当前位置:文档之家› 年产120万环地铁.城轨专用盾构管片产品项目可行性研究报告

年产120万环地铁.城轨专用盾构管片产品项目可行性研究报告

年产120万环地铁.城轨专用盾构管片产品项目可行性研究报告
年产120万环地铁.城轨专用盾构管片产品项目可行性研究报告

中铁港航局南方基地管片厂建设项目可行性研究报告

XXXXXX有限公司

年产120万环地铁.城轨专用盾构管片产品

项目

可行性研究报告

编制单位:北京中投信德国际信息咨询有限公司

高级工程师:高建

目录

第一章总论 (1)

1.1项目概要 (1)

1.1.1项目名称 (1)

1.1.2项目建设单位 (1)

1.1.3项目建设性质 (1)

1.1.4项目建设地点 (1)

1.1.5项目负责人 (1)

1.1.6项目投资规模 (1)

1.1.7项目建设规模 (2)

1.1.8项目资金来源 (2)

1.1.9项目建设期限 (2)

1.2项目承建单位介绍 (3)

1.3编制依据 (4)

1.4编制原则 (5)

1.5研究范围 (5)

1.6主要经济技术指标 (6)

1.7综合评价 (7)

第二章项目背景及必要性可行性分析 (8)

2.1项目提出背景 (8)

2.2本次项目发起缘由 (9)

2.3项目建设必要性分析 (9)

2.3.1促进广东省城市轨道交通建设发展的现实需要 (9)

2.3.2提升城市轨道交通配套装备产能的需求 (10)

2.3.3珠三角区域整合及中山市城市发展的现实需求的迫切需要 (10)

2.3.4促进地铁\城轨管片生产技术发展对城市地下空间规模开发的需要 (12)

2.3.5有助于企业延伸产业链条实现长远战略发展的需要 (12)

2.3.6增加就业带动相关产业链发展的需要 (13)

2.3.7促进项目建设地经济发展进程的的需要 (13)

2.4项目可行性分析 (13)

2.4.1政策可行性 (13)

2.4.2市场可行性 (14)

2.4.3技术可行性 (15)

2.4.4管理可行性 (15)

2.5分析结论 (15)

第三章行业市场分析 (17)

3.1国内混凝土行业产业规模及发展运行分析 (17)

3.2我国城际轨道交通发展情况及未来前景分析 (21)

3.3广东省地铁及轨道交通行业市场分析 (24)

3.4市场分析结论 (25)

第四章项目建设条件 (26)

4.1项目选址方案 (26)

4.2区域投资环境 (27)

4.2.1区域概况 (27)

4.2.2地理位置 (28)

4.2.3地势地貌 (29)

4.2.4气候特征 (29)

4.2.5基础设施 (30)

4.2.6区位交通 (31)

4.2.7产业经济 (33)

第五章总体建设方案 (34)

5.1总图布置原则 (34)

5.2土建方案 (34)

5.2.1总体规划方案 (34)

5.2.2土建工程方案 (35)

5.3主要建设内容 (36)

5.4 建筑设计主要规范及标准 (36)

5.5工程管线布置方案 (37)

5.5.1给排水 (37)

5.5.2供电 (39)

5.5.3排风设置 (41)

5.6道路设计 (41)

5.7总图运输方案 (42)

5.8土地利用情况 (42)

5.8.1项目用地规划选址 (42)

5.8.2用地规模及用地类型 (42)

第六章产品方案 (44)

6.1主要产品及生产规模 (44)

6.2产品标准 (44)

6.3产品价格制定 (44)

6.4产品生产规模确定 (44)

6.5产品优势 (45)

6.6生产技术方案 (45)

第七章原料供应及设备选型 (46)

7.1主要原材料供应 (46)

7.2主要设备选型 (46)

7.2.1设备选型原则 (46)

7.2.2主要设备明细 (47)

第八章节约能源方案 (48)

8.1本项目遵循的合理用能标准及节能设计规范 (48)

8.2建设项目能源消耗种类和数量分析 (48)

8.2.1能源消耗种类 (48)

8.2.2能源消耗数量分析 (48)

8.3项目所在地能源供应状况分析 (49)

8.4主要能耗指标及分析 (49)

8.4.1项目能耗分析 (49)

8.4.2国家能耗指标 (50)

8.5节能措施和节能效果分析 (50)

8.5.1工业节能 (50)

8.5.2节水措施 (51)

8.5.3建筑节能 (51)

8.5.4企业节能管理 (52)

8.6结论 (53)

第九章环境保护与消防措施 (54)

9.1设计依据及原则 (54)

9.1.1环境保护设计依据 (54)

9.1.2设计原则 (54)

9.2建设地环境条件 (55)

9.3 项目建设和生产对环境的影响 (55)

9.3.1 项目建设对环境的影响 (55)

9.3.2 项目生产过程产生的污染物 (56)

9.4 环境保护措施方案 (56)

9.4.1 项目建设期环保措施 (56)

9.4.2 项目运营期环保措施 (57)

9.4.3 环境管理 (58)

9.4.4 环境影响评价小结 (58)

9.5绿化方案 (58)

9.6消防措施 (59)

9.6.1设计依据 (59)

9.6.2防范措施 (59)

9.6.3消防措施的预期效果 (60)

第十章劳动安全卫生 (61)

10.1 编制依据 (61)

10.2概况 (61)

10.3 劳动安全与卫生 (61)

10.3.1防雷电 (61)

10.3.2工业卫生 (62)

10.4安全卫生机构 (62)

10.5 预期效果评估 (62)

第十一章企业组织机构与劳动定员 (64)

12.1组织机构 (64)

12.2劳动定员 (64)

11.3工作制度安排 (64)

11.4福利待遇 (64)

11.5员工培训 (65)

第十二章项目实施规划 (66)

12.1建设工期的规划 (66)

12.2 建设工期 (66)

12.3实施进度安排 (66)

12.4项目的组织保障措施 (67)

第十三章投资估算与资金筹措 (69)

13.1投资估算依据 (69)

13.2建设投资估算 (69)

13.3流动资金估算 (70)

13.4资金筹措 (70)

13.5项目投资总额 (70)

13.6资金使用和管理 (73)

第十四章财务及经济评价 (74)

14.1总成本费用估算 (74)

14.1.1基本数据的确立 (74)

14.1.2产品成本 (75)

14.1.3平均产品利润 (76)

14.2财务评价 (76)

14.2.1项目投资回收期 (76)

14.2.2项目投资利润率 (77)

14.2.3不确定性分析 (77)

14.3经济效益评价结论 (80)

第十五章风险分析及规避 (82)

15.1项目风险因素 (82)

15.1.1不可抗力因素风险 (82)

15.1.2技术风险 (82)

15.1.3市场风险 (82)

15.1.4资金管理风险 (83)

15.2风险规避对策 (83)

15.2.1不可抗力因素风险规避对策 (83)

15.2.2技术风险规避对策 (83)

15.2.3市场风险规避对策 (83)

15.2.4资金管理风险规避对策 (84)

第十六章招标方案 (85)

16.1招标管理 (85)

16.2招标依据 (85)

16.3招标范围 (85)

16.4招标方式 (86)

16.5招标程序 (86)

16.6评标程序 (87)

16.7发放中标通知书 (87)

