当前位置:文档之家› 第六章波形产生与变换电路

第六章波形产生与变换电路

第六章波形产生与变换电路
第六章波形产生与变换电路

第六章 波形的产生与变换电路

6.1基本要求

1.熟练掌握正弦波振荡器产生振荡的相位平衡条件和幅值平衡条件。

2.熟练掌握桥式、变压器反馈式、三点式振荡器的结构、相位条件的判别和振荡频率的计算。

3.熟悉桥式振荡器的幅值条件,了解其稳幅措施。

4.了解石英晶体振荡器的工作原理。

5.熟练掌握各种比较器的结构、工作原理及参数的计算。

6.熟悉集成运放组成的方波、三角波、锯齿波发生器的工作原理和输出波形。

6.2 解答示例及解题技巧

题6-3解:(a )不能产生正弦振荡。

此电路欲构成RC 桥式振荡器,桥式振荡器是由基本放大器和正反馈网络(同时具有选频功能)构成的。此电路中的运放与10k 、20k 电阻是基本放大器部分,应为负反馈放大器;RC 串并联网络是正反馈网络部分,应引正反馈(f =f 0时)至运放的同相输入端。但本电路中的放大器却构成了正反馈,而RC 串并联网络却引入了负反馈。所以不能产生正弦振荡。若将运放的反相输入端与同相输入端互换,便可以使基本放大器的相移ΦA =0o ,RC 串并联网络的相移ΦF =0(f =f 0时),从而满足振荡的相位条件ΦA +ΦF =0o 。 (b )不能产生正弦振荡。

此电路欲构成RC 移相式振荡器。它的移相网络作为反馈网络,同时具有选频功能。但此电路中放大器部分是共基极放大器,ΦA =0o ,移相网络的相移ΦF 在0o ~270o 之间变化,其中当ΦF =0o 时,对应频率趋近无穷大,这意味着当频率趋近无穷时,电路才能满足振荡的相位条件ΦA +ΦF =0o ,显然是不可能做到的,所以不能产生正弦振荡。须将移相网络的反馈连线由BJT 的发射极改至基极,构成共射放大器,这样可以使ΦA =180o ,而在有限的频率范围内又可以在某一频率上得到ΦF =180o ,使

ΦA +ΦF =360o ,满足振荡的相位条件。

(c )可以产生正弦振荡。

此电路构成了RC 桥式振荡器。其中的差放是基本放大器,RC 串并联网络是正反馈网络部分,由于ΦA =0o ,ΦF =0(f =f 0时),可以使ΦA +ΦF =0o ,所以能产生正弦振荡。

(d )不能产生正弦振荡。

此电路欲构成RC 移相式振荡器。但放大器部分的输入端接错了位置。应将2R 电阻与移相网络的连线断开,改接至移相网络的最后一级RC 之间。另将移相网络的电阻R 下端接地。这样才可以构成正确的振荡电路,在这个电路中,ΦA =180o ,ΦF =180o (某频率上),可以使ΦA +ΦF =360o ,满足振荡的相位条件。

题6-4

解:(1)此电路为RC 桥式振荡器,当电路振荡时,RC 串并联网络的反馈系数为

3

1

为了保证满足起振条件,应使|??F

A| >1。即有:

|

?

A| = A

F

= 3

1

S

f>

+

R

R

当R S=2kΩ时:R f>4kΩ

(2)电路的振荡频率:

kHz

1

10

01

.0

10

15

28

.6

1

2

1

6

3

?

?

?

?

=

=

-

RC

f

π

题6-7由两级运放构成的电路如图P6-7所示。可以将由A1组成的电路看成基本放大器,把A2组成的电路看成反馈网络。

⑴试求?A=

?

?

O

1

O

U

U

⑵试求?F=

?

?

O1

O

U

U

⑶计算?A?F=?当满足什么条件时,电路可以满足正弦振荡的幅值平衡条件和相位平衡条件。

图P6-7

解:(1)A1组成的电路看成基本放大器,放大倍数:

?

A=

2

O

1

O

)

1

(

1

1

1

//

C

j

R

C

j

R

C

j

R

C

j

R

U

U

ω

ω

ω

ω

+

-

=

+

-

=

?

?

(2)A2组成的电路看成反馈网络,反馈系数:

?

F=

1

2

O1

O

R

R

U

U

-

=

?

?

(3)?A?F=

RC

j

RC

j

R

R

C

j

R

C

j

R

R

R

ω

ω

ω

ω

1

2

1

)

1

(

1

1

2

2

1

2

+

+

?

=

+

?

)

(

2

1

1

2

ω

ω

ω

ω

-

+

?

=

j

R

R

RC

1

=

ω

当?A

?

F=1时,可以满足振荡条件,即:

RC

1

=

ω时,?A?F为实数,满足相位条件;

R2=2R1时,|?A

?

F|=1,满足幅值条件。

题6-8(a)能够产生正弦振荡。

此电路属于变压器反馈式LC振荡器。场效应管的共源放大器是基本放大器部分,同时具有选频功能,变压器构成正反馈网络。当LC并联谐振回路谐振时,ΦA=180o,又依据变压器的同名端判别,ΦF=180o,从而有ΦA+ΦF=360o,满足振荡的相位条件。

(b)不能产生正弦振荡。

此电路欲构成变压器反馈式LC振荡器。但选频放大器是共基极组态,LC并联谐振回路谐振时ΦA=0o,而ΦF=180o,ΦA+ΦF=180o,不满足振荡的相位条件。可将L1上代表同名端的黑点改至另一端。这样可以使ΦF=0o,ΦA+ΦF=0o,满足振荡的相位条件。

(c)能够产生正弦振荡。

此电路属于变压器反馈式LC振荡器。选频放大器是共射放大器,当LC并联谐振回路谐振时,ΦA=180o,又知ΦF=180o,从而有ΦA+ΦF=360o,满足振荡的相位条件。

(d)不能产生正弦振荡。

此电路欲构成变压器反馈式LC振荡器。选频放大器是共射放大器,当LC并联谐振回路谐振时,ΦA=180o,但依据变压器的同名端判别,ΦF=0o,ΦA+ΦF=180o,不满足振荡的相位条件。可将L2上代表同名端的黑点改至另一端。这样可以使ΦF=180o,ΦA+ΦF=360o,满足振荡的相位条件。

题6-10判断下面两个电路能否振荡,如能振荡,估计其振荡频率。已知两个电路中L=0.4mH,C1=C2=25pF。

(a) (b)

图P6-10

解:(a)不能振荡。

本电路欲构成电容三点式LC振荡器。共射放大器是基本放大器部分,同时具有选频功能,电容C1、C2构成反馈网络。但当LC并联谐振回路谐振时,ΦA=180o,又知,ΦF=0o,从而有ΦA+ΦF=180o,不满足振荡的相位条件。

