当前位置:文档之家› 电子显微分析技术及应用

电子显微分析技术及应用

电子显微分析技术及应用
电子显微分析技术及应用

电子显微分析技术及应用

材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。

1.透射电子显微镜(TEM)

a)透射电子显微镜 b)透射光学显微镜

图1:透射显微镜构造原理和光路

透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。

所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。

图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。

通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。

2.扫描电子显微镜(SEM)

下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。

图2:扫描电子显微镜的原理和结构示意图

扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。

1、电子光学系统

电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。

<1>电子枪:

其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。

<2>电磁透镜

其作用主要是把电子枪的束斑逐渐缩小,是原来直径约为50m m的束斑缩小成一个只有数nm的细小束斑。其工作原理与透射电镜中的电磁透镜相同。扫描电镜一般有三个聚光镜,前两个透镜是强透镜,用来缩小电子束光斑尺寸。第三个聚光镜是弱透镜,具有较长的焦距,在该透镜下方放置样品可避免磁场对二次电子轨迹的干扰。

<3>扫描线圈

其作用是提供入射电子束在样品表面上以及阴极射线管内电子束在荧光屏上的同步扫描信号。改变入射电子束在样品表面扫描振幅,以获得所需放大倍率的扫描像。扫描线圈试扫描点晶的一个重要组件,它一般放在最后二透镜之间,也有的放在末级透镜的空间内。

<4>样品室

样品室中主要部件是样品台。它出能进行三维空间的移动,还能倾斜和转动,样品台移动范围一般可达40毫米,倾斜范围至少在50度左右,转动360度。样品室中还要安置各种型号检测器。信号的收集效率和相应检测器的安放位置有很大关系。样品台还可以带有多种附件,例如样品在样品台上加热,冷却或拉伸,可进行动态观察。近年来,为适应断口实物等大零件的需要,还开发了可放置尺寸在Φ125mm以上的大样品台。

2 信号收集及显示系统:

图3:电子检测器

其作用是检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。在扫描电子显微镜中最普遍使用的是电子检测器,它由闪烁体,光导管和光电倍增器所组成(如图3)。

当信号电子进入闪烁体时将引起电离;当离子与自由电子复合时产生可见光。光子沿着没有吸收的光导管传送到光电倍增器进行放大并转变成电流信号输出,电流信号经视频放大器放大后就成为调制信号。这种检测系统的特点是在很宽的信号范围内具有正比与原始信号的输出,具有很宽的频带(10Hz-1MHz)和高的增益(105-106),而且噪音很小。由于镜筒中的电子束和显像管中的电子束是同步扫描,荧光屏上的亮度是根据样品上被激发出来的信号强度来调制的,而由检测器接收的信号强度随样品表面状况不同而变化,那么由信号监测系统输出的反营养品表面状态的调制信号在图像显示和记录系统中就转换成一幅与样品表面特征一致的放大的扫描像。

3 真空系统和电源系统

真空系统的作用是为保证电子光学系统正常工作,防止样品污染提供高的真空度,一般情况下要求保持10-4-10-5mmHg的真空度。电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。

扫描电子显微镜是一种多功能的仪器、具有很多优越的性能、是用途最为广泛的一种仪器.它可以进行如下基本分析:

(1)三维形貌的观察和分析;

(2)在观察形貌的同时,进行微区的成分分析。

①观察纳米材料,扫描电子显微镜的一个重要特点就是具有很高的分辨率。现已广泛用于观察纳米材料。

②进口材料断口的分析:扫描电子显微镜的另一个重要特点是景深大,图象富立体感。

③直接观察大试样的原始表面,它能够直接观察直径100mm,高50mm,或更大尺寸的试样,对试样的形状没有任何限制,粗糙表面也能观察,这便免除了制备样品的麻烦,而且能真实观察试样本身物质成分不同的衬度(背反射电子象)。

④观察厚试样,其在观察厚试样时,能得到高的分辨率和最真实的形貌。

⑤观察试样的各个区域的细节。由于工作距离大(可大于20mm)。焦深大(比透射电子显微镜大10倍)。样品室的空间也大。因此,可以让试样在三度空间内有6个自由度运动(即三度空间平移、三度空间旋转)。且可动范围大,这对观察不规则形状试样的各个区域带来极大的方便。

