当前位置:文档之家› 流体流动阻力的测定

流体流动阻力的测定

实验一:流体流动阻力的测定

一,摘要

本实验以水为介质,使用FFRS-Ⅱ型流体阻力实验装置,通过测定不同管道中流体流量和测压点间的压强差,结合已知管径管长,应用机械能守恒式算出不同管道摩擦阻力系数和雷诺数关系。实验验证了湍流状态下直管摩擦阻力系数受Re和ε/d共同影响;层流状态下,直管摩擦阻力系数仅是Re的函数,且在双对数坐标系内呈线性关系;局部阻力系数受Re和局部性状影响。

二,目的及任务

⑴掌握测定流体流动阻力实验的一般方法。

⑵测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ。

⑶测定层流管的摩擦阻力。

⑷验证湍流区内摩擦阻力系数λ为雷诺系数Re和粗糙度的函数。

⑸将所得光滑管的λ-Re方程与Blasius方程比较。

三,实验原理

1.直管摩擦阻力

不可压缩流体(如水),在圆形直管中做稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在突然扩大,弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。影响流体阻力的因素比较多,在工程上采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。

流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为Δp=f﹙d,l,u,ρ,μ,ε﹚

引入无量纲数群: 雷诺数Re=duρ/μ

相对粗糙度ε/d 管子长径比l/d

从而得到 Δp/﹙ρu^2﹚=Ψ(du ρ/μ, ε/d,l/d) 令λ=Φ(Re, ε/d ) 则有 Δp/ρ=l/d Φ(Re, ε/d)uu/2

可得摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。 Hf=Δp/ρ=λl/d*uu/2

式中:hf ——直管阻力,J/㎏; l ——被测管长,m; d ——被测管内径,m; u ——平均流速,m/s; λ——摩擦阻力系数。

当流体在一管径为d 的圆形管中流动时选取两个截面,用U 形压差计测出着两个截面间的静压差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re 下的摩擦阻力系数,就可求出某一相对粗糙度下的λ-Re 关系。

(1) 湍流区的摩擦系数

在湍流区内λ=f(Re, ε/d).对于光滑管,大量实验证明,当Re 在

10105

3

到3 范围内,λ与Re 的关系遵循Blasius 关系式,即 λ

=03163.0/Re

25

.0

对于粗糙管,λ与Re 的关系均以图来表示。 (2) 层流的摩擦阻力系数

λ=64/Re

2. 局部阻力

当流体流过等直径的管道局部(弯头,阀门),不考虑直管段长度,方程

变为:

2

2

u h

p

f

?=?=

u

p

2

2??=

ρ?

当流体流经突然扩大管道时(p

p 2

1

<

2

12

221

2

1

2

2

u u u

p

p

h f ?=-+

-

=

21

1

2

22

)

(21u

p p u

ρ

?-

+

-

=

ζ称为局部阻力系数,它与流体流过的管件的几何形状及流体的雷诺数

Re 有关,当雷诺数Re 大到一定值后,ζ与Re 无关,为定值。

3.排气原理

用传感器测量压降时,要求主管路和引压管线中的液体必须相连,不能

有气泡。主管路排气可开大流量阀,使水快速大量流过管道,将其中气体带走。引压管线中的气体可在关闭出口流量调节阀的情况下。打开传感器两侧的排气阀门将其排净。最后注意将排气阀门关闭进行测量。

四, 流程图及仪表

设备尺寸:

光滑管d=21.5mm l=1.50m

粗糙管d=21.5mm l=1.50m

突然扩大管d1=16mm d2=42mm

层流管d=29mm l=1.00m

五,实验内容

⑴关闭阀门,启动水泵

⑵确定实验管路为光滑管,打开光滑管主管路切换阀门V3以及光滑管的引压管路切换阀门和压力传感器两侧的阀门。进行主管路,测压管路的排气,大约一到两分钟时间。关闭切换阀门和压力传感器两侧的阀门,看传感器是否回零(kPa

左右)。如果没有达到要求,则重复上述排气步骤。如果达到要求07

.0

则可以进行测量。从达到小改变流量,按照要求记录相关数据。A负责调节流量大小;B负责分配数据间隔,以便得到更科学化的数据,数据记录,同时与A

配合控制流量范围;C负责读取压力传感器的数据,实验温度以及流量读数。由

于压力压力波动大,AB要协同配合选取适宜实验点,C务必要在示数波动平稳读取数据。读数从0.6到4.0左右测量十组。测量完后关闭光滑管切换阀门,看传感器是否回零,否则该实验数据弃用,重新测量。实验完毕关闭光滑管主观切换阀门和引压管切换阀门。