(b)能振荡。

本电路属于电容三点式LC振荡器。选频放大器是共基极组态,LC并联谐振回路谐振时ΦA=0o,又知,ΦF=0o,从而有ΦA+ΦF=0o,满足振荡的相位条件。

其振荡频率:

MHz 25.2105.12104.028.61

211232

1210≈???=+=

--C C C C L

f π

*讨论:在进行正弦波振荡器的相位平衡条件判别时,要注意以下几点: 1.区别正弦波振荡器类型。不同的振荡器在判别中的方法和依据是不同的,所以必须加以区别。

2.将振荡器分作基本放大器和反馈网络两部分,再分别判断ΦA 、 ΦF 、ΦA +ΦF 。

3. 正弦波振荡器具有选频功能,选频网络可以设置在反馈网络中,也可以放在放大器中。要明确的是,由于选频作用,电路只能在某一频率上满足正弦波的振荡条件,只能在一个频率上产生振荡。

4.正弦波振荡器的相位平衡条件判别所涉及的是交流信号,直流电压源应视为短路,除LC 并联谐振回路中的电容之外,其它的如:耦合电容、旁路电容也要视为短路。 题6-18 画出下列电路的电压传输特性。已知R 1=10k Ω,R 2=20k Ω,R 3=2k Ω,V Z =±6V 。

图P6-18

解:(a )此电路为反相放大器。由于构成了负反馈,使运放工作在线性状态。

i i 12o 2u u R R

u -=-=

但是当输出电压达到稳压管的击穿值时,输出将被限幅,u o = V Z =±6V 。

电路的电压传输特性如图T6-18(a)所示。

(b )此电路为同相迟滞比较器。由于构成了正反馈,使运放工作在非线性状态。并在达到触发电平时,迅速地翻转。

根据电路有: o 2

11

i 212u R R R u R R R u +++=

+

当u o =u z =6V 时: 2

11

i 2126R R R u R R R u +++=+

若使电路的输出电压发生翻转,则需u += u -=0V 。此时的输入电压为下限触

发电平:

V 36

2

1

i -=-=R R u 当u o =u z =-6V 时:

2

11

i 2126

R R R u R R R u +-+=

+ 若使电路的输出电压发生翻转,亦需u += u -=0V 。此时的输入电压为上限触

发电平:

V 36

2

1

i ==R R u 电路的电压传输特性如图T6-18(b)所示。

(a ) (b)

图T6-18

题6-20 正负半周不对称的方波发生器的电路如图P6-20所示。若D Z 的稳压值为±U Z ,试计算电路的周期T (忽略D 1和D 2导通压降的影响)。 解:此电路的工作波形见图T6-20。

当u o =U Z 时,电流经D 2,R 5给电容C 充电,充电过程决定T 1。电容两端电压:

τt

e u u u t u -+∞-+∞=)]()0([)()(c c c c

Z 2

11

Z c )0(U R R R FU u +-=-=+ u c (∞)=U Z τ=R 5C

经过T 1的时间后:

Z 2

11

Z Z Z 211Z 1c 51

][)(U R R R FU e U U R R R U T u C R T

+==-+-+=-

)21ln(2

151R R

C R T +=

当u o =-U Z 时,电流经D 1,R 4使电容C 放电,放电过程决定T 2。电容两端电压:

τt

e u u u t u -+∞-+∞=)]()0([)()(c c c c

Z 2

11

Z c )0(U R R R FU u +==+ u c (∞)=-U Z τ=R 4C

经过T 2的时间后:

Z 2

11

Z Z Z 211Z 2c 42

][)(U R R R FU e U U R R R U T u C R T

+-=-=+++-=-

)21ln(2

142R R

C R T +=

)21ln()(2

15421R R

C R R T T T ++=+=

图T6-20

6.3 习题答案

题6-1 (1)X ;(2) X ;(3)X ;(4)√。 题6-2(1)D ;(2)B ;(3)C 。 题6-5 V 6.3o =?

U

图P6-5 图P6-6

题6-6 电路如图所示,已知两个运放输出电压的最大值均为±10V ,试画出?

U o1

和?

U o 的电压波形。

?

U o1和?

U o 的电压波形见图T6-6。

图T6-6 题6-9

解:(1)可将代表同名端的黑点标在1L 的最下端和2L 的最上端。

(2) 2

12

12021

C C C

C L f +=π

C 2=10pF 时: f 0≈0.8MHz C 2=30pF 时: f 0≈0.5MHz

题6-11 解:(1)电路的交流通路如图T6-11所示。

图T6-11

(2)振荡频率:

?????

??

?

?+++=

32140111121

C C C C L f π

(3)若C 3 <<

2

12

1C C C C +时,振荡频率近似为:

)

(21340C C L f +=

π

题6-12 ⑴ 图P6-12所示电路中的L ,C 3组成串联谐振回路,当它串联谐振时,

则可以构成正反馈,使振荡器满足正弦振荡的相位平衡条件,所以此电路可以在L ,C 3串联谐振回路的串联谐振频率上产生振荡。

⑵ 电路的振荡频率: 3

021

LC f ∏=

⑶ 电阻R 5为电路引入负反馈,其大小决定电路中放大器的电压放大倍数,从而影响振荡器的幅值平衡条件。若电阻R 5过大,会使负反馈过小,放大器的电压放大倍数过大,电路的输出波形会出现严重的失真现象;若电阻R 5过小,会使负反馈过大,放大器的电压放大倍数过小,则电路不能满足幅值平衡条件,从而不能产生振荡。

题6-13 (a )ΦA =0o ,若使晶体工作在其串联谐振频率上,则ΦF =0o ,ΦA +ΦF =0o , 电路能够产生正弦振荡。晶体在电路中可以等效看成电阻元件,且电阻值近似为0。

(b )ΦA =180o ,若使晶体工作在其串联谐振频率与并联谐振频率之间,则ΦF =180o ,

ΦA +ΦF =360o ,电路能够产生正弦振荡。晶体在电路中可以等效看成电感元

件,它与电容C 1,C 2共同组成电容三点式振荡电路。

题6-14图P6-14所示正弦振荡器的正确的连线见图T6-14。在电路中,石英晶体可

以等效为电感元件。电路振荡频率?0应处在石英晶体的串联谐振频率?S 及并联谐振频率?P 范围内。

图T6-14

题6-15 (1) t =1ms 时: u o1=2V (2) u o1和u o 的波形如图T6-15所示。

图T6-15 题6-16 u o 与u i 的关系式:

u i >0 u o =-0.7V

u i <0 u o =6V

电路的电压传输特性如图T6-16所示。

图T6-16 图T6-17

题6-17 (1)电路的输出电压发生翻转时:u i =-2V

(2)电路的电压传输特性如图T6-17所示。

题6-19(1) 电路的电压传输特性曲线如图T6-19(a)所示。

(2)调节R W ,使B

A R R

的比值减小时,电压传输特性曲线的变化如图

T6-19(b)所示。

(a)