⑥在大视场、低放大倍数下观察样品,用扫描电子显微镜观察试样的视场大。

⑦观察生物试样。同其他方式的电子显微镜比较,因为观察时所用的电子探针电流小,电子探针的能量也比较小(加速电压可以小到2kV)。而且不是固定一点照射试样,而是以光栅状扫描方式照射试样。因此,由于电子照射面发生试样的损伤和污染程度很小,这一点对观察一些生物试样特别重要。

⑧进行动态观察。在扫描电子显微镜中,成象的信息主要是电子信息,根据近代的电子工业技术水平,即使高速变化的电子信息,也能毫不困难的及时接收、处理和储存,故可进

行一些动态过程的观察,如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以通过电视装置,观察相变、断烈等动态的变化过程。

⑨从试样表面形貌获得多方面资料,在扫描电子显微镜中,不仅可以利用入射电子和试样相互作用产生各种信息来成象,而且可以通过信号处理方法,获得多种图象的特殊显示方法,还可以从试样的表面形貌获得多方面资料。

由于扫描电子显微镜具有上述特点和功能,所以越来越受到科研人员的重视,用途日益广泛。现在扫描电子显微镜已广泛用于材料科学(金属材料、非金属材料、钠米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。

电子探针仪

电子探针的功能主要是进行微区成分分析。其原理是用细聚焦电子束入射样品表面,激发出样品元素的特征x射线。由莫塞莱定律可知,各种元素的特征X射线都具有各自确定的波长,并满足以下关系:

图4 电子探针仪的结构示意图

图4为电子探针仪的结构示意图。由图可知,电子探针的镜筒及样品室和扫描电镜并无本质上的差别,因此要使一台仪器兼有形貌分析和成分分析两个方面的功能,往往把扫描电子显微镜和电子探针组合在一起。

电子探针的信号检测系统是X射线谱仪,用来测定特征波长的谱仪叫做波长分散谱仪(WDS)

或波谱仪。用来测定x射线特征能量的谱仪叫做能量分散谱仪(EDS)或能谱仪。

一、波长分散谱仪工作原理

若在样品上方水平放置一块具有适当晶面间距d的晶体(分光晶体),入射X射线的波长、入射角和晶面间距三者符合布拉格方程2d sinθ=λ时,这个特征波长的x射线就会发生强烈衍射,见图5。不同波长的x射线以不同的入射方向入射时会产生各自的衍射束,若面向衍射束安置一个接收器,便可记录下不同波长的x射线,从而使样品作用体积内不同波长的X 射线分散并展示出来。

图5:分光晶体

二、能量分散谱仪工作原理

每种元素具有自己特定的x射线特征波长,而特征波长的大小则取决于能级跃迁过程中释放出的特征能量?E。能谱仪就是利用不同元素x射线光子特征能量不同这一特点来进行成分分析的。

图6 采用锂漂移硅检测器能量谱仪的方框图

图6为采用锂漂移硅检测器能量谱仪的方框图。x射线光子由锂漂移硅Si(Li)检测器收

集,当光子进入检测器后,在Si(Li)晶体内激发出一定数目的电子-空穴对。产生一个空穴

对的最低平均能量 是一定的,因此由一个x射线光子造成的电子-空穴对的数目为N,

。入射X射线光子的能量越高,N就越大。利用加在晶体两端的偏压收集电子-空穴对,经前置放大器转换成电流脉冲,电流脉冲的高度取决于N的大小,电流脉冲经主放大器转换成电压脉冲进入多道脉冲高度分析器。脉冲高度分析器按高度把脉冲分类并进行计数,这样就可以描出一张特征x射线按能量大小分布的图谱。

成分分析的特点

(1)能谱仪探测x射线的效率高。能谱仪的灵敏度比波谱仪高一个数量级。

(2)能谱仪可在同一时间内对分析点内所有元素x射线光子的能量进行测定和计数,在几分钟内可得到定性分析结果。

(3)能谱仪的结构比波谱仪简单,没有机械传动部分,因此稳定性和重复性都很好。

(4)能谱仪不必聚焦,因此对样品表面没有特殊要求,适合于粗糙表面的分析工作。

(1)波谱仪的能量分辨率可达5~10eV。

(2)波谱仪可测定原子序数从4到92之间的所有元素。

利用电子探针分析方法可以探知材料样品的化学组成以及各元素的重量百分数。分析前要根据试验目的制备样品,样品表面要清洁。用波谱仪分析样品时要求样品平整,否则会降低测得的X射线强度。

