当前位置:文档之家› 水解乳蛋白和水解酪蛋白对黄独试管苗生长发育的影响

水解乳蛋白和水解酪蛋白对黄独试管苗生长发育的影响

水解乳蛋白和水解酪蛋白对黄独试管苗生长发育的影响
水解乳蛋白和水解酪蛋白对黄独试管苗生长发育的影响

酪蛋白水解物

酪蛋白水解物 一、中文名称:酪蛋白水解物 二、拉丁文名称/或英文名称:Lactium 三、主要成分:多肽 四、酪蛋白水解物(Lactium)的来源 酪蛋白水解物(Lactium)是以脱脂牛奶为原料,经过分离酪蛋白、水解、喷雾干燥等程序得到的一种酪蛋白水解产物。其典型化学成分为:蛋白质75%,脂肪1%,水分5%,灰分15%,乳糖1%。可溶解于水,无苦味,pH2-9时稳定,热稳定,可耐180℃高温50min。 酪蛋白水解后得到的αs1-Cn (f91-100),是一种含10个氨基酸的三维结构多肽,在Lactium中的典型含量为1.8%,其氨基酸序列为:Tyr-Leu-Gly-Tyr-Leu-Glu-Gln-Leu-Leu-Arg。 五、酪蛋白水解物(Lactium )生产工艺流程图和简述 1.工艺流程图: 脱脂牛奶 酪蛋白分离 碱化 胰蛋白酶水解

酸化 热处理 巴氏杀菌 浓缩、喷雾干燥 过筛 包装 2. 工艺说明 1.)以脱脂牛奶为原料,沉淀分离酪蛋白 2.)使用氢氧化钠将其碱化到pH为7.5-8.5之间 3.)在40-55℃下用胰蛋白酶进行水解。得到的产物中,游离10肽在干物质中的含量最低为1.8%。 4.)用盐酸进行酸处理,将pH降到3.0- 5.0 5.)在90℃下热处理1.5分钟 6.) 85℃进行巴氏杀菌、浓缩,此步骤为关键控制点 7.)喷雾干燥(进风温度180-200℃),得到粉末产品。 8.)过筛得到粒度在1mm以下的均匀粉末,其中游离10肽的含量最低为1.8%。此过程为关键控制点。

3. 拟公告的生产工艺简述:以脱脂牛奶为原料,经过酪蛋白分离、水解、浓缩、喷雾干燥等工艺制成。 六、酪蛋白水解物(Lactium)对酸奶的促进作用 酸奶具有促进肠道蠕动与消化和机体物质的代谢,并具有提高人体免疫力、防衰老、抗肿瘤等作用。酸奶中的大量乳酸菌及乳酸代谢产物能调节人体肠道微生态平衡,达到补充营养、防病、治病和保健的目的。 将酪蛋白水解物(含蛋白质7.6%)以2%(w/w)添加到奶液中混合发酵,做空白样对照。研究了二者发酵过程中各发酵参数的变化,并对二者的质构进行了分析比较。研究结果表明:酪蛋白水解物能明显促进酸奶发酵;促发酵作用随所添加的水解物水解程度提高而增强;添加酪蛋白水解物改变了酸奶发酵过程中的 pH 下降速度,在发酵中期二者的 pH 下降速度之间存在最大差距;质构分析表明添加2%酪蛋白水解物对酸奶整体质构有所改善。 七、酪蛋白水解物(Lactium)的作用 1、增强记忆力 2、提高精神状态、集中注意力 3、提高睡眠质量下降 4、缓解压力 5、控制体重 6、美容养颜 八、酪蛋白水解物(Lactium)的适应人群 1、记忆力下降者 2、注意力不集中精神状态不佳者 3、失眠、睡眠质量下降者 4、工作、生活、学习压力大者 5、肥胖人群 6、需要美容养颜者 九、酪蛋白水解物(Lactium)的社会及经济效益 在现代社会,生活节奏加快,人们面对的各种各样的压力越来越大。由于个体差异,