(b)

图T6-19

实验九 利用函数电路实现波形变换

实验九利用函数电路实现波形变换 —、实验目的 1 、利用二极管非线性特性 , 实现三角波→正弦波的变换。 2 、利用差分对管的饱和与截止特性,实现三角波→正弦波变换。 二、预习要求 1 、预习方波产生电路和方波→三角波的变换电路工作原理。 2 、预习三角波→正弦波的变换电路和工作原理。 三、实验仪器设备 1 、双踪示波器 2 、万用表 3 、高频电路实验装置 四、实验电路和工作原理 1 、二极管波形变换电路工作原理 从三角波和正弦波的波形上看 , 二者主要的差别在波形的峰值附近 , 其余部 分都很相似 . 因此只要设法将三角波的幅度按照一定的规律逐段衰减 , 就能 将其转换为近似正弦波 . 见图 9.1 所示 . 用二极管将三角波近似转换为正弦波的实验电路见图 9.2 。图中 , R4 ~ R7,D1 ~ D3 负责波形的正半周, R8 ~ R11,D4 ~ D6 负责波形的的下半周, R2 和 R3 为正负半周共用电阻, R1 对输入的三角波进行降压。在正半周的变换过程中,设 R4 ~ R7 都取值为 1.2K Ω, 在正半周 , 当 D1 ~ D3 都不导通时, C 、 B 、 A 点的电压分别为 1.25V,2.5V,3.75V 。在波形变换的过程中 , 由于二极管的非线性特性,加上输入函数的时间关联性 , 不同时刻二极管上所承受的电压是不同的。为了分析的方便 , 我们假设二极管的正向导通电压为 0.5V, 则当输入电压高于 1.75V 时 , 二极管 D3 导通,输出电压高于 1.75V ;当输入电压高于 3V 后 , 二极管 D2 导通 , 输出电压高于 3V; 当输入电压高于 4.25V 后 , 二极管 D1 导通 , 输出高于 4.25V. 以此类推 , 便可近似得到正弦波形 . 若增大电阻 R4 的值 , 可以降低波峰时的电压降 , 以适应不同输入电压的变换要求 . 负半周的变换原理与此相类似 , 读者可以自行分析。

波形发生电路

题目1:波形发生电路(P440~442) 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波和三角波波形发生器。 基本指标:输出频率分别为:102H Z、103H Z;输出电压峰峰值V PP≥20V 整体电路设计 (1)方案比较 信号发生器又称信号源或振荡器,能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。由方波-三角波的发生器产生相应的信号,通过相互转换实现多种波形的输出。由振荡电路产生的信号经比较运放产生方波,积分可得到三角波。 方案一: 此方案由RC振荡电路,滞回比较器和积分电路,比例放大电路组成,输出频率可调方波,三角波。RC回路即作为延迟环节,又作为反馈网络,通过RC充,放电实现输出状态的自动转换.振荡信号通过滞回比较器可以输出方波;方波经过比例积分器就变成所需的三角波。 方案二: 该方案由迟滞比较器,带通滤波器和积分器组成。通过正反馈环路使电路产生振荡并将信号输入迟滞比较器输出方波,过比例积分器在其输出端产生三角波。 由于方案一简单易懂,且大都是实验实现过,或较常计算的电路,可行度更高。方案一是依次经过文氏电桥振荡电路,过零比较器,积分电路而产生方波和三角波,用调节电阻的大小实现调频,比例放大实现幅值的改变,实现程度比较高,据有一定的实际意义,可操作性强,且原理简单明了故选做方案一。二实验方案二中由矩形波过带通滤波器产生振荡信号的过程复杂,计算参数不易,故选方案一。 (2)整体电路框图 为实现三角波输出,先要得到一个方波信号,这时要用到滞回比较器,而为了得到方波,应有一个振荡信号的输入,则需要一个振荡电路作为反馈电路.此外,为使集成运放正常工作,还要在电路中引入直流电压.所以,设计的波形发生电路,

波形发生电路习题及习题解答

7-1 判断下面所述的正误 1. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。 ( ) 2. 电感三点式振荡器的输出波形比电容三点式振荡器的输出波形好。 ( ) 3. 反馈式振荡器只要满足振幅条件就可以振荡。 ( ) 4. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。 ( ) 5. 放大器必须同时满足相位平衡条件和振幅条件才能产生自激振荡。 ( ) 6. 正弦振荡器必须输入正弦信号。 ( ) 7. LC 振荡器是靠负反馈来稳定振幅的。 ( ) 8. 正弦波振荡器中如果没有选频网络,就不能引起自激振荡。 ( ) 9. 反馈式正弦波振荡器是正反馈一个重要应用。 ( ) 10. LC 正弦波振荡器的振荡频率由反馈网络决定。 ( ) 11. 振荡器与放大器的主要区别之一是:放大器的输出信号与输入信号频率相同, 而振荡器一般不需要输入信号。 ( ) 12. 若某电路满足相位条件(正反馈),则一定能产生正弦波振荡。 ( ) 13. 正弦波振荡器输出波形的振幅随着反馈系数F 的增加而减小。 ( ) 7-2 并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率 的相频特性? 解:并联谐振回路在电流激励下,回路端电压V 的频率特性才会产生负斜率的相频特性,如图(a)所示。串联谐振回路在电压激励下,回路电流I 的频率特性才会产生负斜率的相频特性, 如图(b)所示。 7-3 电路如题7-3图所示,试求解:(1)R W 的下限值;(2)振荡频率的调节范围。 题7-3图 解:(1) 根据起振条件 ''2,2f W W R R R R k 故R w 的下限值为2k 。 (2) 振荡频率的最大值和最小值分别为 0max 11 1.62f kHz R C , 0min 1211452()f Hz R R C 7-4 在题7-4图所示电路中,已知R 1=10k Ω,R 2=20k Ω,C = μF ,集成运放的最大输出电压