一、定性分析

1、点分析,用于测定样品上某个指定点的化学成分。

2、线分析,用于测定某种元素沿给定直线分布的情况。

3、面分析,用于测定某种元素的面分布情况。

二、定量分析

定量分析时,先测得试样中Y元素的特征X射线强度I

Y

,再在同一条件下测出已知纯元

素Y的标准试样特征X射线强度I

O

。然后两者分别扣除背底和计数器死时间对所测值的影响,

得到相应的强度值I

Y 和I

O

,两者相除得到X射线强度之比K

Y

= I

Y

/ I

O

。直接将测得的强度比

KY当作试样中元素Y的重量浓度,其结果还有很大误差,通常还需进行三种效应的修正。即原子序数效应的修正,吸收效应修正,荧光效应修正。经过修正,误差可控制在±2%以内。

三、主要应用

(1)测定合金中的相成分

(2)测定夹杂物

(3)测定元素的偏析情况。

(4)测定元素在氧化层中的分布

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

扫描电子显微分析

第11-12讲 教学目的:使学生了解扫描电子显微镜结构、工作成像原理及应用 教学要求:了解扫描电子显微镜的发展、原理与应用;了解扫描电镜相关术语;掌握扫描电镜制样技术 教学重点:1. 扫描电镜的工作原理; 2. 扫描电镜的二次电子像和背散射电子像 教学难点:两种种像差的形成原理; 教学拓展:扫描电镜的未来发展趋势 第3节扫描电子显微分析 扫描电子显微镜又称扫描电镜或SEM(scaning electron microscope),它是利用细聚 焦电子束在样品表面做光栅状逐点扫描,与样品相互作用后产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。扫描电镜所需的加速电压比透射电镜要低得多,一般约在 1~30kV,实验时可根据被分析样品的性质适当地选择。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 3.1扫描电子显微镜概述、基本结构、工作原理 一、扫描电子显微镜概述 第一阶段理论奠基阶段 1、1834年法拉第提出“电的原子”概念; 2、1858年普鲁克发现阴极射线; 3、1878年阿贝-瑞利给出显微镜分辨本领极限公式; 4、1897年汤姆逊提出电子概念; 5、1924年德布罗依提出波粒二象性; 第二阶段试验阶段 1、1935年克诺尔提出用电子束从样品表面得到图像的原理并设计简单实验装置; 2、1938年冯.阿登制备出了第一台透射扫描电子显微镜;

《材料现代测试技术》(下篇)电子显微分析技术062011

《材料现代测试技术》(下篇) 电子显微分析技术 主要内容和思考题 本课程的主要内容 1.透射和扫描电子显微镜的结构和工作原理 2.电子衍射图和TEM显微图像的形成和特征 3.显微图像的形成和特征和X射线能谱分析 4.试样制备方法 第一节引言Introduction 一.主要内容 1.Importance of learning English 2.Characterization of materials 3.Microscopes and their development 4.Objectives and requirements 二. 思考题 1.物质的结构有哪些层次? 2.表征物质结构的方法主要有哪些? 3.什么是显微镜? 4.光学显微镜,电子显微镜以及原子探针显微镜的主要区别是什么? 5.什么是分辩率?显微镜的分辨率主要取决于什么? 6.光学显微镜的分辩率极限是多少?为什么? 7.为什么透射电镜的放大倍数可以远远超过光学显微镜? 8.在显微镜的发明和应用过程, 哪些人在哪些方面做出重要的贡献? 第二节电子与固体的相互作用Interaction of the electron with matter 一.主要内容 1.电子的性质 2.电子散射概念 3.电子散射截面与电子散射能力 4.电子弹性相干散射和电子衍射; 5.电子非弹性散射及其效应 二.掌握以下基本概念和基本关系 1.电子波长与加速电压的关系 2.弹性散射和非弹性散射 3.相干散射和非相干散射 4.电子散射截面和电子散射振幅 5.清楚布拉格定律的三种表达方式 6.明确三种电子散射振幅的定义和区别 7.晶胞类型对电子衍射的影响规律 8.晶体形状对电子衍射的影响规律