实验报告-从牛奶中分离酪蛋白

实验报告 一、实验名称:从牛奶中分离酪蛋白 二、实验目的: 1.学习从胶体中提取某一类物质的方法。 2.学习蛋白质的各种颜色反应及其原理。 三、实验原理: 1.蛋白质是两性化合物,溶液的酸碱性直接影响蛋白质分子所带的电荷。当调节牛奶 的pH值达到酪蛋白的等电点(pl)4.8左右时,蛋白质所带正、负电荷相等,呈电 中性,此时酪蛋白的溶解度最小,会以沉淀形式从牛奶中析出。 2.缩二脲反应原理:具有两个或两个以上肽键的化合物在碱性条件下与Cu2+反应,生 成红紫色的络合物。所有的蛋白质均有此显色反应。 3.蛋白黄色反应原理:硝酸将蛋白质分子中的苯环硝化,在加热状态下产生了黄色硝 基苯衍生物,再加碱颜色加深呈橙黄色。这是含有芳香族氨基酸特别是含有酪氨酸 和色氨酸的蛋白质所特有的颜色反应。 4.茚三酮反应原理:蛋白质与茚三酮共热,产生蓝紫色的还原茚三酮、茚三酮和氨的 缩合物。此反应为一切氨基酸及α-氨基酸所共有。 四、实验步骤及现象: 1.取50mL脱脂牛奶于150mL烧杯中,用热水浴加热至40℃,维持此温度,边搅拌 边加稀醋酸(1:9)溶液约2mL——有白色沉淀析出。 2.继续搅拌并使悬浊液冷却至室温,然后将混合物转入离心杯中,于3000r/min离心 15min。 3.离心完毕后,上清液倒入乳糖回收瓶中,沉淀用95%的乙醇(20ml)搅匀,然后用 布氏漏斗减压过滤,用乙醇-乙醚(1:1)混合液洗涤沉淀2次,每次约10ml,最 后用5ml乙醚洗涤沉淀一次,减压过滤至干——得到干燥的白色固体。 4.将干粉铺于表面皿上,称量并计算牛奶中酪蛋白含量。 5.称取0.5g酪蛋白,溶解于0.4M氢氧化钠溶液的生理盐水(5mL)中,然后滴加3-4 滴1%硫酸铜溶液,振荡试管——溶液变成紫色。 五、实验数据: 空表面皿的质量m0 =28.15g 表面皿与酪蛋白的总质量m1 =31.78g 牛奶中酪蛋白的质量m= m1 - m0 =3.63g 六、讨论与感想: 1.牛奶是一种胶体,在正常情况下是均一稳定的,要想分离出其中的某一成分,就应 该想办法使这种成分变成沉淀析出。通过本次实验,我知道了可以通过调节胶体的 酸碱性,来改变蛋白质分子所带电荷,使其达到等电点。此时蛋白质分子间的电荷 作用力最小,分子间没有了间隙,浮力减小,蛋白质就会沉淀。而实验中50ml牛 奶和2ml稀醋酸(1:9)所配成的混合液的pH恰好在4.8左右,正好是蛋白质的

酪蛋白课程报告

生物技术学院 课程论文 课程名称:高级生物化学成绩: 教师签名:

酪蛋白研究进展综述 提纲:酪蛋白简介-酪蛋白亚基结构-酪蛋白酶特性-酪蛋白活性肽研究进展 摘要:酪蛋白是一种含磷钙的结合蛋白,常见于哺乳动物及其乳汁中,如母牛、羊 以及人奶。酪蛋白对酸敏感,pH较低时会沉淀,因此本科生实验室常用其进行蛋 白质的沉淀反应。哺乳动物的主要蛋白是α-酪蛋白,然而人类乳汁中没有α-酪蛋 白,人乳中的酪蛋白主要是β-酪蛋白形式。对于人类幼儿而言,酪蛋白是氨基酸 的来源,但同时,它也是钙和磷的主要来源,同时,因为胃的酸性环境,酪蛋白还 能在胃中形成凝乳以便消化。本文综合中外文献,对酪蛋白进行了研究进展综述。 关键词:酪蛋白;蛋白亚基;活性肽 酪蛋白简介 在20℃,pH值为4.6时,牛乳中能沉淀下来一种呈酸性的蛋白质,我们将其称为酪蛋白。酪蛋白又名干酪素、乳酪素、酪朊,在牛奶中含量非常丰富。它是一种含磷的蛋白质,具有极高的营养价值,其中含有多种生物活性肽,因此它具有抗菌、降血压、抗氧化和促进双歧杆菌增殖等功能。 酪蛋白在母体蛋白质序列内是无活性的,通过体内或体外酶水解的方式释放出来后,它们即可作为具有类似激素活性的调节物质。这些产物可用作肽类药物、肽类试剂,主要用于科学试验和生化检测;也可用于活性肽功能性食品中,具有增强机体防御功能、调节生理节律、预防疾病和促进康复等功能。 酪蛋白的亚基结构 酪蛋白的分子质量约为20-25ku,由4类遗传变种组成,分别为αs1-酪蛋白、αs2-酪蛋白、β-酪蛋白和K-酪蛋白。其中,αs2-酪蛋白是牛乳中的主要酪蛋白,占总含量的38%;β-酪蛋白含量仅次于αs-酪蛋白,占总含量的35%,