多种波形发生器的设计与制作

课题三 多种波形发生器的设计与制作 方波、三角波、脉冲波、锯齿波等非正弦电振荡信号是仪器仪表、电子测量中最常用的波形,产生这些波形的方法较多。本课题要求设计的多种波形发生器是一种环形的波形发生器,方波、三角波、脉冲波、锯齿波互相依存。电路中应用到模拟电路中的积分电路、过零比较器、直流电平移位电路和锯齿波发生器等典型电路。通过对本课题的设计与制作,可进一步熟悉集成运算放大器的应用及电路的调试方法,提高对电子技术的开发应用能力。 1、 设计任务 设计并制作一个环形的多种波形发生器,能同时产生方波、三角波、脉冲波和锯齿波,它们的时序关系及幅值要求如图3-3-1所示。 图3-3-1 波形图 设计要求: ⑴ 四种波形的周期及时序关系满足图3-3-1的要求,周期误差不超过%1±。 ⑵ 四种波形的幅值要求如图3-3-1所示,幅值误差不超过%10±。 ⑶ 只允许采用通用器件,如集成运放,选用F741。

要求完成单元电路的选择及参数设计,系统调试方案的选取及综合调试。 2、设计方案的选择 由给定的四种波形的时序关系看:方波决定三角波,三角波决定脉冲波,脉冲波决定锯齿波,而锯齿波又决定方波。属于环形多种波形发生器,原理框图可用3-3-2表示。 图3-3-2 多种波形发生器的方框图 仔细研究时序图可以看出,方波的电平突变发生在锯齿波过零时刻,当锯齿波的正程过零时,方波由高电平跳变为低电平,故方波发生电路可由锯齿波经一个反相型过零比较器来实现。三角波可由方波通过积分电路来实现,选用一个积分电路来完成。图中的u B电平显然上移了+1V,故在积分电路之后应接一个直流电平移位电路,才能获得符合要求的u B波形。脉冲波的电平突变发生在三角波u B的过零时刻,三角波由高电平下降至零电位时,脉冲波由高电平实跳为低电平,故可用一个同相型过零比较器来实现。锯齿波波形仍是脉冲波波形对时间的积分,只不过正程和逆程积分时常数不同,可利用二极管作为开关,组成一个锯齿波发生电路。由上,可进一步将图3-3-2的方框图进一步具体化,如图3-3-3所示。 图3-3-3 多种波形发生器实际框图 器件选择,设计要求中规定只能选用通用器件,由于波形均有正、负电平,应选择由正、负电源供电的集成运放来完成,考虑到重复频率为100Hz(10ms),故选用通用型运放F741(F007)或四运放F324均可满足要求。本设计选用F741。其管脚排列及功能见附录三之三。

波形转换电路的设计

学号: 课程设计 题目波形转换电路的设计 学院理学院 专业电子信息科学与技术 班级 姓名 指导教师 2012 年 1 月23 日

课程设计任务书 学生姓名:专业班级:电信科xxx班 指导老师:工作单位:武汉理工大学理学院 题目:波形转换电路的设计 初始条件:直流稳压电源一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具 要求完成的主要任务:(包括课程设计工作量及其技术要求以及说明书撰写等具体要求)1、技术要求: 设计一种波形转换电路,要求产生频率可调的方波,并且能够实现方波转换为三角波。 测试并且记录下不同频率下的方波和三角波的波形图,以及输出电压值。 2、主要任务: (一)设计方案 (1)按照技术要求,提出自己的设计方案(多种)并进行比较; (2)以集成电路运算放大器LF353为主,设计一种波形转换电路(实现方案); (3)依据设计方案,进行预答辩; (二)实现方案 (4)根据设计的实现方案,画出电路图; (5)查阅资料,确定所需各元器件型号和参数; (6)在面包板上组装电路; (7)自拟调整测试方法,并调试电路使其达到设计指标要求; (8)撰写设计说明书,进行答辩。 3、撰写课程设计说明书: 封面:题目,学院,专业,班级,姓名,学号,指导教师,日期 任务书 目录(自动生成) 正文:1、技术指标;2、设计方案及其比较;3、实现方案; 4、调试过程及结论; 5、心得体会; 6、参考文献 成绩评定表 时间安排: 课程设计时间:20周-21周 20周:明确任务,查阅资料,提出不同的设计方案(包括实现方案)并答辩; 21周:按照实现方案进行电路布线并调试通过;撰写课程设计说明书。 指导教师签名:年月日 系主任(或负责老师)签名:年月日

RC波形发生电路实验

一、实验目的 学习使用运放组成方波发生器、三角波发生器、锯齿波发生器和正弦波发生器 二、实验仪器 示波器、信号发生器、交流毫伏表、数字多用表 三、实验原理 (1)方波发生器 设电路通电瞬时,电容上的电压为0,电路输出为Vz ,这时运放正相输入端为VP1=VzR1/(R1+R2)=FVz 运放输出电流经R3,RP ,R4向电容C 充电。运放反相输入端Vn 随时间延续电压升高,当vn=VP1时,电路输出翻转,vo 由Vz 变为-Vz ,vp 由VP1=FVz 变为VP2=-FVz 。这时由“地”向电容反相充电,vn 随时间延续电压下降,当vn=VP2,电路输出翻转,vo 由-VZ 变为Vz ,vp 由VP2=-FVz 变为FVz ,周而复始,电路输出方波。在稳态,输出为Vz 的时间可用以下方法推导:在起始时刻,电容上的电压为Vc(0)=-FVz,电容充电的终了电压为Vz ,所以电容上的电压为 Vc (t )=Vz+(-FVz-Vz )e^(-t/RC ) 当电容上的电压达到FVz 时,电路翻转,记电容充电时间为τ FVz=Vz+(-FVz-Vz )e^(-t/RC ) Τ=RCln (1+F )/(1-F ) 输出方波的周期为2τ,所以输出方波的周期为 T=2(Rp+R4)Cln (1+2R1/R2)

(2)占空比可调的矩形波发生器 与方波发生器相比,非C 正向充电和反向充电使用的不同的路径,从而使得高电平持续时间和低电平持续时间不同。 当输出为高电平Vz 时,运放输出的电流经Rpp ,D1,R4向电容充电,类同于对方波发生器的分析,忽略二极管的开启电压,容易得到输出高电平的持续时间为 τ1=(Rpp+R4)Cln (1+2R1/R2) 类似地可求得输出低电平的持续时间为 τ2=(Rpn+R4)Cln (1+2R1/R2) 输出的周期为T=τ1+τ2=(Rp+2R4)Cln (1+2R1/R2) 占空比为η=τ1/τ2=(Rpp+R4)/(Rpn+R4) (3)三角波发生器 设电路通电瞬间,即t=0时,电容上的电压为0,积分器输出vo=0,过0比较器输出为vo1=Vz ,这时运放AR1正相输入端电压为 Vp1=(Vz-vo )Rp/(R1+Rp )+vo=RpVz/(R1+Rp )+voR1/(R1+Rp )>0 运放AR1输出保持为高电平。积分器输出线性地下降。当Vp1等于0时,对应于时刻τ,这时过0比较器翻转,vo1=-Vz ,记此刻的积分器输出电压值为VoN ,有RpVz/(R1+Rp )=-R1VoN/(R1+Rp ) 解得 VoN= -RpVz/R1 + R P R PP

