的积是一个向量,记作λ a , 它的长度与方向规定如下: ①|λ a |= ; ②当λ>0时,λ a 的方向与a 的方向 ,当 λ<0时,λ a 的 方向与a 的 方向 ;当λ=0时,λa = . ⑵运算律:①λ(μ a ) = ;②(λ+μ)a = ; ③λ(b a +)= . ⑶实数与向量的积的坐标运算: O B

平面向量的应用举例

平面向量的应用举例 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

2.5平面向量的应用举例 班级学号姓名 .一选择题 1.已知A、B、C为三个不共线的点,P为△ABC所在平面内一点,若 + + +,则点P与△ABC的位置关系是 () A、点P在△ABC内部 B、点P在△ABC外部 C、点P在直线AB上 D、点P在AC边上 2.已知三点A(1,2),B(4,1),C(0,-1)则△ABC的形状为 () A、正三角形 B、钝角三角形 C、等腰直角三角形 D、等腰锐角三角形 3.当两人提起重量为|G|的旅行包时,夹角为θ,两人用力都为|F|,若 |F|=|G|,则θ的值为() A、300 B、600 C、900 D、1200 4.某人顺风匀速行走速度大小为a,方向与风速相同,此时风速大小为v,则此人实际感到的风速为 () A、v-a B、a-v C、v+a D、v 二、填空题 5.一艘船以5km/h的速度向垂直于对岸方向行驶,船的实际航行方向与水流方向成300角,则水流速度为 km/h。 6.两个粒子a,b从同一粒子源发射出来,在某一时刻,以粒子源为原点,它 们的位移分别为S a =(3,-4),S b =(4,3),(1)此时粒子b相对于粒子a 的位移; (2)求S在S a 方向上的投影。 三、解答题 7.如图,点P是线段AB上的一点,且AP︰PB=m︰n,点O是直线AB外一点,设OA =a,OB =b,试用,,, m n a b的运算式表示向量OP.

8.如图,△ABC 中,D ,E 分别是BC ,AC 的中点,设AD 与BE 相交于G ,求证:AG ︰GD=BG ︰GE=2︰1. G E D C B A 9.如图, O 是△ABC 外任一点,若1 ()3 OG OA OB OC =++,求证:G 是△ABC 重心(即三条边上中线的交点). 10.一只渔船在航行中遇险,发出求救警报,在遇险地西南方向10mile 处有一只货船收到警报立即侦察,发现遇险渔船沿南偏东750,以9mile/h 的速度向前航行,货船以21mile/h 的速度前往营救,并在最短时间内与渔船靠近,求货的位移。

平面向量知识点易错点归纳

平面向量知识点易错点 归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

§ 平面向量的概念及线性运算 1名称 定义 备注 向量 既有大小又有方向的量;向量的大小 叫做向量的长度(或称模) 平面向量是自由向量 零向量 长度为0的向量;其方向是任意的 记作0 单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a |a | 平行向量 方向相同或相反的非零向量 0与任一向量平行或共线 共线向量 方向相同或相反的非零向量又叫做共 线向量 相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大 小 相反向量 长度相等且方向相反的向量 0的相反向量为0 2.向量的线性运算 向量运算 定义 法则(或几何意义) 运算律 加法 求两个向量和的运 算 (1)交换律:a +b =b +a . (2)结合律:(a +b )+c =a +(b +c ). 减法 求a 与b 的相反向 量-b 的和的运算叫做a 与b 的差 三角形法则 a - b =a +(-b ) 数乘 求实数λ与向量a 的积的运算 (1)|λa |=|λ||a |;(2)当λ>0时,λa 的方 向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0 λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb 3.共线向量定理 向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 方法与技巧 1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD →且AB 与CD 不共线,则AB ∥CD ;若AB →