⑶确定实验管路为粗糙管,参照⑵中所示方法进行粗糙管路实验数据的测量,从0.6到4.0左右测取十组数据并记录。

⑷确定实验管路为突然扩大管,参照⑵中所示方法进行实验,从0.6到4.0左右测取三组数据并记录即可。

⑸确定实验管路为层流管,打开层流管主管路切换阀及层流管的引压管路切换阀门和压力传感器两侧的阀门进行排气,待排气合格后,关闭压力传感器两侧的阀门。为保证设备安全,避免水泵过热,打开其他任意一个管路切换阀,使水流流动起来。打开层流管调节阀,在保证水流较小却连续的情况下,在一定时间内用量筒量取排出水体积,并读出压力传感器示数。测量六组数据并记录。测量完毕,关闭层流管切换阀,看传感器是否回零,否则该实验数据弃用,重新测量。实验完毕,关闭切换阀门和引压管阀门。

⑹关闭主管路阀门,关闭水泵。

六,操作要点

(1)启动离心泵,打开被测管线上的开关阀,及面板上与其相对应的切换阀,关闭其他的开关阀和切换阀,保证测压点一一对应。

(2)系统要排净气体使液体连续流动。设备和测压管线上的气体都要排净,检查是否排净的方法是当流量为零时,观察U形压差计两侧液面是否相平。(3)读取数据时,应注意稳定后再读数。测定直管摩擦阻力时,流量由大到小,

充分利用面板量程测取10组数据,然后再由小到大测取几组数据,以检查数据的重复性。测定突然扩大管,球阀和截止阀的局部阻力时,各测取3组数据。层流管的流量由量筒和秒表测取。

(4)测完一根管的数据后,应将流量调节阀关闭,观察压差计的两液面是否水平,水平时才能更换另一条管路,否则全部数据无效。同时要了解各阀门的特点,学会使用阀门,注意各阀门的切换,同时要关严,防止内漏。

七, 数据处理

数据的记录及处理:

(1)光滑管测量数据记录及处理:

因为温度变化后引起的密度变化相对较小,故取密度为近似定值ρ=995.35㎏/m^3 所测数据: 管路流量

q

v

=2.53

h

m

3

压差计测得两截面压力差Δp=2.9558kPa ;

温度T=31.3℃。 根据公式:u=

d

2

π

4q v

算得u=1.94m/s

根据公式:λ=

u

l p

d 2

2ρ? 算得λ=0.0227 此为实验数据

根据温度,查表,利用内插法算得粘度μ=0.759mPa 〃s 根据公式:Re=

u

du ρ

算得Re=54613 根据Blasius 公式:λ=0.3163/

Re

25

.0 算得λ=0.0207 此为理论数据

(2)粗糙管实验数据记录及处理表

因为温度变化后引起的密度变化相对较小,故取密度为近似定值ρ=996.7㎏/m^3 所测数据: 管路流量

q

v

=1.63

h

m

3

压差计测得两截面压力差Δp=1.9419kPa ;

温度T=26.3℃。 根据公式:u=

d

2

π

4q v

算得u=1.25m/s

根据公式:λ=

u

l p

d 2

2ρ? 算得λ=0.0359

根据温度,查表,利用内插法算得粘度μ=0.868mPa 〃s 根据公式:Re=

u

du ρ

算得Re=30808 根据光滑管和粗糙管实验所得数据,绘制如下所示图形①: 湍流时 粗糙管和光滑管摩擦系数λ与雷诺数Re 关系图

10000

2000030000400005000060000700008000090000

0.020.0250.03

0.0350.040.0450.05λ

Re

(3)突然扩大管数据记录及处理表

因为温度变化后引起的密度变化相对较小,故取密度为近似定值ρ=996.5kg/m^3 所测数据: 管路流量

q

v

=2.45

h

m

3

压差计测得两截面压力差Δp=1.093kPa ; 温度T=27.1℃。 根据公式:u=

d

2

π

4q v

算得细管流速u1=3.39m/s

粗管流速u2=0.49m/s

根据公式ζ=

21

2

221

2u

u u

p

ρ

?-

- 算得局部阻力系数ζ=0.785

最后根据三组数据区平均值,即为突然扩大管局部阻力系数值,

(4)层流管实验数据记录及处理表

因为温度变化后引起的密度变化相对较小,故取密度为近似定值ρ=994.3㎏/m^3 所测数据: 体积V=49 ml; 时间t=30s;

压差计测得两截面压力差Δp=0.7421kPa; 温度T=33.7℃。 根据公式:

t

V

q

v

=

算得q v =1.63m^3/s

根据公式:u=

d

2

π

4q v

算得u=0.25m/s

根据公式:λ=

u

l p

d 2

2ρ? 算得λ=0.0707

根据温度,查表,利用内插法算得粘度μ=0.742mPa 〃s 根据公式:Re=

u

du ρ

算得Re=961

绘制所得图形②:

层流时摩擦阻力系数λ和雷诺数Re 关系图

0.05

0.1

0.15

0.2

0.250.3λ

Re

八, 结果及结论

(1) 在湍流区,粗糙管的摩擦阻力系数λ随雷诺数Re 的增大而减小,且变化率逐渐减小,到Re>40000时,λ变化减慢,曲线逐渐平缓;光滑管的摩擦阻力系数λ与雷诺数Re 在双对数坐标轴上成线性关系。相同雷诺数Re 下,光滑管摩擦阻力系数小于粗糙管,在阻力平方区,雷诺数Re 越大,两者差距越大。

(2) 在层流区,摩擦阻力系数随雷诺数的增大而减小,且在双对数坐标上成线性关系。

(3) 突然扩大管摩擦阻力系数主要取决于管道形状,与雷诺数有一定关系,但是没有外形对其影响大,实验值与理论值基本相符。

九, 分析讨论

(1) 本实验中,水温影响到流体粘度和密度,为保证实验精确性,应尽量

保持水温的恒定。

(2) 实验中环境会对流体的流动状态造成影响,故应尽量保证装置的稳定

性和环境的平稳。故而,流体流动实验装置一般都在一层,一减少环境因素的波动。

(3) 实验中,压力和水流的波动是不可避免的,在调节流量时尽量小幅度

调节,减少波动,同时减少读数时间。在读数时尽量在一个稳定的范围内读取。

十, 思考题

1、不锈钢管、镀锌钢管实验测量的只是Re 改变后的λ值,为什么判断λ受Re 和ε/d 共同影响?

答:因为已知摩擦阻力函数是h f =Ф(d, u,ρ,μ,l ,ε),使用因次分析法化为无量纲的函数形式后,可得摩擦阻力函数

),,(

'2

d

d l du f u h f ε

μρ=,而对于已经安装好的管径还说,l/d 是固定值,所以判断摩擦阻力系数是受雷诺数Re 与ε/d 共同作用的。因为不锈钢管与镀锌管的相对粗糙度不同,所以才会在相同的雷诺数时的λ值不同。

2、在不同设备(包括相对粗糙度相同而管径不同)、不同温度下测定的λ-Re 数据能否关联在一条曲线上?为什么?

答:可以关联在一条曲线上。

因为当摩擦阻力与d,l,u,ρμ的函数化为无量纲的形式后,可以得出摩擦阻力

系数函数

),,(

'2

d

d l du f u h f ε

μρ=,只要求得设备长径比,相对粗糙度,根据流体流动状态求得雷诺系数即可对应求得摩擦阻力系数。在不同设备(包括相对粗糙度相同而管径不同)、不同温度下测定的λ-Re 数据可以关联在一条曲线上。

3、以水作工作流体所测得的λ-Re 关系能否适用于其它种类的牛顿型流体?为什么?

答:可以适用其他类型的牛顿类型的流体。牛顿性流体流动性质相同,而摩擦阻力系数与密度没有关系,对于确定的管道来说只与雷诺数有关,工作介质不同也就只能改变雷诺数的大小,并不能影响λ-Re 关系的使用。

4、以下测出的直管摩擦阻力与设备的放置状态有关吗?它们分别是多少?(管径、管长一样,管内走水,且R 1=R 2=R 3)

答:无关。

2

2

u d l P

h f ??=?=λρ=(gz 1-gz 2)+?-+-22

22121u u p p ρ 压差计高度差R 反映了两个测压点截面位能和压强能综合变化值,即R=

(gz 1-gz 2)+

12

p p ρ

-?

因为R

1=R

2

=R

3

,u

1

=u

2

故三种状态下的hf不变,故推出λ不变。

5,如果要增加雷诺数的范围,可以采取哪些措施?

答:根据雷诺数Re=duρ/μ可知,要增加其范围可改变管道管径,改变温度来改变流体的粘度和密度。

流体流动阻力的测定

流体流动阻力的测定 一、实验目的 (1)熟悉测定流体流经直管的阻力损失的实验组织法及测定摩擦系数的工程意义。 (2)观察摩擦系数λ与雷诺数Re 之间的关系,学习双对数坐标纸的用法 (3)掌握流体流经管件时的局部阻力,并求出该管件的局部阻力。 二、实验原理 流体在管内流动时,由于流体具有黏性,在流动时必须克服内摩擦力,因此,流体必须做功。当流体呈湍流流动时,流体内部充满了大小漩涡,流体质点运动速度和方向都发生改变,质点间不断相互碰撞,引起流体质点动量交换,使其产生了湍动阻力,结果也会消耗流体能量,所以流体的黏性和流体的漩涡产生了流体流动的阻力。 流体在管内流动的阻力的计算公式表示为 2 2 u d l h f λ= 或 2 2 12u d l p p p ρλ=-=? 式中:h 为流体通过直管的阻力(J/kg );△p 为流体通过直管的压力降(N/m 2);p 1,p 2为直管上下游界面流动的压力(N/m 2);l 为管道长(m );d 为管道直径(内径)(m );ρ为流体密度(kg/m 3);u 为流体平均流速(m/s );λ为摩擦系数,无因次。 摩擦系数λ是一个受多种因素影响的变量,其规律与流体流动类型密切相关。当流体在管内作层流流动时,根据力学基本原理,流体流动的推动力(由于压力产生)等于流体内部摩擦力(由于黏度产生),从理论上可以推得λ的计算式为 Re 64 = λ 当流体在管内作湍流流动时,由于流动情况比层流复杂得多,湍流时的λ还不能完全由理论分析建立摩擦系数关系式。湍流的摩擦系数计算式是在研究分析阻力产生的各种因素的基础上,借助因次分析方法,将诸多因素的影响归并为准数关系,最后得出如下结论 ??? ??=?? ??????????=d d du k t ε?εμρλRe,2 由此可见,λ为Re 数和管壁相对粗糙度ε/d 的函数,其函数的具体关系通过实验确定。 局部阻力通常有两种表达方式,即当量长度法和阻力系数法。 当量长度法:流体流过某管件时因局部阻力造成的能量损失相当于流体流过与其相同管径的若干米长度的直管阻力损失,用符号l e 来表示,则 2 2 u d l l h e f +=∑λ 阻力系数法:流体通过某一管件的阻力损失用流体在管路中的动能系数来表示