第八章 脉冲波形的产生和变换试题及答案

第八章脉冲波形的产生和变换 一、填空题 1.(10-1中)矩形脉冲的获取方法通常有两种:一种是________________;另一种是________________________。 2.(10-1易)占空比是_________与_______的比值。 3.(10-4中)555定时器的最后数码为555的是(,)产品,为7555的是(,)产品。 4.(10-3中)施密特触发器具有现象;单稳触发器只有个稳定状态。 5.(易,中)常见的脉冲产生电路有,常见的脉冲整形电路有、。 6.(中)为了实现高的频率稳定度,常采用振荡器;单稳态触发器受到外触发时进入。 7.(10-3易)在数字系统中,单稳态触发器一般用于______、 ______、______等。 8.(10-3中)施密特触发器除了可作矩形脉冲整形电路外,还可以作为________、_________。 9.(10-2易)多谐振荡器在工作过程中不存在稳定状态,故又称为________。 10.(10-2中)由门电路组成的多谐振荡器有多种电路形式,但它们均具有如下共同特点: 首先,电路中含有________,如门电路、电压比较器、BJT 等。这些器件主要用来产生________;其次,具有________, 将输出电压器恰当的反馈给开关器件使之改变输出状态;另外,还有,利用RC电路的充、放电特性可实现_______,以获得所需要的振荡频率。在许多实用电路中,反馈网络兼有_____作用。 11.(10-3易)单稳态触发器的工作原理是:没有触发信号时,电路处于一种_______。外加触发信号,电路由_____翻转到_____。电容充电时,电路由______自动返回至______。 二、选择题 1.(10-2中)下面是脉冲整形电路的是()。 A.多谐振荡器触发器 C.施密特触发器触发器 2.(10-2中)多谐振荡器可产生()。

课程设计——波形发生器要点

1.概述 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

2.设计方案 采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。文氏桥振荡器产生正弦波输出,其特点是采用RC串并联网络作为选频和反馈网络,其振荡频率f=1/2πRC.改变RC的值,可得到不同的频率正弦波信号输出。用集成运放构成电压比较器,将正弦波变换成方

3. 设计原理 3.1正弦波产生电路 正弦波由RC 桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。正弦波振荡电路由一个放大器和一个带有选频功能的正反馈网络组成。其振荡平衡的条件是AF =1以及ψa+ψf=2n π。其中A 为放大电路的放大倍数,F 为反馈系数。振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF 略大于1。 放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻以减少放大电路对选频特性的影响,使振荡频率几乎仅决定于选频网络,因此通常选用引入电压串联负反馈的放大电路。正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有 31 1≥+ =R Rf Av (Rf=R2+R1//D1//D2) 且振荡产生正弦波频率 Rc f π210= 图中D1、D2的作用是,当Vo1幅值很小时,二极管D1、D2接近开路,近似有Rf =9.1K +2.7K =11.8K ,,Av=1+Rf/R1=3.3>=3,有利于起振;反之当Vo 的幅值较大时,D1或D2导通,Rf 减小,Av 随之下降,Vo1幅值趋于稳定。

波形变换电路.

目录 摘要................................................................................................................................................ 1概述. (1) 2设计原理 (2) 2.1 555定时器简介 (2) 2.2用555定时器构成的施密特触发器 (3) 2.3电路原理图 (5) 3 Proteus仿真 (6) 4调试过程及结论 (9) 5心得体会 (17) 参考文献 (18)

摘要 施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。因此,施密特触发器有三个大的特点:1、波形变换。可将三角波、正弦波等变成矩形波;2、脉冲波的整形,数字系统中,矩形脉冲在传输中经常发生波形畸变,出现上升沿和下降沿不理想的情况,可用施密特触发器整形后,获得较理想的矩形脉冲;3、脉冲鉴幅。幅度不同、不规则的脉冲信号时加到施密特触发器的输入端时,能选择幅度大于欲设值的脉冲信号进行输出。 主要功能和特色简介: 1、将给定频率的三角波变成脉冲波,脉冲波占空比不是50% 2、将给定频率的三角波变成脉冲波,脉冲波占空比是50% 3、将给定频率的正弦波变成脉冲波,脉冲波占空比是50% 4、将给定频率的三角波(正弦波)转换成间断式方波 5、将给定频率的三角波(正弦波)进行分频 关键词:Proteus仿真,施密特触发器,555定时器,波形变换

波形转换电路的设计

课程设计任务书 学生姓名:专业班级:电信科xxx班 指导老师:工作单位:武汉理工大学理学院 题目:波形转换电路的设计 初始条件:直流稳压电源一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具 要求完成的主要任务:(包括课程设计工作量及其技术要求以及说明书撰写等具 体要求) 1、技术要求: 设计一种波形转换电路,要求产生频率可调的方波,并且能够实现方波转换为三角波。测试并且记录下不同频率下的方波和三角波的波形图,以及输出电压值。 2、主要任务: (一)设计方案 (1)按照技术要求,提出自己的设计方案(多种)并进行比较; (2)以集成电路运算放大器LF353为主,设计一种波形转换电路(实现方案); (3)依据设计方案,进行预答辩; (二)实现方案 (4)根据设计的实现方案,画出电路图; (5)查阅资料,确定所需各元器件型号和参数; (6)在面包板上组装电路; (7)自拟调整测试方法,并调试电路使其达到设计指标要求; (8)撰写设计说明书,进行答辩。 3、撰写课程设计说明书: 封面:题目,学院,专业,班级,姓名,学号,指导教师,日期 任务书 目录(自动生成) 正文:1、技术指标;2、设计方案及其比较;3、实现方案; 4、调试过程及结论; 5、心得体会; 6、参考文献 成绩评定表 时间安排:

课程设计时间:20周-21周 20周:明确任务,查阅资料,提出不同的设计方案(包括实现方案)并答辩; 21周:按照实现方案进行电路布线并调试通过;撰写课程设计说明书。指导教师签名:年月日系主任(或负责老师)签名:年月日 目录 1 技术指标 (1) 2 设计方案及其比较 (1) 2.1 方案一 (1) 2.1.1 设计RC文式桥振荡器 (2) 2.1.2 设计过零比较器 (3) 2.2 方案二 (4) 2.3 方案比较 (5) 3 实现方案 (5) 3.1 实验原理图 (5) 3.2 工作原理 (6) 3.2.1 设计方波发生器 (6) 3.2.2 设计积分器 (7) 3.3 各元器件功能 (9) 3.4 测试线路布线图 (9) 4 调试过程及结论 (10)