水解酪蛋白琼脂培养基配方

北京华越洋生物提供 QQ:1733351176 水解酪蛋白琼脂培养基,MHAmedium 用途:用于抗生素敏感试验 水解酪蛋白琼脂培养基 配方(每升): 琼脂 17g 牛肉 300g(从中提取浸出粉) 可溶性淀粉 1.5g 酪蛋白水解物 17.5g 最终pH7.3±0.2 水解酪蛋白琼脂培养基使用方法: 1、 称取本品38g,加入蒸馏水或去离子水1 L,搅拌加热煮沸至完全溶解,分装三角瓶,121℃高压灭菌15min,备用. 2、 试验菌液的制备:从TSA 平皿上挑取3-5个形态相似的菌落顶端部分接种MHB 或TSB 培养基.经36±1℃培养4-6小时后,比浊至0.5麦氏单位. 3、 接种:用无菌棉拭浸取比浊好的菌液,在管壁内轻轻转压除去过多菌液,然后再轻轻涂抹培养基,每一平皿涂抹三次.每次涂抹后均需将平皿转动60度,再行下一次涂抹.每一质控菌株涂抹三个平皿. 4、 贴片:接种后的平皿置室温片刻,待稍干后,用无菌镊子将抗生素纸片均匀贴布于平皿琼脂表面.各纸片间中心间距不得小于24mm,纸片距平皿边不得小于15mm.一旦纸片接触琼脂表面,即不可再移动,因此时药物已开始扩散. 5、 培养:纸片贴妥后,在15-30分钟内,将平皿翻过来置于36±1℃培养16—24h 后,观察结果.平皿培养时不宜堆放,以二个相叠为宜. 水解酪蛋白琼脂培养基 原理:牛肉粉和酸水解酪蛋白提供氮源、维生素和氨基酸;可溶性淀粉吸收有毒的代谢产物;琼脂是培养基的凝固剂。 用法: 称取本品 42.0g,加热溶解于1000ml 蒸馏水中,121℃高压灭菌 15 分钟,待冷至 50℃, 倾入无菌平皿,备用。 质量控制: 在36±1℃培养18-24小时。 水解酪蛋白琼脂培养基用途:用于培养基原材料,提供细菌生长所需的生长因子。 技术指标 总氮 (8)

烟草漂浮育苗培养基质及营养液对烟苗生长发育的影响

作者简介:岑怡红(1977-),女,贵州兴义人,硕士生.收稿日期:2003-05-04 文章编号:1008-4673(2003)04-0038-03 烟草漂浮育苗培养基质及营养液 对烟苗生长发育的影响 岑怡红,聂荣邦 (黔西南民族行政管理学校,贵州兴义562400) 摘要:为优化烟草漂浮育苗培养基质和营养液配方,进行了共计7个处理的试验。结果表明:以一定比例的碳化谷糠、泥炭、蛭石和膨化珍珠岩配成的基质有利于培育壮苗。营养液则以一定比例的硝酸铵、硫酸铵、尿素和微量元素的配方较好。 关键词:烟草;漂浮育苗;基质;营养液;生长发育中图分类号:S572 文献标识码:A 烟草漂浮育苗是一种新的育苗方法,属于保护地无土栽培范畴,漂浮育苗系统的技术关键是培养基质及营养液配方。一般用富含有机质的材料,如泥炭、草炭,配以适当比例的轻质材料,如蛭石、膨化珍珠岩等,制成基质,用复合肥或氮、磷、钾肥,配以各种微肥等,制成营养液。现有研究报道,配方不尽相同,差别较大[1~4],有必要进一步研究,尤其是如何充分利用当地自然资源,优化配方,降低成本,培育壮苗,具有重要意义。为此,笔者开展了烟草漂浮育苗培养基质及营养液对烟草生长发育影响的研究,旨在为提高烟草漂浮育苗的生产水平提供依据。 1 材料与方法 试验于2002年在湖南农业大学试验地进行,供试烤烟品种为云烟87。漂浮育苗系统的苗床为水床,用白色塑料薄膜铺底,浮盘采用聚苯乙烯塑料盘,苗床采用鸭篷式覆盖,基质配方试验设计3个处理。J 1B 25%海泡石+15%膨化珍珠岩+15%蛭石+45%炭化谷糠;J 2B 30%炭化谷糠+20%蛭石+20%膨化珍珠岩+30%泥炭;J 3B 55%泥炭+20%膨化珍珠岩+25%蛭石。营养液配方试验设计4个处理。Y 1B 50%硝酸铵+35%硫酸铵+15%尿素;Y 2B 40%硝酸铵+30%硫酸铵+30%尿素;Y 3B 25%硝酸铵+30%硫酸铵+45%尿素;Y 4B 60%硝酸铵+40%硫酸铵。试验采用随机区组设计,3次重复。每3天观测记录一次烟苗生育动态,并于播后40天和成苗期进行烟草生长发育状况和素质考察。叶绿素含量用丙酮提取法测定,根系活力用红四氮唑(TTC)比色法测定[5]。 2 结果与分析 2.1 不同配方基质对烟苗生长发育的影响 于播后40天观测不同配方基质烟苗生长发育情况,结果见表1。由表1可以看出,在5叶期左右,J 1、J 2的地下部鲜重、干重均比J 3(CK)重,J 2的地上部鲜重、干重比J 3(C K)重。可见J 1、J 2在一定程度上生长发育比J 3(CK)好。 又于成苗期考察不同配方基质对烟苗素质的影响,结果见表2。由表2可以看出,无论是地下部、地上部的鲜、干重,还是叶绿含量、根系活力,J 1与J 3(C K)均无显著差异,J 2与J 3(CK)比较,则地下部鲜、干重达显著差异。 第23卷第4期2003年 12月 河南科技大学学报(农学版) Journal of Henan Universi ty of Science and Technology (Agricultural Science)Vol.23No.4 Dec. 2003