16.8招投标书面情况报告备案 (87)

16.9合同备案 (87)

第十七章结论与建议 (88)

17.1结论 (88)

17.2建议 (88)

附表 (89)

附表1 销售收入预测表 (89)

附表2 总成本表 (90)

附表3 外购原材料表 (91)

附表4 外购燃料及动力费表 (92)

附表5 工资及福利表 (93)

附表6 利润与利润分配表 (94)

附表7 固定资产折旧费用表 (95)

附表8 无形资产及递延资产摊销表 (96)

附表9 流动资金估算表 (97)

附表10 资产负债表 (98)

附表11 资本金现金流量表 (99)

附表12 财务计划现金流量表 (100)

附表13 项目投资现金量表 (102)

附表14资金来源与运用表 (104)

第一章总论

1.1项目概要

1.1.1项目名称

中铁港航局南方基地管片厂建设项目

1.1.2项目建设单位

XXXXXX有限公司

1.1.3项目建设性质

新建项目

1.1.4项目建设地点

1.1.5项目负责人

1.1.6项目投资规模

项目的总投资为10000.00万元,其中,建设投资为9440.00万元(土建工程为4333.00万元,设备及安装投资3186.00万元,土地费用1600.00万元,其他费用为183.42万元,预备费137.58万元),铺底流动资金为560.00万元。

项目建成后,达产年可实现年产值18000.00万元,年均销售收入为15600.00万元,年均利润总额2518.44万元,年均净利润1888.83万元,

年上缴税金及附加为102.15万元,年增值税为928.68万元;投资利润率为25.18%,投资利税率35.49%,税后财务内部收益率18.59%,税后投资回收期(含建设期)为5.35年。

1.1.7项目建设规模

本项目年设计生产能力为:年产120万环地铁\城轨专用盾构管片产品。

本次建设项目占地面积200亩,总建筑面积52400.00平方米。主要建设内容及规模如下:

主要建筑物、构筑物一览表

1.1.8项目资金来源

本项目总投资资金10000.00万元人民币,全部由项目企业自筹。1.1.9项目建设期限

本项目建设从2016年4月至2016年9月,工期共计6个月。

1.2项目承建单位介绍

XXXXXX有限公司是世界双500强中国中铁股份公司旗下的全资子公司,注册地在广东省广州市,注册资本金为12.37亿元人民币。集团由12个全资子公司、3个参股公司、8个生产性分公司和29个经营性分公司组成,是一家集工程施工、设计、科研、投资和海外工程开发于一体的综合性大型建筑集团。

XXXXXX现具有铁路工程施工总承包特级资质(含铁道行业设计甲(Ⅱ)级);港口与航道工程、市政公用工程、房屋建筑工程、公路工程施工总承包一级资质;桥梁工程、爆破与拆除工程、地基与基础工程、土石方工程专业承包一级资质;城市轨道交通工程专业承包资质;矿山工程施工总承包三级资质。

XXXXXX是中国施工企业管理协会理事单位、中国工程爆破协会常务理事单位、广东省工程爆破协会副理事长单位、广东省建设工程交易协会副会长单位、广东省建筑安全协会理事单位。被中国建设银行授予“AAA”信用等级,连续十年被广东省工商行政管理局授予“守合同重信用企业”称号,2011年被广东省企业家协会评为“广东省最佳诚信企业”。通过了ISO9001质量管理体系、职业健康安全管理体系(GB/T28001)、环境管理体系(ISO14001)和工程建设施工企业质量管理规范(GB/T50430-2007)认证。

集团现有员工5000余人,其中国家级专家5名,教授级高工16名,高级技术职称人员283名,中级技术职称人员1862名,各类专业技术人员2613名。拥有各类施工设备2830台(套),年施工能力达150亿元以上。

XXXXXX的成员企业经历了几十年的发展,在港航、铁路、公路、桥梁等施工领域创造了辉煌的业绩。现已建成的港口码头及航道疏浚工程

452项,桥梁工程320座,隧道工程72项,市政公用工程135项,爆破工程86项。其中南京长江大桥、汕头海湾大桥、西陵长江大桥、武汉天兴洲长江大桥,青藏铁路、武广高铁、京广高铁,大丰港通用码头、青岛航母基地、惠州芝麻洲岛大爆破,北京地铁14号线、马来西亚吉隆坡地铁以及深圳南海大酒店、盐田港等工程均代表我国工程建筑的领先水平。曾荣获国优金奖12项,中国建筑工程鲁班奖13项,詹天佑大奖6项,中国企业新纪录18项,国家技术进步奖26项,省部级大奖230余项。

XXXXXX将发扬“勇于跨越、追求卓越”的精神,发挥企业集团优势,拓宽经营领域,扩大市场份额,不断创造新的辉煌业绩。

1.3编制依据

1.《国民经济和社会发展第十三个五年(2016-2020年)规划纲要》;

2.《国家中长期科学和技术发展规划纲要(2006-2020)》;

3.《中国制造2025》;

4.国务院关于印发《中国制造2025》的通知国发〔2015〕28号;

5.《珠江三角洲地区城际轨道交通网规划》;

6.《装备制造业调整和振兴规划》;

7.《产业结构调整指导目录(2014年版)》;

8.《建设项目经济评价方法与参数及使用手册》第三版;

9.《工业可行性研究编制手册》;

10.《现代财务会计》;

11.《工业投资项目评价与决策》;

12.《投资项目可行性研究指南》

13.国家现行的有关法律、法规、标准、规范、规定及政策;

14.项目公司提供的有关资料及相关数据;

15.国家公布的相关设备及施工标准。

1.4编制原则

(1)充分利用企业现有基础设施条件,将该企业现有条件(设备、场地等)均纳入到设计方案,合理调整,以减少重复投资。

(2)坚持技术、设备的先进性、适用性、合理性、经济性的原则,采用国内最先进的产品生产技术和国内最先进的设备,确保产品的质量,以达到企业的高效益。

(3)认真贯彻执行国家基本建设的各项方针、政策和有关规定,执行国家及各部委颁发的现行标准和规范。

(4)设计中尽一切努力节能降耗,节约用水,提高能源的重复利用率。

(5)设计中注重环境保护及节能降耗,在建设过程中采用行之有效的环境综合治理措施。

(6)注重劳动安全和卫生,设计文件应符合国家有关劳动安全、劳动卫生及消防等标准和规范要求。

1.5研究范围

本研究报告对企业现状和项目建设的可行性、必要性及承办条件进行了调查、分析和论证;对产品的市场需求情况进行了重点分析和预测,确定了本项目的产品生产纲领;对加强环境保护、节约能源等方面提出了建设措施、意见和建议;对工程投资、产品成本和经济效益等进行计算分析并作出总的评价;对项目建设及运营中出现风险因素作出分析,重点阐述

规避对策。

1.6主要经济技术指标

项目主要经济技术指标表

1.7综合评价

本项目重点研究XXXXXX有限公司“中铁港航局南方基地管片厂建设项目”的设计与实施,项目的实施符合相关产业发展政策,符合中国国民经济可持续发展的战略目标,前景可观,优势明显,产品起点高,技术设备先进。本项目的建设不仅可使项目企业赢得可观的经济效益,抢占更多市场份额,还可为市场提供附加值更高、产品优势更为明显的地铁\城轨管片产品。项目将给广东中山市城市轨道交通行业注入新的活力,提高行业的核心竞争力,提振国内建筑业、建材工业及水泥工业的发展,实现新的飞跃。项目将带动当地就业,增加当地利税,带动当地经济发展。项目建设还将形成产业集群,拉大产业链条,对项目建设地乃至周边地区的经济发展起到很大的促进作用。因此,本项目的建设不仅会给项目企业带来更好的经济效益,还具有很强的社会效益。所以,本项目建设十分可行。