流动阻力测定思考题

流动阻力测定思考题 The following text is amended on 12 November 2020.

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗为什么 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: (4)怎样排除管路系统中的空气如何检验系统内的空气已经被排除干净 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。

(6)你在本实验中掌握了哪些测试流量、压强的方法它们各有什么特点 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。 (7)读转子流量计时应注意什么为什么 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误差。 (8)两个转子能同时开启吗为什么 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9)开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯 答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。

流体流动阻力的测定化工原理实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵 学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天 流体流动阻力的测定 摘要 ● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。 ● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。 ● 测定湍流状态下管道局部的阻力系数的局部阻力损失。 ● 本次实验数据的处理与图形的拟合利用Matlab 完成。 关键词 流体流动阻力 雷诺数 阻力系数 实验数据 Matlab 一、实验目的 1、掌握直管摩擦阻力系数的测量的一般方法; 2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ; 3、测定层流管的摩擦阻力 4、验证湍流区内λ、Re 和相对粗糙度的函数关系 5、将所得光滑管的Re -λ方程与Blasius 方程相比较。 二、实验原理 不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群 雷 诺 数: μρ du = Re 相对粗糙度: d ε 管路长径比: d l 可导出: 2)(Re,2u d d l p ??=?εφρ 这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系: 22u d l p H f ? ?=?=λρ

因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。 在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即: 25 .0Re 3163.0=λ 对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得: Re 64=λ 局部阻力: f H =2 2 u ?ξ [J/kg] 三、装置和流程 四、操作步骤 1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀; 2、排尽体系空气,使流体在管中连续流动。检验空气是否排尽的方法是看当流量为零时候U 形压差计的两液面是否水平; 3、调节倒U 型压差计阀门1、2、3、 4、5的开关,使引压管线内流体连续、液柱等高; 4、打开流量调节阀,由大到小改变10次流量(Re min >4000),记录光滑管压降、孔板压降数据; 5、完成10组数据测量后,验证其中两组数据,确保无误后,关闭该组阀门; 6、测量粗糙管(10组)、突然扩大管(6组)数据时,方法及操作同上; 7、测量层流管压降时,首先连通阀门6、7、8、9、10所在任意一条回流管线,其次打开进入高位水灌的上水阀门11,关闭出口流量调节阀16; 8、当高位水灌有溢流时,打开层流管的压降切换阀,对引压管线进行排气操作; 9、打开倒U 型压差计阀门5,使液柱上升到n 型压差计示数为0的位置附近,然后关闭该阀门,检 图1 流体阻力实验装置流程图 1. 水箱 2.离心泵 3.孔板流量计 4.管路切换阀 5.测量管路 6.稳流罐 7.流量调节阀

流体流动阻力的测定

化工原理实验报告 报告题目:流体流动阻力的测定实验日期:2018年10月20日 报告人:安澍同组人:杨韬刘袁宇轩 实验摘要: 流体阻力的大小关系到输送机械的动力消耗和输送机械的选择,测定流体流动阻力对化工及相关过程工业的设计、生产和科研具有重大意义。本实验通过测定特定直管在不同流量下的温度和压降,从而得到了关系,得到了随的增大,变小,当Re增大到一定值后,不变的结论。测定水流过突扩管时(湍流)的流量、 温度、压降,从而根据求出了局部阻力系数 实验目的及任务: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。 3、验证在湍流区内摩擦阻力系数λ为雷诺数Re和相对粗糙度的函数。 4、将所得的光滑管的λ-Re方程与Blasius方程相比较。 基本原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸,以及流动状态有关,可表示为: ?Ρ=f(d,l,u,ρ,μ,ε) 引入无量纲数群: 雷诺数: 相对粗糙度: 管子长径比: 从而得到:? (,,) 令( ,) ? , 可得摩擦系数和压头损失之间的关系,这种关系可用实验方法直接测定。 ? (4-1) 式中——直管阻力,J/kg ———被测管长,m ———被测管内径,m ———平均流速,m/s ———摩擦阻力系数