pH对热处理状态下κ-酪蛋白水解作用和凝乳酶凝胶脱脂乳作用的影响解读

pH对热处理状态下κ-酪蛋白水解作用和凝乳酶 凝胶脱脂乳作用的影响 Effect of pH at heat treatment on the hydrolysis of k-casein and the gelation of skim milk by chymosin 目录 2 2 4 4 4 4 4 5 5 5 8牛奶的pH重调,酪蛋白在胶体相和血清相之间的分布

摘要 脱脂牛奶是指牛奶在调整pH值在6.5和7.1之间,在90℃加热30分钟后的牛乳。热处理后,样本再次进行调整到自然pH(pH值为6.67),建立新的平衡。高浓度的变性乳清蛋白与在pH为6.5时加热过程中的酪蛋白胶束有关(约占加热30分钟后总数的70%—80%)。变性乳清蛋白的含量在加热的条件下随pH的升高而降低。所以分别在pH6.7、6.9、7.1加热30分钟后与酪蛋白胶束有关的变性乳清蛋白的含量为30%、20%、10%。在加热时pH的增加使越来越多的酪蛋白转入到血清相中。以κ-酪蛋白的损失和副-κ-酪蛋白的形成时间作为用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)检测牛奶样本凝乳酶处理的结果。无论pH值在加热或热处理应用中,κ-酪蛋白的损失和副-κ-酪蛋白的形成在常温或加热的样品中相似。检测用凝乳酶作用过的牛奶样品的胶凝化性能随时间的变化表明不管已变性的乳清蛋白是否与酪蛋白微胶粒或牛奶中的血清有关,经过热处理的奶的凝胶化时间显著增加,所形成的凝胶的牢固性显著减小。pH对热处理没有影响。这些结果表明,牛奶的热处理只对凝乳酶反应(酶相)的初级阶段有很小的影响。然而,热处理对本反应的第二阶段有显著影响,不管变性乳清蛋白是否和酪蛋白胶束或牛奶血清中不沉淀的聚集体有关,其效果是类似的。 关键词:牛奶;热处理;pH值;凝乳酶;酪蛋白胶束;凝胶。 1.简介 在牛的酪蛋白胶束中,κ-酪蛋白主要位于二硫键连接的聚合物的胶束表面。疏水的N末端区域与亲水的胶束相关联,带负电荷的C末端区域作为一个高度柔性的纤维在胶束表面突出。 这种结构使酪蛋白胶束的稳定性提高,因为柔性纤维提供了抗聚集的空间位阻和静电稳定。虽然酪蛋白非常稳定,但是他们可以通过某些方法破坏,如酸化至等电点,加入溶剂如乙醇或某些特定酶。 酪蛋白胶束酶的不稳定是奶酪制作过程的基础。传统上所用的酶提取物是凝乳酶,是从年轻的小牛的第四个胃获得,它包含了一些主要控制牛奶凝固的主要凝乳酶(EC3.4.23.4)。凝乳酶添加到牛奶中后发生的反应可被分为不同的步骤或阶段。第一阶段是酶水解κ-酪蛋白的酶促反应,形成二肽作为反应产物。是一种N末端为副-κ-酪蛋白与酪蛋白胶束保持缔合,而C-末端的糖巨肽(GMP),被释放到血清相中的肽。实际上,凝乳酶被酪蛋白胶束表面上的柔性纤维切割,降低了表面电荷作用,去除立体“毛发”层。这导致酪蛋白胶束的不稳定。第二阶段包括胶束聚集,当有足够的κ-酪蛋白被水解并且如果温度和钙离子的活性足够高,这个阶段就会发生。第二阶段导致凝胶的形成。一些报道称在第三阶段将进一步反应,其中步骤包括如脱水收缩作用,非特异性的蛋白水解作用和结构重组的凝胶网络。