盾构机管片选型和安装

盾构管片选型和安装 林建平 在盾构法施工中,管片的选型和安装好坏直接影响着隧道的质量和使用寿命。本文根据广州地铁三号线客~大区间的实际施工情况,就盾构管片选型和安装技术做总结分析。 一、工程概况 客~大盾构区间分为两条平行的分离式单线圆形盾构隧道,总长度为3016.933米,管片生产与安装2011环。管片外径6000mm,内径5400mm,宽度1500mm,防渗等级S10,砼C50。依据配筋将管片分为A、B、C三类,C类配筋最高、B类配筋最低;管片的楔形量38mm,分左转、右转、标准三类。 二、管片的特征 1、管片的拼装点位 本区间的管片拼装分10个点位,和钟表的点位相近,分别是1、2、3、4、5、7、8、 9、10、11。 管片划分点位的依据有两个:管片的分块形式和螺栓孔的布置。拼环时点位尽量要求ABA(1点、11点)形式。在广州盾构隧道管片要求错缝拼装,相邻两环管片不能通缝。管片拼装点位有很强的规律,管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点。同一类管片不能相连,例如1点后不能跟3、5、8、10这四个点位,只能跟11、2、4、7、9五个点位。在成型隧道里两联络通道之间的奇数管片是同一类,偶数管片是同一类。 选管片的规律如下图1:图1 (竖列表示拼装好的管片,横向:√-表示可选后续的管片;×-表示不可选后续的管片)

2、隧道管片排序 鉴于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变。在本工程中,是从左线始发,第325、326环处是联络通道,此处拼装点位是11点,将标准块A3块拼到洞门位置。盾构始发时的负环是6环,1环零环。从负环到325环共332环,第325环是11点,相当于第332环是11点,那么负环第一环点位应该是1点,或3点、5点、8点、10点。 管片排序时,要优化洞门的长度,在广州洞门长度要求在400mm以上,一环管片的长度是1500mm,在条件允许的条件下,通过调整始发负环的位置,把每节隧道两端的洞门长度之和控制在1500mm以内,当隧道长度除以管片长度的余数大于两倍最小洞门宽

地铁盾构施工管片拼装实名制管理规定

**地铁公司**公司 关于印发《**地铁盾构施工管片拼装 实名制管理规定(暂行)》的通知 地铁各参建单位: 为了加强**地铁建设工程盾构施工管片拼装质量管理,落实“百年大计,质量第一”的管理方针,强化盾构施工管片拼装规范化、标准化,加强盾构施工质量责任追溯,结合**地铁盾构工程的实际情况特制定《**地铁盾构施工管片拼装实名制管理暂行规定》,现印发给你们,请认真贯彻执行。 特此通知。 **地铁公司**公司 2014年1月27日

**地铁盾构施工管片拼装实名制 管理暂行规定 第一条为了加强**地铁建设工程盾构施工管片拼装质量管理,落实“百年大计,质量第一”的质量方针,加强**地铁盾构施工管片拼装规范化、标准化管理,强化盾构施工质量责任追溯,结合**地铁盾构施工管理经验,特制定本规定。 第二条本规定适用于**地铁在建工程盾构施工项目。 第三条各参建单位根据各工程实际情况,建立相关管片拼装实名制及责任追究奖惩制度,明确各级管理人员及不同岗位的相关职责。 第四条各参建单位应加强管片进场验收、止水条粘接、垂直吊装、水平运输、拼装成环等阶段的过程管理,细化盾构掘进参数、管片选型、姿态控制、注浆、螺栓紧固、测量复核等环节的质量控制。 第五条盾构管片拼装过程中,承包商主管盾构的技术管理人员、盾构机司机、管片拼装手等应实行旁站制度,负责盾构管片拼装质量的控制,监理单位应加强盾构施工各个环节的督促检查,做好监理旁站记录。

第六条承包商应根据工程特点、盾构机及施工设备的技术性能及操作要领,对盾构操作司机及各类设备操作人员进行岗前的技术培训和考核,持证上岗。 第七条开工前,承包商应及时完成有关的安全技术交底,并在施工过程中严格执行,作业人员操作前须阅读作业指导书和交班记录,熟悉该段详细的水文地质资料、设计线路、地面建(构)筑物、管片姿态测量等情况。 第八条已拼装成型的管片,在每环管片的8点-9点钟管片左侧位置贴上拼装信息标示牌,明确盾构管片生产厂家、盾构机司机、管片拼装手、监理验收等信息,信息标示牌采用白底红字格式(见附件1),具体尺寸为:宽为150mm,长为180mm,字体均为黑体,标示牌名称字体长10mm,高9mm,其余字体长8.5mm,高8mm。 第九条承包商应建立相应的信息反馈制度,对发生错台、破损、渗漏等质量问题的部位须及时记录、汇总,并定期检查总结,针对存在的问题召开专题会议研究并落实整改措施,不断完善提高。 第十条本规定由**公司负责解释 第十一条本规定自发布之日起实行。