波形发生电路实验报告

波形发生电路实验报告 班级 姓名 学号

一、实验目的 1. 掌握由集成运放构成的正弦波振荡电路的原理与设计方法。 2. 学习电压比较器的组成及电压传输特性的测试方法。 3. 掌握由集成运放构成的矩形波和三角波振荡电路的原理与设计方法。 二、实验内容 1. 正弦波发生电路 (1)实验参考电路见图1。 (2)缓慢调节电位器R W,观察电路输出波形的变化,完成以下测试: ①R W为0Ω 时的u O的波形; ②调整R W使电路刚好起振,记录u O的幅值、频率及R W的阻值; ③调整R W使输出为不失真的正弦波且幅值最大,记录u O幅值、频率及R W的阻值; ④将两个二极管断开,观察R W从小到大变化时输出波形的变化情况。 2. 方波- 三角波发生电路 (1)实验参考电路见图2。 (2)测试滞回比较电路的电压传输特性 将图2 电路的第一级改造为滞回比较电路,在输入端输入合适的测试信号,用示波器X-Y模式观测电压传输特性曲线并记录阈值电压和u O1的幅值。

(3)测量图2电路u O1、u O2波形的幅值、周期及u O1波形的上升和下降时间。 3.矩形波- 锯齿波发生电路 修改电路图2,使之成为矩形波- 锯齿波发生电路。要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录u O1、u O2的幅值、周期。 三、实验要求 1. 实验课上搭建硬件电路,记录各项测试数据。 2. 完成正弦波电路的实验后在面包板上保留其电路,并使其输出电压U o在1-3V范围内连续可调。 四、预习计算 1.正弦波振荡电路 起振条件为|A|略大于3,刚起振时幅值较小,认为二极管还未导通,即R4+R W R2 +1略大于3,即R W略大于10kΩ时刚好起振,随着R W的增大,振幅会增大,当R W过大时波形会出现失真。 振荡频率由RC串并联选频网络决定,f0=1 2πR1C1 ≈106.1Hz 2.方波- 三角波发生电路 滞回比较器的阈值电压±U T=±R2 R1 U Z=±2.9V,测试滞回比较电路时将R2与运放A2的输出端断开,改接输入信号(三角波为宜)。 方波(u O1)的幅值为U Z=5.8V,三角波(u O2)的幅值为U T=2.9V。 U T=?1 4 (?U Z) T ?U T U T=R2 1 U Z 解得:T=4R2R4C R1 =0.4ms,即u O1和u O2的周期为0.4ms。 3.矩形波- 锯齿波发生电路 只需让电容充放电回路的时间常数不一样即可。电路原理图如下:

波形发生电路(自激振荡电路)

https://www.doczj.com/doc/431909316.html,/v_show/id_XNzQxNjQyNzY=.html 第八章波形发生电路(自激振荡电路) 8.1 正弦波发生电路原理 8.2 RC正弦波振荡电路 8.3 LC正弦波振荡器 8.4 石英晶体振荡器(简称晶振) 波形发生电路的基本类型有两种:正弦波发生电路与非正弦波发生电路。 §8.1 正弦波发生电路原理 正弦波发生电路通常称为正弦波振荡器。是模拟电子电路的一种重要形式。特点是不需要外加任何输入信号就能根据要求而输出特定频率的正弦波信号。这种特点称为“自激振荡”。 波形发生电路是非常典型的正反馈放大电路。 一、产生自激振荡的条件 假设图示电路中:先通过输入一个正弦波 信号,产生一个输出信号,此时,以极快的速度 使输出信号,通过反馈网络送到输入端,且使 反馈信号与原输入信号“一模一样”,同时切断原输入信号,由

于放大器本身不能识别此时的输入究竟来自信号源,还是来自本身的输出,既然切换前后的输入信号“一模一样”,放大器就一视同仁地给予放大,形成: 输出→反馈→输入→放大→输出→反馈→…… 这是一个循环往复的过程,放大器就构成了一个“自给自足”的自激振荡器。 上述假设指出:只有反馈到输入端的信号与原输入信号“一模一样”。才能产生自激振荡,“一模一样”就是自激振荡的条件——亦称平衡条件。 i U U =5 是正弦波,而描述正弦波的三要素是:振幅、 频率和相位。 i U U =5 振幅相等;相位相同(若相位总相同,则频 率和初相一定都相等) 因为自激振荡是一个正反馈放大器,故可用反馈的概念来描述振荡条件。 当 f i U U =时 u u i u u i f A F U U A F U U ===11

第六章波形产生与变换电路

第六章 波形的产生与变换电路 6.1基本要求 1.熟练掌握正弦波振荡器产生振荡的相位平衡条件和幅值平衡条件。 2.熟练掌握桥式、变压器反馈式、三点式振荡器的结构、相位条件的判别和振荡频率的计算。 3.熟悉桥式振荡器的幅值条件,了解其稳幅措施。 4.了解石英晶体振荡器的工作原理。 5.熟练掌握各种比较器的结构、工作原理及参数的计算。 6.熟悉集成运放组成的方波、三角波、锯齿波发生器的工作原理和输出波形。 6.2 解答示例及解题技巧 题6-3解:(a )不能产生正弦振荡。 此电路欲构成RC 桥式振荡器,桥式振荡器是由基本放大器和正反馈网络(同时具有选频功能)构成的。此电路中的运放与10k 、20k 电阻是基本放大器部分,应为负反馈放大器;RC 串并联网络是正反馈网络部分,应引正反馈(f =f 0时)至运放的同相输入端。但本电路中的放大器却构成了正反馈,而RC 串并联网络却引入了负反馈。所以不能产生正弦振荡。若将运放的反相输入端与同相输入端互换,便可以使基本放大器的相移ΦA =0o ,RC 串并联网络的相移ΦF =0(f =f 0时),从而满足振荡的相位条件ΦA +ΦF =0o 。 (b )不能产生正弦振荡。 此电路欲构成RC 移相式振荡器。它的移相网络作为反馈网络,同时具有选频功能。但此电路中放大器部分是共基极放大器,ΦA =0o ,移相网络的相移ΦF 在0o ~270o 之间变化,其中当ΦF =0o 时,对应频率趋近无穷大,这意味着当频率趋近无穷时,电路才能满足振荡的相位条件ΦA +ΦF =0o ,显然是不可能做到的,所以不能产生正弦振荡。须将移相网络的反馈连线由BJT 的发射极改至基极,构成共射放大器,这样可以使ΦA =180o ,而在有限的频率范围内又可以在某一频率上得到ΦF =180o ,使 ΦA +ΦF =360o ,满足振荡的相位条件。 (c )可以产生正弦振荡。 此电路构成了RC 桥式振荡器。其中的差放是基本放大器,RC 串并联网络是正反馈网络部分,由于ΦA =0o ,ΦF =0(f =f 0时),可以使ΦA +ΦF =0o ,所以能产生正弦振荡。 (d )不能产生正弦振荡。 此电路欲构成RC 移相式振荡器。但放大器部分的输入端接错了位置。应将2R 电阻与移相网络的连线断开,改接至移相网络的最后一级RC 之间。另将移相网络的电阻R 下端接地。这样才可以构成正确的振荡电路,在这个电路中,ΦA =180o ,ΦF =180o (某频率上),可以使ΦA +ΦF =360o ,满足振荡的相位条件。 题6-4 解:(1)此电路为RC 桥式振荡器,当电路振荡时,RC 串并联网络的反馈系数为 3 1 。