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

电子显微分析技术及其应用

电子显微分析技术及其应用 恶魔 (恶魔大学恶魔学院,湖北武汉) [内容提要]:本文阐述的电子显微技术及其在纳米材料中的应用。同时本文介绍了透射电镜(TEM)、扫描电镜(SEM)、扫描隧道显微镜(STM)等技术,并论述的电子显微技术在实际中的应用。 [关键词]:电子显微技术;TEM;SEM;STM 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。特别是基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代测试分析方法的重要组成部分,以光谱分析、电子能谱分析、衍射分析与电子显微分析等4大类方法,以及基于其他物理性质或电化学性质与材料的特征关系建立的色谱分析、质谱分析、电化学分析及热分析等方法也是材料现代分析的重要方法。 材料及产品性能和质量的检测是检验和评价制造装备以及产品能否合格有效的重要关口。 在材料纳米材料分析当中,最长用到的电子显微分析技术包括了透射电镜(TEM)、扫描电镜(SEM)、扫描隧道显微镜(STM)等技术,通过这些技术来对物质的显微形貌、成分和结构进行分析。 一透射电镜技术 透射电子显微镜,是以波长极短的电子束作为照明源,用电磁透射聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统(镜筒)、电源和控制系统(包括电子枪高压电源、透镜电源、控制线路电源等)、真空系统3部分组成。分辨本领和放大倍数是透射电子显微镜的两项主要性能指标,它体现了仪器显示样品显微组织和结构细节的能力。 透射电镜一般分为分析型透射电镜和高分辨透射电镜。TEM的分辨率较高,可用于研究纳米材料的结晶情况,观察纳米粒子的形貌、分散情况及测量和评估纳米粒子的粒径,是研究材料微观结构的重要仪器。 利用透射电镜的电子衍射能够较准确地分析纳米材料的晶体结构,配合XRD, SAXS,特别是EX-AFS等技能更有效地表征纳米材料。可结合电子显微镜和能谱两种方法共同对某一微区的情况进行分析。此外,微区分析还能够用于研究材料夹杂物、析出相、晶界偏析等微观现象。利用透射电镜法测试纳米材料的粒度大小及其分布,是最直观的测试方法之一,可靠性较高,但该法的准确性很大程度上取决于取样的代表性和扫描区域的选择。利用TEM进行微观结构分析时,配以能谱可以研究元素在试样内部的存在状态或分布情况。近年来,高分辨率透射电镜(HRTEM)的应用越来越广泛,利用HRTEM可获取有关晶体结构的更可靠的信息。 二扫描电镜技术 扫描电子显微镜, 成像原理与透射电镜不同,不用透镜法放大成像, 而是以类似电视摄像显像的方式, 用细聚焦电子束在样品表面扫描是激发产生的某些物理信号来调制成像。扫描电子显微镜由于其具有制样简单、使用方便、可直接观察大样品(如100mm@100mm)、并具有景深大、分辨率较高、放大倍数范围宽、可连续调节、可进行化学成分和晶体取向测定等一系列优点, 在失效分析中得到了广泛的应用。 SEM在纳米材料的分析中应用很广,它可用于纳米材料的粒度分析、形貌分析以及微观结构的分析等。SEM一般只能提供微米或亚微米的形貌信息,与TEM相比,其分辨率较低,因而表征结果不如透射电镜准

第二十五章 透射电子显微镜讲解

—1— 第25章 透射电子显微镜 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段。电子显微学是一门探索电子与固态物质结构相互作用的科学,电子显微镜把人眼睛的分辨能力从大约0.2 mm 拓展至亚原子量级(<0.1nm),大大增强了人们观察世界的能力。尤其是近20多年来,随着科学技术发展进入纳米科技时代,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究;没有电子显微镜,开展现代科学技术研究是不可想象的。目前,它的发展已与其他学科的发展息息相关,密切联系在一起。 25.1 基本原理 透射电子显微镜在成像原理上与光学显微镜是类似的(图25-1),所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 理论上,光学显微镜所能达到的最大分辨率d ,受到照射在样品上的光子波长λ以及光学系统的数值孔径N A 的限制: 2sin 2A d n N λ λ α=≈ (25-1) 在20世纪初,科学家就已发现理论上使用电子可以突破可见光的光波波长限制(波长范围400~700nm )。由于电子具有波粒二象性,而电子的波动特性则意味着一束电子具有与一束电磁辐射相似的性质。电子波长可以通过徳布罗意公式使用电子的动能推导出。由于在TEM 中,电子的速度接近光速,需要对其进行相对论修正: e λ≈ (25-2) 式中,h 表示普朗克常数;m 0表示电子的静质量;E 是加速电子的能量;c 为光速。电子显微镜中的电子通常通过电子热发射过程或者采用场电子发射方式得到。随后电子通过电势差进行加速,并通过静电场与电磁透镜聚焦在样品上。透射出的电子束包含有电子强度、相位、以及周期性的信息,这些信息将被用于成像。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚衬度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,衬度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格(Bragg )方程,产生衍射现象,在衍射衬度模式中,像平面上图像的衬度来源于两个方面,一是质量、厚度因素,二是衍射因素;在晶体样品超薄的情况下(如10nm 左右),可使透射电子显微镜具有高分辨成像的功能,可用于材料结构的精细分析,