地铁盾构管片生产工艺研究

地铁盾构管片生产工艺研究 发表时间:2019-07-03T12:02:27.093Z 来源:《基层建设》2019年第10期作者:杨娟 [导读] 北京住总集团有限责任公司轨道交通市政工程总承包部北京 100029 1.概述 我单位中标某工程管片生产。本工程所需的地铁预制钢筋混凝土盾构管片每片为弧形结构,管片外径6000mm,宽1200mm,厚 300mm,属于标准型管片系统,管片外观要求无气泡,无裂纹,要求结构抗渗试验、抗冻融、结构抗弯试验、注浆孔拉拔试验均应合格。该产品是技术含量、工艺和品质要求较高的钢筋混凝土预制构件,工艺难度大,特别是冬季生产尚无成熟经验可借鉴,本公司按照严格的技术质量标准进行生产,从原材料选用到全生产过程进行质量控制,经过一年的生产,通过不断改进,形成了较成熟的生产控制技术。 2.施工工艺流程及操作要点 施工主要工艺流程:原材料进厂验收、复验、存—钢筋加工成型 —钢筋、预埋件配件入模—合模—混凝土浇注、试块制作—抹面、静停—蒸养—出模、成品外观检查—水养(冬季采用养护剂养)—存入堆放场待运 3.设备与材料 3.1设备 本工法使用的设备及模具:管片模具、HZS35双卧轴混凝土搅拌机、单梁吊车(钢筋车间)、双梁桥式吊车、跨龙门式吊车、钢筋切断机、钢筋弯曲机、管片水平拼装平台。 3.2材料 根据混凝土强度等级C50、P10、F150,水泥: P.O42.5,其碱含量应≤0.60%。外加剂: UNF-5AST高性能聚羧酸系减水剂。掺合料:,S95级,S95级矿粉,骨料:砂选用天然水洗砂,含泥量≤3.0%,泥块含量≤1.0%。石选用碎石,含泥量﹤1.0%,泥块含量﹤0.5%。混凝土碱集料反应控制要求:混凝土碱含量总量≤3kg/m3,水泥碱含量≤0.6%,外加剂碱含量≤0.75 kg/ m3。砂、石的膨胀率应小于0.10%。钢筋:钢筋普遍为光圆、螺纹Ⅰ级、Ⅱ级Q235和HRB335材质。脱模剂:通过观察脱模效果确定采用不沾染模具且清理容易、对混凝土表面无污染,对钢模无腐蚀,对后期涂装无害,且能减少混凝土表面气孔,具有优良的混凝土表面美观功能的水溶性脱模剂。管片配件:芯管、注浆管、工程塑料垫块及配件要符合设计要求并有出厂合格证、检验报告及环保证明。 3.3配合比设计 配置强度按普通混凝土配置强度计算。混凝土水胶比、凝胶材料数量遵循盾构管片规范要求,掺合料用量选择是基于以往北京地铁盾构管片配合比设计试验数据的基础上,结合本工程对管片冻融循环的要求。 根据以上各种原材的用量进行试拌,通过观察拌和物的和易性,可以初步确定混凝土的基准配合比,再通过试件的强度就可以确定混凝土的施工配合比。 同时为了充分拌和混凝土,延长了搅拌机的搅拌时间,由原先的1分钟改为1.5分钟。出机的混凝土入模后做到分层振捣,下料速度较慢且均匀,从入模到振捣完毕严格控制在8分钟,6组模具全部生产完毕共用5.5h。混凝土从入模到收面约需4h左右,先浇注的混凝土已进入蒸养状态,实现蒸养与浇注同步进行,缩短了生产时间,提高了生产效率。 4.质量控制 管片加工执行北京市《轨道交通预制钢筋混凝土盾构管片质量验收标准》QGD-003-2004。 4.1 钢筋骨架制作质量要求 钢筋骨架制作满足规范质量要求 4.2 预制成型管片基本要求 单块管片成型后管片脱模后对管片外观片片进行检查,管片内弧面的外观应光滑、平整、无裂缝、漏浆、蜂窝等。裂缝:管片表面不允许出现超过宽度0.1mm的裂缝。蜂窝、漏浆:管片表面蜂窝、漏浆的总面积不超过管片总面积的0.5%。 进行几何尺寸检查,允许偏差见预制成型管片允许偏差值表控制在标准范围内。 4.3 三环试拼装试验 试验频率 管片正式生产前和每生产100环管片后,需进行三环试拼装以检查管片几何尺寸和模具是否符合要求。 拼装试验台 制作一个钢筋混凝土平台,确保水平,误差控制在2mm以内;制作11个拼装支架,支架能够在高度上进行微调,以便矫正管片拼装后的水平。 拼装顺序 首先在平台上画直径为管片内径和外径的两个圆,作为拼装时的参考线;先放置标准块,再邻接块,最后放入封顶块;一环拼装完后,错缝拼装另两环。 检测 管片拼装完后利用不同型号的插片对管片之间的纵缝、环缝进行测量,以检测各管片之间的缝隙是否符合要求;再用水准仪分别测量各接缝的几个点,然后计算这几个点是否在同面上。 4.4检漏试验 管片正式生产后,每生产100环应抽查1块管片做检漏测试,按设计抗渗压力1.0MPa下恒压2h,渗水线应小于管片厚度的1/5,即为合格;100环合格后改为每生产200环抽查1块管片,再连续三次达到检测标准;200环合格后改为每生产400环抽查1块管片,再连续三次达到

地铁盾构混凝土管片项目可行性研究报告【备案申请版】

地铁盾构混凝土管片项目可行性研究报告【备 案申请版】 地铁盾构混凝土管片建设项目可行性研究报告地铁盾构混 凝土管片建设项目可行性研究报告建设单位:江苏X X 科技有限公司二零一九年 第6页可研报告主要用途:项目可行性研究报告是一种专 业的立项用书面材料,具有专业性.特殊性的性质。需要根据企业的投资情况进行量身编制。用于新建项目立项.备案.申请土地.企业节能审查.对外招商合作.环评.安评等。 严格按照行业规范编制,达到立项要求。 项目可行性研究报告是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行技术经济分析论证的科 学方法,在投资管理中,可行性研究是指对拟建项目有关的自然.社会.经济.技术等进行调研.分析比较以及预测建成后的社会经济效益。 项目可行性研究报告,是在制订生产.基建.科研计划的前 期,通过调查研究,分析论证某个建设或改造工程.某种科学研究.某项商务活动切实可行而提出的一种书面材料。 让您的投资更安全,经营更稳健! 目录

第一章总论1 1.1项目概要1 1.1.1项目名称1 1.1.2项目建设单位1 1.1.3项目建设性质1 1.1.4项目建设地点1 1.1.5项目负责人1 1.1.6项目投资规模1 1.1.7项目建设规模2 1.1.8项目资金来源2 1.1.9项目建设期限2 1.2项目承建单位介绍2 1.3编制依据3 1.4编制原则3 1.5研究范围4 1.6主要经济技术指标4第二章项目背景及必要性可行性分析6 2.1项目提出背景6 2.2项目建设必要性分析8 2.2.1顺应我国地铁盾构混凝土管片行业绿色发展的需要8 2.2.2提高人民居住条件和生活质量,顺应我国新型地铁盾构混凝土管片快速发展的需要8

如何进行盾构法施工隧道管片选型排版

进一步减小。通常我们以各组油缸行程的差值的大小来判断是否应该拼装转弯环,在两个相反的方向上的行程差值超过40mm时,就应该拼装转弯环进行纠偏,拼装一环转弯环对油缸行程的调整量见表1,也就是拼装1环10点左转弯环,可以使左、右两组的油缸行程差缩小38mm。 德国海瑞克公司的土压平衡式盾构机,如图3所示,10对推进油缸分为A、B、C、D四组,分别代表上、右、下、左四个方向。油缸行程可以通过位移传感器反映在显示屏上,通过计算各组油缸之间的差值,就能进行正确的管片选型。下面举例说明: 现有一组油缸行程的数据如下: B组(右):1980mm C组(下):1964mm D组(左):1934mm A组(上):1943mm 左右行程差为:D-B=1934-1980=-46mm 上下行程差为:A-C=1943-1964=-21mm 图油缸分区图 由上可以看出,盾构机的轴线相对于管片平面向左上方倾斜。在对这环管片进行选型的时候,就应选择一环左转弯环且还要有向上的偏移量。对照表1后得出,此环应选择左转弯环在1点拼装。拼装完管片后掘进之前油缸行程的初始数据理论为:A组(上):454mm B组(右):465mm C组(下):453m D组(左):450mm。这样左右与上下的油缸行程差值基本控制在20mm之内,有利于盾构掘进及保护管片不受破坏。(如果上述数据在左转弯曲线上,下一环管片仍安装一环左转弯环管片,那么盾构姿态基本调整过来)。 4、盾构间隙与油缸行程之间的关系 在进行管片选型的时候,既要考虑盾尾间隙,又要考虑油缸行程的差值。而油缸行程的差值更能反映盾构机与管片平面的空间关系,通常情况下应把油缸行程的差值作为管片选型的主要依据,只有在盾尾间隙接近于警戒值(25mm)时,才根据盾尾间隙进行管片选型。 3、影响管片选型的其他因素 3.1 铰接油缸行程的差值 目前地铁盾构工程中大多采用的是铰接式盾构机,即盾构机不是一个整体,而是在盾构机中体与盾尾之间采用铰接油缸进行连接,铰接油缸可以收放,这样就更加有利于盾构机在曲线段的掘进及盾构机的纠偏。铰接油缸利用位移传感器将上、下、左、右四个方向的行程显示在显示屏上,当铰接油缸的上下或左右的行程差值较大时,盾构机中体与盾尾之间产生一个角度,这将影响到油缸行程差的准确性。这时应当将上下或左右的行程差值减去上下或左右的铰接油缸行程的差值,最后的结果作为管片选型的依据。(海瑞克盾构铰接油缸有三种模式,锁、收和自由放开,当盾构在直线上,盾构姿态很好,可以使用锁定模式,当