平面向量重要基础知识点

平面向量重要知识点 1、向量有关概念: (1)向量的概念:既有大小又有方向的量,向量是可以平移的,(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记 作:a ∥b ,规定零向量和任何向量平行。提醒平行向量无传递性!(因为有0) 2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任 一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。 3、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa :当λ>0时,λa 的方 向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反 4、平面向量的数量积: (1)两个向量的夹角: (2)平面向量的数量积:规定:零向量与任一向量的数量积是0 注意数量积是一个实数,不再是一个向量。 (3)b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0。(4)a ?b 的几何意 义:数量积a ?b 等于a 的模||a 与b 在a 上的投影的积。 (5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥??=; ②当a ,b 同向时,a ?b =a b ,特别地,222,a a a a a a =?==;当a 与b 反向时,a ?b =-a b ;当θ为锐角时,a ?b >0,且 a b 、 不同向,0a b ?>是θ为锐角的必要非充分

平面向量应用举例(教学案)

2.5平面向量应用举例 一、教材分析 向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。 二、教案目标 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神。 三、教案重点难点 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析 在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。 五、教案方法 1.例题教案,要让学生体会思路的形成过程,体会数学思想方法的应用。 2.学案导学:见后面的学案 3.新授课教案基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的 应用 2.教师的教案准备:课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教案过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教案具有了针对性。 (二)情景导入、展示目标 教师首先提问:(1)若O 为ABC ?重心,则OA +OB +OC =0 (2)水渠横断面是四边形ABCD ,DC =1 2 AB ,且|AD |=|BC |,则这个四边形 为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。 (设计意图:步步导入,吸引学生的注意力,明确学习目标。) (三)合作探究、精讲点拨。 探究一:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.

平面向量应用举例教案

龙文教育个性化辅导教案提纲 学生: 日期: 年 月 日 第 次 时段: 教学课题 平面向量应用举例-----导学案 教学目标 考点分析 1. 掌握向量的加减运算法则和向量的数量积运算 2. 掌握向量在数学和物理中的应用 教学重点 理解并能灵活运用向量加减法与向量数量积的法则. 教学难点 理解并能灵活运用向量加减法与向量数量积的意义和性质 教学方法 问答式、启发式教学 教学过程:上节课知识点复习回顾及习题疑难解惑 第一课时:2.5.1 向量在几何中的应用举例 一、复习准备: 1.提问:向量的加减运算和数量积运算是怎样的? 2.讨论:① 若o 为ABC ?的重心,则OA +OB +OC =0 ②水渠横断面是四边形ABCD ,DC =12AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? 二、讲授新课: 1.平面向量在平面几何中的应用: ① 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来例如,向量数量积对应着几何中的长度.如图: 平行四边行ABCD 中,设AB =a ,AD =b ,则AC AB BC a b =+=+ (平移),DB AB AD a b =-=- ,222||AD b AD == (长度) .向量AD ,AB 的夹角为DAB ∠ ② 讨论:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例. ③ 用向量方法解平面几何问题的步骤(一般步骤) (1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量. (2) 通过向量运算研究几何运算之间的关系,如距离、夹角等. (3) 把运算结果"翻译"成几何关系. 2.教学例题: ① 出示例1:求证:平行四边形两条对角线的平方和等于四条边的平方和. 分析:由向量的数量积的性质,线段的长的平方可看做相应向量自身的内积. 练习:已知平行四边形ABCD ,AB =a ,BC = b ,且||||a b =,试用向量a b ,表示BD 、AC ,并计算BD .AC ,判断BD 与AC 的位置关系. ② 出示例2:如图,在OBCA 中,OA a = ,OB b = ,||||a b a b +=-,求证四边形O BCA 为矩形 分析:要证四边形O BCA 为矩形,只需证一角为直角. ③ 练习:AC 为O 的一条直径,ABC ∠为圆周角,求证90ABC ∠=? ④ 出示例3:在ABC 中,M 是BC 的中点,点N 在边AC 上,且2AN NC =,AM BN 与相交于点P ,如 图,求:AP PM 的值. 3. 小结:向量加减法与向量数量积的运算法则;向量加减法与向量数量积的意义和性质. 三、巩固练习: 1. 已知平行四边形ABCD ,E F 、在对角线BD 上,并且BE=FD ,求证AECF 是平行四边形. 2. 求证:两条对角线互相垂直平分的四边形是菱形.

相关主题
文本预览
相关文档 最新文档