材料显微结构分析方法

材料显微结构分析方法 Analysis of Materials Microstucture 一.内容提纲:材料显微结构分析是材料科学中最为重要的研究方法之一。准确、快捷的分析结果为材料的制备工艺、材料性能微结构表征研究及其材料显微结构设计提供可靠的实验和理论依据。本课程主要介绍包括物显微结构形貌观察、物相种类确定及其定量分析、Rietveld拟合方法、择优取向类型及其测定、微晶及纳米粉体尺寸测定、体材料及其微区成分分析和定量测定等;同时侧重介绍进行上述显微结构分析通常所采用的各种现代仪器的主要功能特性及其分析方法,其中包括X射线衍射仪(XRD)、X光荧光分析仪(XRF)、电子探针(EPME)、波谱仪(WDS)、能谱仪(EDS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等,并且按排了相应的实验。 通过本课程的学习,使研究生了解材料科学研究工作者通常关注的主要显微结构分析内容;掌握各种常见分析仪器的功能和基本原理;学会根据不同显微结构分析内容,准确选择、利用各种分析方法和手段,并得出正确的判断。培养学生分析、解决问题的能力。 二. 教学学时: 48 课堂教学32 实验16 三. 先修课程: 1. 材料科学基础 2. X射线衍射技术 3. 扫描电子显微镜 4. 透射电子显微镜 四. 教学对象: 适用于金属、陶瓷、有机、半导体、复合材料等学科研究生。 五. 教材: 主要教材:自编讲义 主要参考书: 1. 自编文献汇编 2. X光衍射技术基础,王英华主编,原子能出版社 3. Svanning Electron Microscopy and X-ray Microanalysis 六. 主要讲授内容: 1.物相定量分析 (1) 定量分析基本原理 (2) 参考强度法 (3) 含玻璃相的K值法的定量相分析 (4) 混样无标样定量相分析 (5) 理论计算定量相分析 (6) 具有择优取向试样的定量相分析 2.织构测定及其应用 (1) 择优取向的种类、形成及其对性能的影响 (2) 择优取向的的测定方法 正极图 反极图

电子显微分析

读书报告1 电子显微分析在稀土发光纳米材料中的应用 1.前言 稀土发光纳米材料稀土发光纳米材料是指颗粒尺寸在1-100nm的稀土离子掺杂发光材料。纳米颗粒具有尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,因而表现出小尺寸效应、表面/界面效应、量子尺寸效应、量子限域效应等。受这些特性的影响,稀土发光纳米材料表现出许多不同于体相材料的物理和化学特性,从而影响了稀土掺杂离子的发光特性和发光动力学性质,如电荷迁移带、发射光谱、发光效率和强度、荧光寿命、能量传递速率、浓度猝灭和温度猝灭、光诱导发光等。 十余年来,稀土发光纳米材料在多个领域展示出诱人的应用前景,例如纳米级稀土荧光粉能够显著改善涂屏的均匀度,有助于提高清晰度和分辨率。三基色荧光粉若以纳米级稀土发光材料代替普通微米级荧光粉,可以降低光散射,大大提高LED出光效率,并能有效改善光色质量。另外,稀土发光纳米材料还广泛应用于细胞染色、太阳能电池等领域。 目前,有关稀土发光纳米晶的发光特性研究依然是科研的热点,新的合成方法与优越的性能不断地被开发出来。许多科学工作者在提高稀土发光纳米材料的发光效率、亮度、稳定性方面已做了深入的研究。而近年来对于稀土掺杂纳米晶的形貌、粒径、分散性、表面质量的调控及机理研究掀起了一个新的高潮,这主要有赖于电子显微分析技术与水热合成法的发展成熟化。本读书报告遴选了3篇较为典型的有关电子显微分析技术在稀土发光纳米材料表征中的重要应用作个简要的介绍,同时指出了自己的一些启示与看法。 2.文献阅读与启示 2.1. 文献1——TEM及HRTEM在材料微观形貌及晶格条纹分析中的应用 文献标题:“Synthesis and Characterization of Lanthanide Hydroxide Single-Crystal Nanowires” 来源:Angew. Chem. Int. Ed., 2002, 41, 4790-4793 通讯作者:李亚栋院士,清华大学无机化学研究所所长