盾构管片检测报告

受控号工程质量检测报告 工程名称: 检测内容:管片性能试验 检测机构名称

委托单位:XXX 建设单位:XXX 设计单位:XXX 施工单位:XXX 监理单位:XXX 检测单位:XXX 声明 1、本报告无检验检测报告专用章及其骑缝章无效; 2、本报告无检测、审核、批准人签名无效; 3、本报告涂改、增删无效; 4、报告复印页数不全、未加盖检验检测报告专用章无效; 5、对本报告若有异议,应于收到报告之日起十五日内向本检测单位提出。 检测单位资质证书编号: 检测单位地址: 邮政编码: 电话:

目录 一、概述 (5) 二、检测依据 (5) 三、检测目的 (5) 四、检测项目 (5) 五、仪器设备 (5) 六、检测方法 (7) 七、结论 (17)

一、概述 二、检测依据 1、《盾构隧道管片质量检测技术标准》CJJ/T 164-2011; 2、《地下铁道工程施工及验收规范》GB/T 50299-2018; 3、《混凝土结构工程施工及验收规范》GB 50204-2002; 4、《预制混凝土衬砌管片》GB/T 22082-2017; 5、《回弹法检测混凝土抗压强度技术规程》JGJ/T 23-2011; 6、由委托单位根据管片设计文件提供的设计数据。 三、检测目的 根据委托书要求,对进场管片进行抽查检验。 四、检测项目 盾构管片外观质量、几何尺寸、水平拼装、检漏试验、抗弯性能、吊装孔预埋件抗拔试验的抗拔力及混凝土强度。 五、仪器设备

六、检测方法 6.1管片抗弯性能检测 6.1.1加载反力装置所能提供的反力不得小于最大试验荷载的1.2倍,支承混凝土管片两端的活动小车车轮应能沿地面轨道滚动,施加给混凝土管片的抗弯荷载应通过荷载分配梁来实现,加载点取1/3管片跨度,加压棒的长度应与管片宽度相等,管片应平稳安放在检验架上,加载点上应垫上厚度不小于20mm 的橡胶垫。(见管片抗弯试验装置图)。 6.1.2加荷顺序:采用分级加荷,根据《预制混凝土衬砌管片》(CJJ/T 164-2011)抗弯性能检验加载值的要求。每级恒载时间不应少于5min,应记录每级荷载值作用下的各测点位移,并施加下一级荷载。 6.1.3位移观测设置点及计算 水平位移测点:设于两个带滚轮的承力小车外侧。 垂直位移测点:设于管片中点和两个荷载作用点,各测点均设百分表,用专用支架固定。 中心点竖向计算位移:W1=D1-(D4+D5)/2

地铁隧道常用管片特点与选型计算

地铁隧道常用管片特点与选型计算 (王国义中铁十三局集团第二工程有限公司,广东深圳 518083) 内容提要:盾构作为地铁隧道施工的主要设备在中国迅速发展,管片作为地铁隧道的永久衬砌应用非常广泛,管片选型的好坏直接影响到地铁隧道的精度和质量,甚至达到隧道重新修改设计线路的严重后果。从现在最常用管片的特点开始着手,着重讲述现今应用普遍的等腰梯形转弯环管片的楔形量计算、管片排版计算及盾构管片选型依据,首次提出根据实际拼装管片和设计隧道中心线的偏离值与盾构自动导向系统生成管片的偏差相比较,校核人工测量和盾构自动导向测量的准确性理论,对地铁盾构施工有一定的指导作用。 关键词:管片;转弯环;楔形量;选型;校核 1 引言 在国内各大城市地铁隧道工程中,目前已越来越多地开始使用盾构来掘进区间隧道,用预制钢筋混凝土管片[1]作为永久衬砌。成型管片的质量直接关系到隧道的质量,而隧道的成型质量直接受到管片选型好坏的影响。这就需要在盾构施工中掌握管片技术参数及管片楔形量计算知识,达到能够灵活选用盾构[2]管片,保证盾尾间隙和管片成型质量之目的,同时实际成型隧道位置是否正常直接影响到隧道的最终验收及使用。 2 常用地铁管片的特点 目前在地铁隧道盾构施工中,各个大中城市主要采用标准环和转弯环管片对设计隧道平纵曲线拟合,管片一般分为标准环、左转弯环、右转弯环三种管片,每环管片一般由六块管片组成,三块标准块,两块邻接块,一块封顶块,由盾构上的拼装机[3]拼装成一个整环(如图1)。 2.1 地铁常用管片技术参数(如表1) 表1 地铁常用管片技术参数

图1 右转弯环管片示意图 2.2 管片拼装点位的分布 管片成型的隧道为了能够达到很好的线形,完成隧道的左转弯、右转弯、上坡、下坡等功能,需要使用不同的楔形量管片[4],这就要求转弯环管片有不同的位置来达到此目的。 现在常用的地铁管片一般采用错缝拼装,有10个点位,来达到转弯所需要的不同楔形量。管片拼装点位是以封顶块的中线位置来叙述的(管片拼装点位如图2),转弯环不同的拼装点位在平曲线中有不同的楔形量,达到不同的转弯半径[5]。 为了能够顺利拼装管片,左转弯环或右转弯环一般拼装1、2、3、8、9、10这六个点位。 83 图2 管片拼装点位图 2.3 管片楔形量的计算

盾构隧道管片质量检测技术准则CJJ/T

盾构隧道管片质量检测技术标准(C J J/T164-2011) 说明: 目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T164-2011)”的word版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。 该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。 1总则 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2术语 2.0.1管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验

对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。 2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边 模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥砂浆。 拼接面 采用某种方式将盾构隧道管片连接起来,管片与管片之间的接触面。 环向 盾构隧道管片拼装成环后,环的切线方向。 纵向 盾构隧道管片拼装后,环与环的中心连线方向。 渗漏检验装置 在渗漏检验中,用于固定由凝土管片试件,并能在管片外弧面与试验架钢板之间形成密闭区间进行充水加压试验的试验台座。渗漏检验装置由检验架钢板、刚性支座、横压件、紧固螺杆、橡胶密封垫等组成。 3基本规定 3.0.1盾构隧道管片检测,应在接受委托后,进行现场和有关资料调查,制定检测方案并确认仪器设备状况后进行现场检测,根据计算分析和结果评价判断是否进行扩大抽检,并应出具检测报告(见图3.0.1)。 图3.0.1盾构隧道管片检测工作程序 初检结果不