酪蛋白

酪蛋白说明 宁波北仑雅旭化工有限公司优质生产商,酪蛋白厂家电话,酪蛋白CAS号,酪蛋白的粘度,酪蛋白最新报价,酪蛋白的价格,酪蛋白的作用,酪蛋白总代理,酪蛋白厂家最新报价,酪蛋白的添加量,欢迎全国新老客户致电洽谈。高含量蛋白质首选酪蛋白。 英文:Casein又称:干酪素。蛋白质:≥90% 性状:微黄色粉末,无臭无味或有轻微香气和滋味,不溶于水和醇,溶于碱液而成酪蛋白酸盐。非吸潮性物质,常温下在水中可溶解0.8-1.2%,微溶于25℃水和有机溶剂,溶于稀碱和浓酸中,能吸收水分。 用途:增稠剂;乳化剂;稳定剂;营养强化剂;粘结剂;填充剂; 限量:冰淇淋用量0.3%–0.7% ;肉类制品及水产肉糜制品均为1%–3% ;强化面包、饼干的蛋白质5% ;蛋黄酱3% 。 概述:酪蛋白是哺乳动物包括母牛,羊和人奶中的主要蛋白质。牛奶的蛋白质,主要以酪蛋白(Casein)为主,人奶以白蛋白为主。酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳(curds)。 酪蛋白是乳中含量最高的蛋白质,目前主要作为食品原料或微生物培养基使用,利用蛋白质酶促水解技术制得的酪蛋白磷酸肽具有防止矿物质流失,尤其是其促进常量元素(Ca、Mg)与微量元素(Fe、Zn、Cu、Cr、Ni、Co、Mn、Se)高效吸收的功能特性使其具有“矿物质载体”的美誉,它可以和金属离子,特别是钙离子结合形成可溶性复合物,一方面有效避免了钙在小肠中性或微碱性环境中形成沉淀,另一方面还可在没有VD参与的条件下使钙被肠壁细胞吸收,所以CPPs是最有效的促钙吸收因子之一,它的发现为补钙制品的研发提供了一种新方法。目前,CPPs已被公认为国内外研究最多、最深入,应用领域极为广泛,且极具开发价值的一类分子结构与生物功能间有明确对应关系的活性多肽物质。

牛乳中酪蛋白及制品的研究与应用

牛乳中酪蛋白及制品的研究与应用 摘要:酪蛋白是牛奶中的主要蛋白质,占牛奶中蛋白质总量的80%,是一种全价蛋白。本文就酪蛋白及制品的研究现状、功能特性、应用进行了阐述。 关键词:酪蛋白及制品研究现状功能特性应用 Research and Application on Casein and Its Products of Milk Abstract:Casein is a main protein in milk,make up 80% in total protein. It is a kind of full-price protein. The paper elaborated research status,functional characteristic and application of casein and its products. Key words:casein and its products,research status,functional characteristic,application. 酪蛋白是牛奶中的主要蛋白质,含量约为2.6 g/100 ml,占牛奶中蛋白质总量的80%,分子量约75,000~375,000。酪蛋白主要有四种类型:αs- 酪蛋白、β- 酪蛋白、k - 酪蛋白、γ- 酪蛋白。酪蛋白在牛乳中以酪蛋白酸钙·磷酸钙复合体形式存在于乳中,呈胶体状,等电点为pH4.6。鲜乳加酸(调pH4.5) 或凝乳酶可使酪蛋白沉淀而分离出来[ 1 ]。酪蛋白是一种全价蛋白,含有人体必需的8种氨基酸,极易消化吸收,是优质氨基酸供给源,成为婴幼儿及幼畜的主要蛋白源。目前酪蛋白及制品主要用于造纸工业、皮革工业、乳酸工业、国防工业、塑料、油漆、化妆品、中草药分析、水果保鲜、医药、营养保健品等行业中。 1 酪蛋白及制品的研究现状

相关主题
文本预览
相关文档 最新文档