电子显微分析技术及应用(工大学生论文)

课程论文 课程:材料分析测试方法 题目:材料电子显微分析技术及应用 姓名:王昀立 学号:1101900422 所属单位:1019101班 指导老师:孟庆昌

材料电子显微分析技术及应用 摘要:电子显微分析技术的应用主要分为以下三方面:透射电子显微镜(TEM);扫描电子显微镜(SEM);电子探针显微分析(EPMA)。 关键词:透射电子显微镜;扫描电子显微镜;电子探针显微分析。 本文主干结构: 电子衍射分析技术 ①透射电子显微镜(Transmission Electron Microscope) 晶体薄膜衍衬分析技术 二次电子成像 ②扫描电子显微镜(Scanning Electron Microscope) 背散射电子成像等 ③电子探针显微分析(Electron probe Micro-Analysis)——定性分析及定量分析 1透射电子显微镜(TEM) 1.1透射电子显微镜简介 透射电子显微镜(TEM)是一种能够以原子尺度的分辨能力,同时提供物理分析和化学分析所需全部功能的仪器。特别是选区电子衍射技术的应用,使得微区形貌与微区晶体结构分析结合起来,再配以能谱或波谱进行微区成份分析。 透射电子显微镜与光学显微镜结构对比: a)透射电子显微镜b)透射光学显微镜

1.2电子衍射分析技术 1.2.1电子衍射分析技术简介 许多材料的晶粒只有几十微米大小,甚至几百纳米,不能用X 射线进行单个晶体的衍射,但却可以用电子显微镜在放大几万倍的情况下,有目的的选择这些晶体,用选区电子衍射和微束电子衍射来确定其物相或研究其晶体结构。1.2.2电子衍射几何 电子衍射几何仍服从Bragg 定律: 2d sinθ=λd —晶面间距; λ—电子波长; θ—Bragg 角。 1.2.3电子衍射的光学特点 第一,衍射束强度有时几乎与透射束相当,因此就有必要考虑它们之间的相互作用,使电子衍射花样分析,特别是强度分析变得复杂,不能象X 射线那样从测量强度来广泛地测定晶体结构; 第二,由于散射强度高,导致电子穿透能力有限,因而比较适用于研究微晶、表面和薄膜晶体。 1.2.4电子衍射花样 ①根据衍射花样确定样品是晶体还是非晶。 ②根据衍射斑点确定相应晶面的晶面间距。 ③衍射斑点指标化。??? r O G ’ L d

扫描透射电子显微分析技术

第五章 扫描透射电子显微分析技术(STEM)

本章主要内容 5.1 STEM概述及发展史 51STEM 5.2 STEM构造及工作原理 5.3 STEM主要功能及应用 5.4 STEM最新进展及发展趋势 参考书:R.J.Keyse et al,Introduction to Scanning Transmission Electron Microscopy, 参考书:R J Keyse et al Introduction to Scanning Transmission Electron Microscopy BIOS Scientific Publishers Limited,1998。

51STEM STEM是指透射电子显微镜中有扫描附件者,尤其是指采发射电枪作成的扫描透射电镜扫描透射5.1 STEM 概述采用场发射电子枪作成的扫描透射电子显微镜。扫描透射电子显微分析是综合了扫描和普通透射电子分析的原理和特点而出现的一种新型分析方式STEM能够获得TEM所特点而出现的一种新型分析方式。STEM能够获得TEM所不能获得的一些关于样品的特殊信息。STEM技术要求较高,要非常高的真空度,并且电子学系统比TEM和SEM都要复要非常高真度,并子学系和都要复杂。 扫描透射电子显微镜是透射电子显微镜的一种发展。扫描透射电子显微镜是透射电子显微镜的种发展扫描线圈迫使电子探针在薄膜试样上扫描,与扫描电子显微镜不同之处在于探测器置于试样下方,探测器接受透射束散射束放在荧光 电子束流或弹性散射电子束流,经放大后,在荧光屏上显示与常规透射电子显微镜相对应的扫描透射电子显微镜的明场像和暗场像明场像和暗场像。

相关主题
文本预览
相关文档 最新文档