流体流动阻力测定实验

实验报告 项目名称:流体流动阻力测定实验 学院: 专业年级: 学号: 姓名: 指导老师: 实验组员: 一、实验目的 1、学习管路阻力损失h f和直管摩擦系数λ的测定方法。 2、掌握不同流量下摩擦系数λ与雷诺数Re之间的关系及其变化规律。 3、学习压差测量、流量测量的方法。了解压差传感器和各种流量计的结构、使用方法 及性能。 4、掌握对数坐标系的使用方法。

二、实验原理 流体在管道内流动时,由于黏性剪应力和涡流的存在,会产生摩擦阻力。这种阻力包括流体流经直管的沿程阻力以及因流体运动方向改变或管子大小形状改变所引起的局部阻力。 流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=2 2 u d l λ (4-1) 式中: -f h 直管阻力,J/kg ; -d 直管管径,m ; -?p 直管阻力引起的压强降,Pa ; -l 直管管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -λ摩擦系数。 滞流时,λ= Re 64 ;湍流时,λ与Re 的关系受管壁相对粗糙度d ε?的影响,即λ= )(Re,d f ε。 当相对粗糙度一定时,λ仅与Re 有关,即λ=(Re)f ,由实验可求得。 由式(4—1),得 λ= 2 2u P l d f ???ρ (4-2) 雷诺数 Re =μ ρ ??u d (4-3) 式中-μ流体的黏度,Pa*s 测量直管两端的压力差p ?和流体在管内的流速u ,查出流体的物理性质,即可分别计算出对应的λ和Re 。 三、实验装置 1、本实验共有两套装置,实验装置用图4-2所示的实验装置流程图。每套装置中被测光滑直管段为管内径d=8mm ,管长L=1.6m 的不锈钢管;被测粗糙直管段为管内径d=10mm ,管长L=1.6m 的不锈钢管 2、 流量测量:在图1-2中由大小两个转子流量计测量。 3、 直管段压强降的测量:差压变送器或倒置U 形管直接测取压差值。

流体流动阻力的测定

实验名称:流体流动阻力的测定 一、实验目的及任务: 1.掌握测定流体流动阻力实验的一般方法。 2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。 3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。 4.将所得光滑管的方程与Blasius方程相比较。 二、实验原理: 流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。 1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力 如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为: Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。 2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为: 由量纲分析可以得到四个无量纲数群: 欧拉数,雷诺数,相对粗糙度和长径比

从而有 取,可得摩擦系数与阻力损失之间的关系: 从而得到实验中摩擦系数的计算式 当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。 在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re 在氛围内,λ与Re的关系遵循Blasius关系式,即 对于粗糙管,λ与Re的关系以图来表示。 3.对局部阻力,可用局部阻力系数法表示: 对于扩大和缩小的直管,式中的流速按照细管的流速来计算。 对一段突然扩大的圆直管,局部阻力远大于其直管阻力。由忽略直管阻力时的伯努利方程 可以得到局部阻力系数的计算式: 式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。 突然扩大管的理论计算式为:ζ(),、分别为细管和粗管的流通

流体流动阻力实验

实验一 流体流动阻力实验 一、实验目的 1、学习直管摩擦阻力f P ?、直管摩擦系数λ的实验方法; 2、掌握不同流量下摩擦系数λ与雷诺数Re 之间的关系及其变化规律; 3、学习局部阻力的测定方法; 4、学习压强差的几种测量方法和技巧; 5、掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 1. 直管摩擦系数 与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l P h f f λρ=?= (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3) μ ρ ??= u d Re (4) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ;

-ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降 f P ?与流速u (流量V )之间的关系。 测得一系列流量下的f P ?后,根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ;用式(4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2. 局部阻力系数ζ的测定 2 2 'u P h f f ζρ =?= ' (5) 2'2u P f ?????? ??=ρζ (6) 式中:-ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图3 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a ’和b-b ',见图3,使 ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '

化工原理实验三单相流体阻力测定实验

实验三 单相流体阻力测定实验 一、实验目的 ⒈ 学习直管摩擦阻力△P f 、直管摩擦系数的测定方法。 ⒉ 掌握不同流量下摩擦系数 与雷诺数Re 之间关系及其变化规律。 ⒊ 学习压差传感器测量压差,流量计测量流量的方法。 ⒋ 掌握对数坐标系的使用方法。 二、实验内容 ⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数。 ⒉ 测定既定管路内流体流动的直管摩擦系数与雷诺数Re 之间关系曲线和关系式。 三、实验原理 流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。 h f = ρf P ?=2 2 u d l λ (3-1) λ= 22u P l d f ?? ?ρ (3-2) Re = μ ρ ??u d (3-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 管内平均流速,m / s ; -ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2 。 摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式3-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式3-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