地铁混凝土盾构管片预制技术的分析

地铁混凝土盾构管片预制技术的分析 发表时间:2018-06-06T10:29:09.693Z 来源:《基层建设》2018年第11期作者:蔡松伟 [导读] 摘要:盾构施工法为地铁施工方法的一种,本质为地下隧道掘进技术,要求在预制管片的基础上展开施工,提高施工效率及质量。 中交第三航务工程局有限公司厦门分公司福建厦门 361000 摘要:盾构施工法为地铁施工方法的一种,本质为地下隧道掘进技术,要求在预制管片的基础上展开施工,提高施工效率及质量。本文简要阐述了地铁混凝土盾构管片的类型及分装方法,强调了管片的优势。基于此,主要从砼准备、预制流程、预制技术三方面,详细阐述了技术的应用方案。并通过对常见病害的分析,总结了相应的解决经验,以期能够使地铁施工质量得以提升。 关键词:盾构施工;管片预制技术;地铁工程;混凝土 前言:地铁施工常用的盾构管片,以混凝土管片为主。该类型的管片,具有强度大、抗渗性强的特点。将其应用到地铁施工中,可有效提高地铁隧道的稳定性及安全性。但需注意的是,影响盾构管片质量的因素较多。施工前的砼准备、砼成型工艺水平如未达标,地铁隧道施工质量将明显下降。可见,有必要对地铁混凝土盾构管片及预制技术进行研究。 1 地铁混凝土盾构管片类型及拼装方法 根据划分标准的不同,地铁隧道管片可分为不同的类型。如以材料类型作为划分标准,则可将隧道管片,分为钢管片、钢筋砼管片等多种。本课题所探讨的混凝土盾构管片,既钢筋砼管片。管片拼装方法,包括通缝与错缝两种。以前者为例,盾构掘进过程中,所有管片均需以同样的角度拼装。当千斤顶作用于管片上时,如能够确保管片受力均匀,则其质量通常不会出现异常,因此施工过程较为简单[1]。但施工完成后,管片的整体受力性能则较差。与通缝相比,错缝拼装方式的施工过程较为复杂,稍有不慎,管片受力不均的问题既会产生。但拼装后,管片的整体质量往往较高。因此,地铁工程多采用错缝的方式进行拼装。为避免管片在拼装过程中出现质量问题,严格控制预制流程、提高各环节工艺水平是关键。 2 地铁混凝土盾构管片预制技术的应用方案 近年来我厂承接了几个地铁盾构管片预制项目。为提高盾构隧道稳定性,工程决定采用以下方案,预制盾构管片: 2.1 砼准备方法 地铁混凝土盾构管片预制所使用的混凝土,由水泥、骨料、减水剂等部分构成。以水泥为例,本工程所使用的水泥为硅酸盐水泥,水泥强度等级52.5。水泥制作3d时,抗压强度可达23.0,抗折强度为1.0[2]。28d后,抗压强度及抗折强度,可显著提升。砼配置强度的计算公式如下: f=f0+1.645φ 公式中,f代表砼配置强度,f0代表砼的抗压强度,φ为常数,为6.0MPa。管片预制前,施工人员可采用上述公式确定砼配置强度。同时,应将水泥的初凝时间,控制在45min以上,提高管片质量。 2.2 预制流程 地铁混凝土盾构管片的预制流程如下:(1)装配钢模,并对钢模质量进行检测。确保质量合格后,需将骨架置入钢模中,继续检测置入质量。(2)根据砼配置强度计算结果,进行砼浇筑。质量检测合格后,对其进行搅拌,形成砼原料,备用。(3)取浇筑后的砼试块,进行蒸汽养护[3]。养护后,通过强度试验,判断砼质量是否达标。(4)如砼质量达标,则可脱模并给予吊起,置入水池中养护。(5)养护7d后,将管片取出,妥善堆放,积极预防病害,以便用于地铁施工。 2.3 预制技术 2.3.1 钢模及钢筋预制技术 钢模主要由底座、侧板及端板构成。模具具有足够的承载能力、刚度、稳定性和良好的密封性能,并满足管片的尺寸和形状要求。浇筑前钢模侧板、端板及底弧板,均应彻底清理,并于清理后,采用脱模剂均匀涂抹,以防出现积油现象。制作成型的钢模,宽度误差应控制为±0.40mm,底座夹角误差应为±1°,高度误差应为±1。管片预制所应用的钢筋,强度等级应为1级,直径6mm--25mm,抗拉强度≥370MPa。加工过程中,应通过调直、切断、弯曲成型四个环节,确保钢筋质量达标。 2.3.2 砼成型工艺 管片振捣其采用模具上的三个高频附着式振捣器振捣浇筑。砼的坍落度应处于50mm±20mm。如施工时间处于夏季,气温较高。则可适当提高坍落度,将其控制在30mm--40mm之间。振捣时所应用的振捣器,性能应保证无异常。可采用连续振捣的方式振捣,同时,应加强对钢筋预埋件的重视,以防钢筋骨架移位的问题发生。砼浇筑后,应根据当地的气温,确定盖板的打开时间,避免混凝土外弧面往端面下坠导致外弧面外观缺陷。 2.3.3 管片脱模与存储 混凝土盾构管片的脱模与存储方法如下:(1)脱模:于蒸养后,根据管片的型号,采用不同方法脱模。实践经验显示,将真空吸盘机械,应用到脱模过程中。能够有效提高脱模速度,避免管片发生损坏。起吊过程重,应保证机械平稳。如预埋件表面存在水泥浆,则需及时给予清理。(2)存储:管片堆放场地应坚实平整,堆放前应对堆放场地进行地基承载力计算,场地应进行必要的地基处理和表面硬化。管片应按型号分别码放,可采用侧面立方或内弧面向上水平放,管片之间应使用垫木分隔,管片堆放高度,宜根据管片大小、自重计算决定。管片内弧面向上平放不超过5层,侧面立放不超过3层,如若超过时应进行受力验算。 2.3.4 管片质量保护 为确保管片质量合格,预制后,加强质量保护是关键:(1)三环水平拼装是为了检验管片精度与模具精度是否合格的重要依据。每200环抽一次,其主要是检验成环后管片内劲、外径、环缝、纵缝以及纵(环)向的螺栓穿进等。三环拼装技术要求:环(纵)向缝间隙≤2.0mm,成环后内劲误差-2mm~+2mm,外径+6mm~-2mm。(2)检漏实验是为了检验管片抗渗水能力是否合格。每生产100环管片,既需抽查1片管片,连续3次达到检测标准后改为200环抽1片,再连续3次打动标准后改为400环抽1片。如出现一次不达标则双倍复检且恢复100环抽1片的标准进行实验。实验过程中,采用五级加压,按0.2MPA逐级加压,每级持荷10分钟,达到1MPA后,持荷3小时,每次加压前先检查管片各侧面的渗水情况,并作好记录。若渗漏深度>50mm,则表明管片质量不合格。一旦发现某一批次的管片中,存在不合格管片。应立即扩大实验范围及样本数量,进一步给予检验。以及时排除劣质管片,提高隧道质量。