一种波形产生数字电路设计及仿真

一种波形产生数字电路设计及仿真 1设计原理 DDS 直接频率合成技术是一种直接从相位的角度合成所需波形的技术。此设计旨在设计一个模拟波形的产生电路,采用quartus ii 软件作为可编程逻辑设计环境,该软件有两种设计方式,原理图输入和采用HDL 语言输入,实现模拟波形的产生。数字电路设计包含组合逻辑电路和时序逻辑电路设计,其中组合逻辑电路的设计是设计的重点。因此需要对时钟有较强的理解。本设计可以采用Verilog HDL 硬件描述语言编写程序实现波形的产生,可以产生三种波形,正弦波,方波以及三角波。其中正弦波调用quartus 自带的IP 核,通过单端口的ROM 来查表获得查表数据,通过调用ip 可以实现设计要求。方波和三角波虽然也可以通过此方式,但是也可以通过编写计数器分频实验来实现设计,方波可以直接通过半个周期信号为低电平,半个周期为高电平。三角波通过将计数器的值先增加后减少获得。波形产生电路在电子设计中占据很重要的地方,有一定的研究价值。 2功能描述 (1)实现正弦波、三角波、方波的输出; (2)信号输出通过各个波形的使能信号来区分输出何种波形; (3)信号调节方式可控,这里由于是仿真故没编写按键扫描程序; FPGA 的设计流程如下: 系统框图如图所示: 3设计定义

4 HDL语言编写流程 设计代码包含设计时钟分频进程、三角波产生进程、方波产生进程和信号输出电路进程。其中每个进程通过过程语句always来通过敏感信号如时钟上升沿和异步复位信号时钟下降沿来采样。其中设计流程图如下图所示: 5设计代码 见附录 6验证及仿真 仿真的方式有功能仿真和时序仿真,要设计这么一款电路,首先需要通过功能仿真。工具有quartus ii自带的波形仿真文件和编写顶层设计的testbench 测试程序来进行仿真。其中可以设置仿真时间、仿真精度、以及信号的输入类型定义和数值,设置好这些数据就可以进行仿真,不过采用testbench仿真相对复杂一点,需要用到modelsim软件来仿真,优点是仿真时间和仿真精度可以更高,仿真波形也相对较美观。 一个最基本的Testbench包含三个部分,信号定义、模块接口和功能代码。编写Testbench的三个基本步骤: 1、对被测试设计的顶层接口进行例化; 2、给被测试设计的输入接口添加激励; 3、判断被测试设计的输出相应是否满足设计要求。

LM324的波形变换电路(DIY)

集成运放LM324的波形变换电路设计 一、设计目的 1、掌握LM324的应用 2、掌握三角波产生器、加法器、滤波器、比较器的设计 二、设计原理 1、原理:LM324内部包括有四个独立的、高增益、内部频率补偿的运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 2、LM324的特点: 1、内部频率补偿 2、直流电压增益高(约100dB) 3、单位增益频带宽(约1MHz) 4、电源电压范围宽:单电源(3—32V)、双电源(±1.5—±16V) 5、低功耗电流,适合于电池供电 6、低输入偏流、低输入失调电压和失调电流 7、共模输入电压范围宽,包括接地 8、差模输入电压范围宽,等于电源电压范围 9、输出电压摆幅大(0至VCC-1.5V) 3、LM324引脚图 4、LM324内部电路图

三、实验设备与器件 1、基本元件清单 LM324芯片、导线若干、铁丝、14脚插槽、二极管(IN4700A) 电阻: 680、1K 、2K 、3K 、10K 、47K 、20K 、30K 、100K 、1M 电位器 :2K 、10K 、20K 、50K 电容:0.3uF 、0.001uF 、0.1uF 、10uF 电路板 1块 2、实验仪器 直流电源、双踪示波器、数字万用表、信号发生器。 四、设计要求 使用一片通用四运放芯片 LM324组成电路框图见图1(a),实 现下述功能: 使用低频信号源产生)V (2sin 1.001t f u i π=,z f H 5000=的正弦波信号,加至加法器的输入端,加法器的另一输入端加入由自制振荡器产生的信号1o u ,1o u 如图1(b)所示,ms T 5.01=,允许1T 有±5%的误差。

方波产生和波形变换电路

XXXXXXXX学院 课程设计说明书 课程名称:电力电子技术 设计题目:方波产生和波形变换电路 班级:XXXXXXXXXXXXXXX 姓名:XXXX 学号:XXXXXXXXXXX 指导老师:XXXX 设计时间:XXXXXXXXXXXXX

摘要 波形发生器广泛地应用于各大院校和科研场所。随着科技的进步,社会的发展,单一的波形发生器已经不能满足人们的需求,而我们设计的正是多种波形发生器。本设计将介绍由集成运算放大器组成的方波-----三角波----正弦波函数发生器的设计方法,了解多功能集成电路函数信号发生器的功能及特点,进一步掌握波形参数的测试方法。制作这种低函数信号发生器成本较低,适合学生学习电子技术测量使用。制作时只需要个别的外部元件就能产生从1—10HZ,10—100HZ的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。其中比较器与积分电路和反馈网络(含有电容元器件)组成振荡器,其中比较器产生的方波通过积分电路变换成了三角波,电容的充,放电时间决定了三角波的频率。最后利用差分放大器传输特性曲线的非线性特点将三角波转换成正弦波。 电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。 NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。本设计就是利用Multisim软件进行电路图的绘制并进行仿真。 关键字:波形、比较器、积分器、Multisim