四、实验流程及主要设备参数: 1.实验流程图:见图1 水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

流体流动阻力的测定

实验一流体流动阻力的测定 一、实验目的 1. 学习液压计及流量计的使用方法; 2.识别管路中的各个管件、阀门并了解其作用; 3.测定流体流经直管时的摩擦系数与雷诺数的关系; 4.测定90。标准弯头的局部阻力系数。 二、实验原理 1. 摩擦系数的测定方法 直管的摩擦系数是雷诺数和管的相对粗糙度(ε/d)的函数,即λ=Ф(Re, ε/d),因此,在相对粗糙度一定的情况下,λ与Re存在一定的关系。根据流体力学的基本理论,摩擦系数与阻力损失之间存在以下关系: (1-1) 式中:h f 阻力损失,J/N; L管段长度,m; d管径,m; u流速,m/s; 摩擦系数; g重力加速度,m/s2。 流体在水平均匀直管中作稳态流动时,由截面1流动到截面2时的阻力损失体现在压强的降低,即 (1-2) 两截面之间管段的压强差(P1-P2)可以用U形压差计测量,故可以计算出h f 。 用涡轮流量计测定流体通过已知管段的流量,在已知管径的情况下流速可以通过体积流量来计算,由流体的密度ρ、粘度μ,因此,对于每一组测得的数据可以分别计算出对应的λ和Re。 2. 局部阻力系数的测定 根据局部阻力系数的定义: (1-3) 式中:ζ—局部阻力系数。 实验时测定流体经过管件时的阻力损失h f及流体通过管路的流速u,其中阻力损失h f可以应用机械能衡算方程由压差计读数求出,再由式(1-3)即可计算出局部阻力系数。在测定阻力损失时,测压孔不能紧靠管件处,因为在紧靠管件处压强差难以测准。通常测压孔都开设在距管件一定距离的管子上,这样测出的阻力损失包括了管件和直管两部分,因此计算管件阻力损失时应扣除直管部分的阻力损失。

实验一流体流动阻力的测定

. 化学实验教学中心 实验报告 化学测量与计算实验Ⅱ 实验名称:流体流动阻力的测定 学生姓名:学号: 院(系):年级:级班 指导教师:研究生助教: 实验日期: 2017.05.26 交报告日期: 2017.06.02

一、实验目的 1.学习直管摩擦阻力、直管摩擦系数的测定方法; 2.掌握直管摩擦阻力系数与雷诺数和相对粗糙度之间的关系及其变化规律; 3.掌握局部阻力的测量方法; 4.学习压强差的几种测量方法和技巧; 5.掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 化工管路是由直管和各种管阀件组合构成的,流体通过管内流动必定存在阻力。因此,在进行管路设计和流体机械造型时,阻力大小是一个十分重要的参数。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管摩擦阻力系数与雷诺数的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,对水平等径管道,它们之间存在如下关系: (1-1) (1-2) (1-3) 式中,为直管阻力引起的压头损失,;为管径,;为直管阻力引起的压强降,; 为管长,;为流速,;为流体密度,;为流体的粘度,。 直管摩擦阻力系数与雷诺数之间的关系,一般可以用曲线来表示。在实验装置中,直管段长度与管径都已经固定。若水温一定,则水的密度和粘度也是定值。所以本实验实质上是测定直 管段流体阻力引起的压强降与流速(流量V)之间的关系。根据实验数据以及式(1-2)可以计算出不同流速下的直管摩擦系数,用式(1-3)计算对应的,从而整理出直管摩擦系数和雷诺数的关系,绘出两者的关系曲线。

流体阻力测定实验

流体阻力测定实验实验指导书 环境与市政工程学院 2015年11月

一、实验目的: 1.学习直管摩擦阻力f P ?,直管摩擦系数λ的测定方法。 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 三、实验原理: 1.直管摩擦系数 与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2u d l h f P f λρ == ? (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3) μ ρ ??= u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。

在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定 22 'u P h f f ζρ =?= ' 2'2u P f ?????? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a ~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5) 在b ~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ?=2(P b -P b ')-(P a -P a ') 为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。其数值用差压传感器来测量。

实验一 流体流动阻力测定实验

4.1 流体流动阻力测定实验 一、实验目的 ⒈学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。 ⒉掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 ⒊掌握局部阻力的测量方法。 ⒋学习压强差的几种测量方法和技巧。 ⒌掌握双对数坐标系的使用方法。 二、实验内容 ⒈测定实验管路(光滑管和粗糙管)内流体流动的阻力和直管摩擦系数λ。 ⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 ⒊在本实验压差测量范围内,测量阀门的局部阻力系数。 三、实验原理 ⒈直管摩擦系数λ与雷诺数Re 的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内 流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=22 u d l λ (4-1) λ=22u P l d f ???ρ (4-2) Re = μρ??u d (4-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 ⒉局部阻力系数ζ的测定 22 'u P h f f ζρ=?=' (4-4)