浅谈地铁盾构隧道洞内监测的实施

浅谈地铁盾构隧道洞内监测的实施 【摘要】目前地铁多处于城市繁华地段,隧道洞内的沉降直接影响到地面建筑物的沉降,做好洞内观测是一个非常重要的施工措施。本文通过一个实例,从监测布点、监测方法到监测成果的反馈及报告方面来介绍地铁盾构隧道洞内进行监测需要注意的一些要点,以提高施工的安全性。 【关键词】地铁;隧道;沉降;监测 1、工程概况 广州市轨道交通四号线车黄区间,区间线路隧道埋深14~16m,线间距15m,轨面埋深14.5m~23.3m,线路最大坡度为3.36%,最小坡度3.02%。区间地貌形态属于珠江三角洲冲积平原地貌,地表沉积物为冲~洪积砂层及土层,下伏基岩为白垩系碎屑岩,地形变化不大,地面高程一般在8.83~11.34 m。 本项目洞内监测包括区间隧道水平位移及沉降,区间土体水平位移及沉降,区间土层压应力及衬砌环内力和变形。在整个土建过程中,当掘进面前后<20m时,1~2次/d;掘进面前后<50m时,1次/2d;掘进面前后>50m时,1次/周。通过洞内监测可以判定地铁结构工程在施工期间的安全性及施工对周边环境的影响,对可能发生的危险及环境安全的隐患或事故提供及时、准确的预报。 2、监测点布设与监测方法 2.1 隧道水平位移及沉降 隧道水平位移监测采用全站仪观测的方法进行。在每一代表性地段布设1个断面,设置2个测点,分别在衬砌腰部对称布置(如图1),共设置了8个点,标志采用强制对中装置。监测使用全站仪,以施工控制导线点为基准,采用极坐标法或前方交会法观测布设的强制对中小棱镜监测点。水平角及距离使用1秒级全站仪,观测6测回。内业计算将各期观测的监测点坐标变化量投影至线路法向方向,计算水平位移值。 隧道沉降监测采用水准仪和钢尺测隧道顶沉降的方法。点布设在隧道顶内壁,标志采用特制的挂钩,做法是冲击钻在隧道内壁钻孔,用锚固剂将挂钩埋入,共设置了4个点。沉降测量方法是在隧道内顶部的监测点悬吊钢尺,使用水准测量的方法观测各监测点的高程变化,计算沉降量。 2.2 土体水平位移及沉降 土体水平位移测量采用测斜的方式,在具有代表性的地段布设1个断面,设置2个测孔(如图2),共设置了8个孔。分层沉降观测,正式观测前做一定量的前期观测,以确定沉降环是否被土层牢固限制。先用水准仪观测孔口标高,并在以后做定期观测。用孔口沉降情况对分层沉降数据进行修正。

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

地铁盾构施工总结

盾构工作总结 2015年在各位领导和部门的帮助,盾构工区顺利的完成了领导交办的各项工作任务。现对一年来的工作进行总结与归纳,并对新一年的工作作出展望,如有不妥之处恳请领导批评指正。 一、2015年盾构工区工作总结 在公司的大力支持下,2015年公司首次购置两台土压平衡盾构机,规格型号为CTE6250,投入到合肥地铁项目中。 盾构工区在项目部各部门的鼎力支持下,4月1日两台盾构机经过15天时间组装、调试完成。6月24日“铁兵一号”118#盾构机顺利始发;7月16日“铁兵二号”119#盾构机顺利始发,9月24日顺利到达接收,10月18日119#盾构机二次顺利始发。 2016年1月25日“铁兵一号”118#盾构机顺利接收,2016年3月11日“铁兵一号”118#盾构机在广德站二次顺利始发,3月27日“铁兵二号”119#盾构机在和县路站顺利接收。截止到2016年4月19日118#盾构机掘进里程1005米,119#盾构机掘进里程1905米。 1 盾构施工管理 项目部内部设置盾构施工组织机构,成立了盾构工区。盾构施工管理人员、盾构机操作司机、土木工程师、盾构机维修保养、地面调度、测量作业等为项目部自主配置人员;盾构施工管片粘贴止水条、龙门吊司机、盾构管片运输与拼装、洞内文明施工等进行临时招工,项目部统一管理。 在这种管理组织模式下,优缺点并存。 1.1 管理模式缺点: 1)项目部前期需要投入大量的培训时间,同时需要投入施工的人员较多,增加管理成本和人员投入。 2)前期施工经验不足,需要大量的时间去摸索施工经验,存在较大的安全、质量风险。 1.2 管理模式优点:

1)管理体系健全,能够直接有效的对现场进行管理,能够最直接掌握盾构施工信息并及时处置。 2)对于公司盾构技术人员的培养和提高有极大的帮助,有助于形成专业系统的盾构施工经验,有利于提高公司在地铁施工市场的竞争力。 3)可以有效的控制施工耗材的使用量。 2 盾构机日常维保 盾构施工设备是关键,盾构施工的正常进行,离不开盾构机及相关配套设备的正常运行,要想维持设备的良好的运行状态,使设备能够及时满足盾构施工的需要,则少不了机电技术人员对机械设备的维修保养工作。 2.1维保方式 盾构工区成立维修保养班负责机械设备的日常管理工作,根据施工要求配置盾构机操作及维护保养人员,盾构机操作以自有员工和少量外聘人员结合的方式组成,盾构机维保全部为自有员工,掘进过程中由项目部领导带班负责,及时发现隐患及时进行处理。 盾构施工过程中盾构机维保以“养修并重,预防为主”为主要原则,设备在使用过程中既要注重平时的保养维护,又要及时维修处理,这样才能保证盾构施工的顺利进行。盾构机及相关配套设备的日常保养分为日检、周检、月检等,具体内容根据物资设备部的设备保养计划,由机电技术人员按时进行保养,施工负责人负责督促检查。机械设备出现故障时,操作人员会及时通知当班维保人员,同维保人员一起做好设备的维修工作;故障难以排除时,由机电工程师组织进行设备维修工作。盾构机完成广龙区间的施工后,对盾构机状况进行全面检测评估,并对处理困难大的故障,利用转场时间进行专项维保。转场期间主要对刀盘主轴承密封圈进行了检修,因在掘进过程中处理难度大,无法维修。 2.2优缺点 项目部机电技术人员多数为刚毕业的学生,工作经验少,形式较单一,相对地铁施工综合性较高,大部分年轻人达不到独挡一面的程度,仍需要大量经验的积累。对于盾构机来说,若得不到机电技术人员的合理养护,随着盾构机使用年

(完整版)地铁盾构的选型和使用

地铁盾构的选型及现场管理和使用 一、概述 1、概念 盾构是一种用于隧道暗挖施工,具有金属外壳,壳内装有主机和辅助设备,既能支承地层的压力,又能在地层中整体掘进,进行土体开挖,碴土排运和管片安装等作业,使隧道一次成形的机械。 盾构是相对复杂的集机、电、液、传感、信息技术于一体的隧道施工专用工程机械,主要用于地铁、铁路、公路、市政、水电等工程。 盾构的工作原理就是一个钢结构组件依靠外壳支承,沿隧道轴线一边对土壤进行切削一边向前推进,在盾壳的保护下完成掘进、排碴、衬砌工作,最终贯通隧道。 盾构施工主要由稳定开挖面、掘进及排土、管片衬砌和壁后注浆三大要素组成。 盾构是根据工程地质、水文地质、地貌、地面建筑物及地下管线和构筑物等具体特征来“量身定做”的一种非标设备。盾构不同于常规设备,其核心技术不仅仅是设备本身的机电工业设计,还在于设备通过不同的设计如何满足工程地质施工的需求。因此,盾构的选型正确与否决定着盾构施工的成败。