Abstract Waveform generator is widely used in universities and scientific research. With the progress of science and technology, the development of the society, a single waveform generator has can't satisfy people's needs, and our design is a variety of waveform generator. This design introduces the integrated operational amplifier composed of square wave -- -- -- -- -- the design method of the triangle wave, sine wave function generator, understand the multi-function integrated circuit functions and characteristics of function signal generator, further grasp the waveform parameter test methods. To make this kind of function signal generator with low cost, suitable for students learning electronic technology measure. Need only when making individual external components can produce from 1-10 hz, 10-100 hz low distortion of sine wave, triangular wave and square wave pulse signal. The output waveform frequency and duty ratio can also be controlled by current or resistance. The comparator and integral circuit and the feedback network (containing the capacitance component) oscillator, the comparator of square wave by integrating circuit transformation becomes a triangle wave, capacitance charging, discharge time determines the frequency of the triangular wave. Finally using the nonlinear characteristics of the differential amplifier transmission characteristic curve of converting triangular wave into sine wave. Voltage comparator for the square wave output, and connect the integrator by triangle wave, and see the sine wave by triangle wave, sine wave conversion circuit, achieve the desired signal. NI Multisim software combines intuitive capture and functional simulation, can quickly, easily and effectively carried out on the circuit design and verification. This design is to use Multisim software to draw and carry on the simulation of circuit diagram. Key words: waveform, comparator, integrator, Multisim

2013电子设计竞赛复试题波形发生器

波形发生器 徐威 (宁波大学信息科学与工程学院,浙江宁波315211) 摘要:使用题目指定的综合测试板上的NE555芯片和一片四运放LM324芯片制作一个频率可变的同时输出脉冲波、锯齿波、一次和三次正弦波。进行方案设计,制作出实际电路使其达到实验要求的各项指标。 一、设计任务与要求 使用题目指定的综合测试板上的NE555芯片和一片四运放LM324芯片,设计制作一个频率可变的同时输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ的波形产生电路。给出方案设计、详细电路图和现场自测数据及波形。 设计制作要求如下: 1、同时四通道输出、每通道输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ中的一种波形,每通道输出的负载电阻均为600欧姆。 2、四种波形的频率关系为1:1:1:3(3次谐波);脉冲波、锯齿波、正弦波Ⅰ输出频率范围为8KHz~10KHz,输出电压幅度峰峰值为1V;正弦波Ⅱ输出频率范围为24KHz~30KHz,输出电压幅度峰峰值为9V。脉冲波、锯齿波和正弦波输出波形应无明显失真(使用示波器测量时)。 频率误差不大于10%;通带内输出电压幅度峰峰值误差不大于5%。脉冲波占空比可调整。 3、电源只能选用+10V单电源,由稳压电源供给,不得使用额外电源。 4、要求预留脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ和电源的测试端子。 5、每通道输出的负载电阻600欧姆应标清楚、至于明显位置,便于检查。 6、翻译:NE555和LM324的数据手册(器件描述、特点、应用、绝对参数、电参数)。 二、方案设计与论证 1.原始方案: 在使用Multisim进行仿真设计的阶段,我想出了两种原始方案,两种方案的大体思路如下。

第7章波形发生电路习题及习题解答

7-1判断下面所述的正误 1. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。() 2. 电感三点式振荡器的输出波形比电容三点式振荡器的输出波形好。() 3. 反馈式振荡器只要满足振幅条件就可以振荡。 () 4. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。() 5. 放大器必须同时满足相位平衡条件和振幅条件才能产生自激振荡。() 6. 正弦振荡器必须输入正弦信号。 () 7. LC振荡器是靠负反馈来稳定振幅的。() 8. 正弦波振荡器中如果没有选频网络,就不能引起自激振荡。() 9. 反馈式正弦波振荡器是正反馈一个重要应用。 () — 10. LC正弦波振荡器的振荡频率由反馈网络决定。 () 11. 振荡器与放大器的主要区别之一是:放大器的输出信号与输入信号频率相同, 而振荡器一般不需要输入信号。 () 12. 若某电路满足相位条件(正反馈),则一定能产生正弦波振荡。() 13. 正弦波振荡器输出波形的振幅随着反馈系数F的增加而减小。()7-2并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率的相频特性 解:并联谐振回路在电流激励下,回路端电压V 的频率特性才会产生负斜率的相频特性,如图(a)所示。串联谐振回路在电压激励下,回路电流I 的频率特性才会产生负斜率的相频特性,如图(b)所示。 7-3电路如题7-3图所示,试求解:(1)R W的下限值;(2)振荡频率的调节范围。 ^ 题7-3图 解:(1) 根据起振条件

''2,2f W W R R R R k +>>Ω 故R w 的下限值为2k Ω。 (2) 振荡频率的最大值和最小值分别为 0max 11 1.62f kHz R C π= ≈, 0min 1211452()f Hz R R C π=≈+ 7-4 在题7-4图所示电路中,已知R 1=10k Ω,R 2=20k Ω,C = μF ,集成运放的最大输出电压幅 值为±12V ,二极管的动态电阻可忽略不计。(1)求出电路的振荡周期;(2)画出u O 和u C 的波形。 题7-6图 解7-6图 解:(1)振荡周期: 12()ln 3 3.3ms T R R C ≈+≈ (2)脉冲宽度:11ln 3 1.1T R C mS ≈≈ ) ∴u O 和u C 的波形如解7-6图所示。 7-5 试判断如图所示各RC 振荡电路中,哪些可能振荡,哪些不能振荡,并改正错误。图中, C B 、C C 、C E 、C S 对交流呈短路。

实验七:波形发生电路

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第七次实验 实验名称:波形发生电路 院(系):信息科学与工程学院专业:信息工程姓名:学号: 实验室: 实验组别: 同组人员:实验时间:2013/5/17 评定成绩:审阅教师:

实验七 波形发生电路 一、实验目的 1、 掌握正弦信号和非正弦信号产生的基本原理和基本分析方法,电路参数的计算方法,各 参数对电路性能的影响。 2、 了解各种波形之间变换方法,重点是正弦波、方波、三角波之间的变换。 3、 掌握多级电路的安装调试技巧,掌握常用的频率测量方法。 二、设计原理 1、 正弦波信号发生电路分析计算(图8-1): (I) 放大器为同相放大器,其增益为 1F f R R + (II) 对于RC 串并联电路 1// 1111()(//)3()o R V j C V R R j RC j C j C RC ωωωωω+==+++- (III) 为了保证正反馈,该RC 串并联网络在振荡频率f 0时的相移必须为0,即上式中分 母的虚部系数在f 0时为0,即RC f RC f 00212ππ= ,由此推出RC f π21 0= (IV) 由于振荡频率f 0时 3 1 =+V V O ,所以为了保证满足环路增益大于1的起振条件,放大器的增益必须略大于3,即 F f R R 略大于2,当振荡器稳定是环路增益为1,放大器的增益为3, 2F f R R = 2、 矩形波信号发生电路分析计算(图8-4,R D1、R D2是二极管D1、D2的导通电阻): (I) 当U 0为正值的时候,二极管D1导通,D2截止,电容C 充电的时间常数为: 1111()W D R R R C τ=++

相关主题
文本预览
相关文档 最新文档