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

流体流动阻力的测定实验

流体流动阻力的测定实验 一、实验内容 1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ,并确定λ和Re 之间的关系。 2.测定流体通过阀门时的局部阻力系数。 二、实验目的 1.解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验组织方法。 2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。 3.熟悉压差计和流量计的使用方法。 4.认识组成管路系统的各部件、阀门并了解其作用。 三、实验原理 流体通过由直管和阀门组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力 流体流动过程是一个多参数过程,)(ερμ、、、、、u l d f h f =。由因次分析法,从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示: ?? ????ξμρ=ρ?d ,du ,d l F u P 2 λ=Ψ(Re ,ε/d ) 雷诺准数μ ρdu e = R ;2 2 u d l P h f ??=?=λρ 只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。 g P Hg )R(ρρ-=?

易知,直管摩擦系数λ仅与Re 和 d ε 有关。因此,只要在实验室规模的装置 上,用水做实验物系,进行试验,确定λ与Re 和 d ε 的关系,然后计算画图即可。 2.局部阻力 局部阻力可以用当量长度法或局部阻力系数法来表示,本实验用局部阻力系数法来表示,即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数 来表示,用公式表示: 2 2 u P h f ξρ=?= 一般情况下,由于管件和阀门的材料及加工精度不完全相同,每一制造厂及每一批产品的阻力系数是不尽相同的。 四、实验设计 由 22 u d l h f ??=λ和2 2u h f ξ=知,当实验装置确定后,只要改变管路中流体流速u 及流量V ,测定相应的直管阻力压差ΔP 1和局部阻力压差ΔP 2,就能通过计算得到一系列的λ和ξ的值以及相应的Re 的值, 【原始数据】在实验中,我们要测的原始数据有流量V ,用来计算直管阻力压差ΔP 1和局部阻力压差ΔP 2的U 型压差计的左右两边水银柱高度,流体的温度t (据此确定ρ和μ),还有管路的直径d 和直管长度l 。 【测量点】在直管段两端和局部两端各设一对测压点,分别测定ΔP 1 和ΔP 2 ,还要在管路中配置一个流量和温度测试点。 【测试方法】温度用温度计测定,流量我们用涡轮流量计来测定,则 Q=f/ξ 其中,f 表示涡轮流量计的转子频率,其值由数显仪表显示;ξ为涡轮流量计的仪表系数;Q 为流量,单位L/s 。 五、实验装置流程及说明 主要设备和部件:离心泵,循环水箱,涡轮流量计,阀门,直管及管件,玻

流体阻力实验报告

化工原理实验报告 实验名称:流体流动阻力测定 班级: 学号: 姓名: 同组人: 实验日期:

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式2 2u l p d ρλ?=,其中ρ 为实验温度下流体的密度;流体流速2 4d q u v π= ,以及雷诺数μ ρdu =Re (μ 为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式 2 22 121p u u ρ ζ?+ =- 可求出突然扩大管的局部阻力系数,以及由Re 64=λ求出层流 时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。

三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1], l [L] ,d [L],ε[L],u [LT -1], h f [L 2 T -2] 3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量 μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ? a=-1,b=-1,c=-1 变换形式后得:π1=ρud /μ l: π2=l/d ε: π3=ε/d h f : π4=h f /u 2 5)原函数无量纲化 0, ,,2=??? ? ? ?d l d du u h F f εμ ρ 6)实验 22,22u d l u d l d du h f ?=????? ? ??=λεμρ? 摩擦系数:()d ε?λR e,= 层流圆直管(Re<2000):λ=φ(Re )即λ=64/Re 湍流水力学光滑管(Re>4000):λ=0.3163/Re 0.25 湍流普通直管(4000临界点):λ=φ(ε/d)即 ?? ? ??-=d ελ2log 274.11 2、局部阻力损失函数 2 2 u h f ζ= 局部阻力系数:(局部结构)?ζ= 考虑流体阻力等因素,通常管道设计液速值取1~3m/s ,气速值取10~30m/s 。

流体流动阻力测定(整理好)

化工原理实验报告 实验名称:流体流动阻力的测定 实验日期: 2015.10.22 班级: 031131 组员:马佳王婧周先萍范奇行

流体流动阻力的测定 一、摘要 流体阻力的大小关系到输机械的动力消耗和输送机械的选择,测定流体流动阻力对化工及相关过程工业的设计、生产和科研具有重要的意义。 二、实验目的 ①掌握测定流体流动阻力实验的一般试验方法。 ②测定直管的摩擦阻力系数及突然扩大管和球阀的局部阻力系数。 ③验证在摩擦阻力系数为雷诺数Re和相对粗糙度的函数。 三、实验内容 ①测定湍流状态下直不锈钢管的摩擦系数λ随Re的变化关系。 ②测定湍流状态下球阀的局部阻力系数ξ。 ③测定湍流状态下突扩管的局部阻力系数ξ。 ④将所得光滑管的λ-Re方程与Blasius方程相比较。 四、实验原理 1.直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在突然扩大,弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。影响流体阻力的因素比较多,在工程上采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下: 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 Δp=f﹙d,l,u,ρ,μ,ε﹚ 引入无量纲数群:

雷诺数 Re=μ ρ du 相对粗糙度 d ε 管子长径比 d l 从而得到: 2 u p ρ?=Ψ(μρdu ,d ε,d l ) 令λ=Φ(Re, d ε ) 则有 ρp ?=d l Φ(Re,d ε)22u 可得摩擦阻力系数与压头损失之间的关系,这种关系可用实验 方法直接测定。 H f =ρ p ?=λd l ×22u 式中: H f ——直管阻力 (J/㎏); l ——被测管长 (m); d ——被测管内径 (m); u ——平均流速 (m/s); λ——摩擦阻力系数。 当流体在一管径为d 的圆形管中流动时选取两个截面,用U 形压差计测出着两个截面间的静压差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re 下的摩擦阻力系数,就可求出某一相对粗糙度下的λ-Re 关系。 在湍流区内λ=f(Re,d ε ).对于光滑管,大量实验证明,当Re 在3×103 ~105 的范围内,λ与Re 的关系遵循Blasius 关系式, 即 λ=25 .0Re 3163 .0

化工原理实验流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力 系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的 函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯 头等管件时,由于流体运动的速度和方向突然变化,产生局部 阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析 方法简化实验,得到在一定条件下具有普遍意义的结果,其方 法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。

雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可 =△P/ρ=λ(l / d)u2/2 用试验方法直接测定。h f ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/ d)。对于光滑管,大量实验

一流体流动阻力的测定

实验一 流体流动阻力的测定 一、实验目的 1、学习直管摩擦阻力ΔP f ,直管摩擦系数λ的测定方法 2、掌握直管摩擦系数λ与雷诺数Re 之间关系的测定方法及其变化规律 3、学会压差变送器和流量计的安装及使用方法。 4、识别组成管路中各个管件,阀门并了解其作用。 二、 实验内容 1、测定水在不同流量下,流过一段等直径水平管的流动阻力和直管摩擦系数。 2、测定不同流量下,流体经阀门或90°弯管时的流动阻力系数,检查数据的重复性。 三、基本原理 由于流体粘性的存在,流体在流动的过程中会发生流体间的摩擦,从而导致阻力损失。层流时阻力损失的计算式是由理论推导得到的;湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究,获得经验的计算式。其研究的基本步骤如下: ①寻找影响过程的主要因素 对所研究的过程作初步的实验和经验的归纳,尽可能地列出影响过程的主要因素。对湍流时直管阻力损失h f 与诸多影响因素的关系式应为: h f =f(d,u,ρ,μ,l ,ε) (1) ②、因次分析法规划实验 当一个过程受多个变量影响时,通常用网络法通过实验以寻找自变量与因变量的关系,以(1)式为例,若每个自变量的数值变化10次,测取h f 的值而其他自变量保持不变,6个自变量,实验次数将达106 。为了减少实验工作量,需要在实验前进行规划,以尽可能减少实验次数。因次分析法是通过将变量组合成无因次数群,从而减少实验自变量的个数,大幅度地减少实验次数。 通过因次分析法可以将对(1)式的研究转变成对以下(2)式的4个无因次数之间的关系的研究。 即: ),,( '2 d d l du f u h f ε μρ= (2) 其中,若实验设备已定,那么以上(2)式可写为: 2 ),(2 u d l d du f h f ??=εμρ (3) 若实验设备是水平直管,以上(3)式可写为:

流体流动阻力的测定实验报告

流体流动阻力的测定 61 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区λ与Re的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数λ的测定 流体在水平等径直管中稳定流动时,阻力损失为: h f=?p f ρ = p 1 ?p 2 ρ =λ l d u2 2 即, λ=2d?p f ρlu2 式中:λ—直管阻力摩擦系数,无因次; d—直管内径,m; ?p f —流体流经l米直管的压力降,Pa; h f—单位质量流体流经l米直管的机械能损失,J/kg;

l—直管长度,m; u—流体在管内流动的平均流速,m/s。层流流时, λ=64 Re 湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。 欲测定λ,需确定l、d,测定?p f 、u、ρ、μ等参数。l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。?p f 可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取Re和λ后,再将Re和λ标绘在双对数坐标图上。 2.局部阻力系数ξ的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: h f′=?p f ′ ρ =ξ u2 2 因此, ξ=2?p f ′ρu 式中:ξ—局部阻力系数,无因次; ?p f ′-局部阻力压强降,Pa;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)

相关主题
文本预览
相关文档 最新文档