2、盾构的类型 盾构的类型是指与特定的施工环境、基础地质、工程地质和水文地质特征相匹配的盾构种类。 一般掘进机的类型分为软土盾构、硬岩掘进机(TBM)、复合盾构三种。软土盾构的特点是仅安装切削软土用的切刀和括刀,无需开岩的滚刀。TBM主要用于山岭隧道。复合盾构是指既适用于软土,又适应于硬岩的一类盾构,主要用于复杂地层的施工。地铁盾构就是一种复合盾构。主要特点是刀盘既安装用于软土切削的切刀和括刀,又安装破碎岩石的滚刀,或安装破碎砂卵石和漂石的撕裂刀。 复合盾构分为土压平衡盾构和泥水加压平衡盾构。 3、盾构的组成 地铁施工可供选择的复合盾构机机型只有两种,即土压平衡盾构机或泥水平衡盾构机。 一台盾构按外观结构形式分为刀盘部分、前盾、中盾、尾盾、后配套部分和辅助设备(管片和砂浆运输设备、泥水站等)。 土压平衡盾构由以下十一部分组成:⑴、刀盘(分为面板式、辐条式、复合式三种),⑵刀盘驱动(分为电机和液压两种),⑶刀盘支承(主轴承),⑷膨润土添加系统和泡沫系统,⑸螺旋输送机,⑹皮带输送机,⑺同步注浆系统,⑻盾尾密封系统,⑼管片安装机,⑽数据采集系统,⑾导向系

大直径盾构施工控制重难点(成都地铁首次应用)

大直径盾构机首次应用是本项目监理控制重难点重难点分析 本项目设计运行速度快,车站及区间设计标准高,本工程区间隧道内径为 7.5m,管片厚度400mm,隧道外径8.3m,因此盾构机刀盘外径尺寸不小于 8.5m。该盾构机型为成都地铁项目首次应用,需要专门设计定制,施工单位也没有相关盾构工作经验;由于盾构区间隧道断面大,势必在施工过程中较之前盾构施工相应增加以下控制重难点: 一、大直径盾构机的开挖断面增大,在掘进过程中对周边土体的扰动范围较大,导致在掘进过程及穿越风险源的时加大了地面及周边建构筑物异常沉降的风险。 二、大直径盾构区间,由于管片尺寸和重量增加导致拼装难度增大,影响成型管片质量。 三、大直径盾构机的开挖面较大,掌子面地质情况更复杂,影响盾构掘进。 四、大直径盾构机第一次在成都地铁掘进中应用,参建方无相关施工经验。 针对性措施 一、严格控制出土方量,严禁连续超方情况出现,尽可能将风险降至最低;在穿越风险源前,严格按照地铁公司管理办法组织相关条件验收工作,保证预加固满足方案和设计要求,相关准备工作已完善后方可允许穿越;加强地面监测巡查,发现异常情况及时采取有效措施进行处理,并控制事态发展和影响。 二、加强管理人员及相关作业人员的安全技术交底,且拼装手必须选用有多年经验的人员来操作,保证拼装安全和质量;加强管片进场到拼装全过程监控,特别是止水带软木衬垫粘贴质量及螺栓复紧的控制;加强对隧道能行管片检查,做好管片姿态测量工作,并根据管片变化情况适当调整盾构机掘进,以保证成型管片质量;大直径盾构区间管片与土体间间隙增大,需相应增大同步

注浆量,同步注浆浆液必须根据相关条件综合考虑浆液凝固时间来选择适当的配比,以保证同步注浆效果。同时在同步注浆过程中采取注浆量和注浆压力双控的原则,避免出现管片错台或上浮等情况。 三、盾构机选型及刀具配置必须根据施工区间的地质等各方面情况综合考虑,经过专家评审,并出具适应性报告;在盾构机掘进过程中进行全程旁站控制,并分局盾构姿态、参数、渣样等方面进行分析调整盾构掘进。 四、因为该大直径盾构机在成都地铁盾构施工属于首例,各参建方均无相关工作经验,但是盾构原理并无变化,只是物理尺寸的改变,在盾构施工过程,参考之前盾构工作经验,严格按设计图纸,在盾构施工前做足施工准备,在施工过程中勤总结、多完善,把施工过程中遇到的问题和解决方法归纳总结,为今后大直径盾构施工提供科学依据。

盾构隧道管片质量检测标准

盾构隧道管片质量检测技术标准 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2 本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3 盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2 混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3 钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4 水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验 对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边 模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥砂浆。 2.0.10 拼接面 采用某种方式将盾构隧道管片连接起来,管片与管片之间的接触面。 2.0.11环向 盾构隧道管片拼装成环后,环的切线方向。 2.0.12纵向 盾构隧道管片拼装后,环与环的中心连线方向。 2.0.13渗漏检验装置 在渗漏检验中,用于固定由凝土管片试件,并能在管片外弧面与试验架钢板之间形成密闭区间进行充水加压试验的试验台座。渗漏检验装置由检验架钢板、刚性支座、横压件、紧固螺

盾构管片选型设计

智慧城站~神舟路站区间管片选型设计 1、管片选型的原则 1.1 管片选型适合隧道设计线路; 1.2 管片选型适应盾构机的姿态; 2、遵从隧道设计线路 2.1 管片技术参数 2.2 管片布置方式 本区间设计部署三种圆曲线,平面半径分别为R=600米、R=615米、R=800米、R=1000米;竖曲线形式为R=5000米、R=10000米。依照曲线的圆心角与弯环偏角关系,各种施工段的的布置方式管片为: (1)直线段:8+1模式 由于没有设计平、纵曲线,故仅考虑盾构机在掘进过程中,出现蛇行纠偏所表示的工况。即8个标准环加1个右(左)弯环配置。因为纠偏环多在缓和曲线到曲线之间,到曲线前就需提前安装纠偏环进行调整,以减少进曲线发生纠偏过急现象。 (2)R=600m段:1+1模式 在600m半径的圆曲线上,每隔3.80m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+2环转弯环。 (3)R=615m段:1+1模式 在615m半径的圆曲线上,每隔3.89m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+2环转弯环。 (4)R=800m段:2+1模式 在800m半径的圆曲线上,每隔5.06m要用一环转弯环,标准环与转弯环的拼装关系为2环标准环+1环转弯环。 (5)R=100m段:4+1模式 在1000m半径的圆曲线上,每隔6.33m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+1环转弯环。

(6)R=5000m竖曲线段:20+1模式 在5000m半径竖曲线上,每隔31.65m要用一环转弯环,标准环与转弯环的拼装关系为20环标准环+1环转弯环。 (7)R=10000m竖曲线段:41+1模式 在10000m半径竖曲线上,每隔63.31m要用一环转弯环,标准环与转弯环的拼装关系为41环标准环+1环转弯环。

相关主题
文本预览
相关文档 最新文档