当前位置:文档之家› 考虑如下线性规划问题

考虑如下线性规划问题

考虑如下线性规划问题
考虑如下线性规划问题

考虑如下线性规划问题:

Min z=60 x1+40 x2 +80 x3

s.t. 3 x1 +2 x2 + x3 2

4x1 +x2 +3x3 4

2x1 +2x2 +2x3 3

x1 , x2 , x3 0 要求:(1)写出其对偶问题;

(2)用对偶单纯形法求解原问题;

(3)用单纯形法求解其对偶问题;

(4)对比(2)与(3)中每步计算得到的结果。解:(1)设对应于上述约束条件的对偶变量分别为y1,y2, y3 ;则由原问题和对偶问题,可以直接写出对偶问题为:

Max Z'=2 y1+4 y2+3 y3

s.t 3y1+4 y2+2 y3 60

2y1+y2+2 y3 40

y1 +3y2 +2 y3 80

y1,y2,y3 0

(2)用对偶单纯形法求解原问题(添加松弛变量x4 ,x5 , x6 )MaxZ= -60 x1 -40x2-80x3 +0x4 +0x5 +0x6

s.t -3x1 -2x2- x3+ x4 =-2 -4x1-x2-3x3+x5=-4

-2 x1-2 x2-2 x3+x6=-3

X i, X2 , X3 0

建立此问题的初始单纯形表,可见:

从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。

换出变量的确定,计算min (-2,-4, -3)=-4,故x为换出变量。换入变量的确定,计算得15,40, 80/3,故x i为换入变量。

由表可知,X6为换出变量。X2为换入变量。然后继续画单纯形表:

X i, X2 , X3 0

可得X4为换出变量,X3为换入变量。继续做单纯形表:

所以此问题的最优解为X= (11/10,19/30, 1/10),此对偶问题的最优解为Y二(16,12,30),原问题的最小值为118/3.

(3)MaxZ '2 y1+4 y2 +3 y +0 y +0 * +0 y

S.t 3 y1+4 y2+2 y3+ y4=60

2 y1 + y2 +2 y

3 + y =40

y1 +3y2+2 出 + y6=80

y1, y2, y3, y4, y5, y6 0

然后建立单纯形表,可得

由此可知,y4为换出变量,y2为换入变量。继续画单纯形表,

由此可知,y5为换出变量,y3为换入变量。继续画单纯形表,

由此可得最后一行的检验数都已经为负或是零,这表示目标函数值已不可能再增大,于是得到最优解为

Y(0,20 /3,50/3, 0,0,80/3)

目标函数值为230/3

(4)比较第二问和第三问,主要是换出变量和换入变量的关系:

第(2)问里,X5为换出变量,X i为换入变量;X6为换出变量。X2为换入变量;X4为换出变量,X3为换入变量!

第(3)问里,纸为换出变量,牡为换入变量;y为换出变量, 换入变量!

简单的线性规划第一课时习题(有答案)

第三章不等式 3.3 二元一次不等式(组)与简单的线性规划 3.3.2简单的线性规划 测试题 知识点一:简单的线性规划 1.(2013·XX 高考)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值是() A .-6 B .-2 C .0 D .2 2.目标函数z =2x -y ,将其看成直线方程时,z 的意义是() A .该直线在坐标轴上的距离 B .该直线在y 轴上的截距 C .该直线在y 轴上的截距的相反数 D .该直线在x 轴上的截距 3.(2013·高考)设D 为不等式组??? x ≥0, 2x -y ≤0, x +y -3≤0, 表示的平面区域,区域D 上的点与点(1,0) 之间的距离的最小值为________. 4.已知变量x 、y 满足约束条件??? y ≤x x +y ≥2 y ≥3x -6 ,求目标函数z =2x +y 的最大值. 5.图3-5-3中阴影部分的点满足不等式组??? x +y ≤5, 2x +y ≤6, x ≥0,y ≥0, 在这些点中,使目标函数 z =6x +8y 取得最大值的点的坐标是()

图3-5-3 A .(0,5) B .(1,4) C .(2,4) D .(1,5) 6.(2013·XX 高考)若变量x ,y 满足约束条件??? y ≤2x , x +y ≤1, y ≥-1, 则x +2y 的最大值是() A .-5 2 B .0 C.5 3 D.52 7.(2014·荆州高二检测)点P (2,t )在不等式组??? x -y -4≤0, x +y -3≤0表示的平面区域内,则点 P (2,t )到直线3x +4y +10=0距离的最大值为() A .2 B .4 C .6 D .8 8.已知x ,y 满足约束条件??? x -2≤0, y -1≤0, x +2y -2≥0, 则z =x -y 的取值X 围为() A .[-2,-1] B .[-2,1] C .[-1,2] D .[1,2] 9.某厂拟用集装箱托运甲,乙两种货物,集装箱的体积、质量、可获利润和托运能力限制等数据列在下表中,那么为了获得最大利润,甲、乙两种货物应各被托运的箱数为() 货物 体积/箱(m 3) 质量/箱(50 kg) 利润/箱(百元) 甲 5 2 20 乙 4 5 10

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 . 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则 1 由原问题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

1x ,2x ,3x ≥0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b 列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4,-3)=-4,故5x 为换出变量。 换入变量的确定,计算得15,40,80/3,故1x 为换入变量。

由表可知,6x 为换出变量。2x 为换入变量。然后继续画单纯形表: 可得4x 为换出变量,3x 为换入变量。继续做单纯形表:

所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ ’=21y +42y +33y +04y +05y +06y 31y +42y +23y +4y =60 21y +2 y +23y +5y =40 1y +32y +23y +6y =80 1y ,2y ,3y ,4y ,5y ,6y ≥0 然后建立单纯形表,可得 i

考虑如下线性规划问题

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 s.t. 3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则由原问 1 题和对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 s.t 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 s.t -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

x,2x,3x≥0 1 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min(-2,-4,-3)=-4,故 x为换出变量。 5 换入变量的确定,计算得15,40,80/3,故 x为换入变量。 1 由表可知, x为换出变量。2x为换入变量。然后继续画单纯形表: 6

可得 x为换出变量,3x为换入变量。继续做单纯形表: 4 所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3. (3)MaxZ’=2 y+42y+33y+04y+05y+06y 1 s.t 3 y+42y+23y+4y=60 1 2 y+2y+23y+5y=40 1 y+32y+23y+6y=80 1 y,2y,3y,4y,5y,6y≥0 1 然后建立单纯形表,可得

人教新课标版数学高二必修五练习3.3.1简单线性规划(第一课时)

1.已知点(-1,2)和(3,-3)在直线3x +y -a =0的两侧,则a 的取值范围是( ) A .(-1,6) B .(-6,1) C .(-∞,-1)∪(6,+∞) D .(-∞,-6)∪(1,+∞) 解析:依题意得[3×(-1)+2-a ]·(3×3-3-a )<0, 即(a +1)(a -6)<0.∴-10等价于不等式组(Ⅰ)????? x -y >0,x +2y -2>0或不等式组 (Ⅱ)????? x -y <0, x +2y -2<0. 分别画出不等式组(Ⅰ)和(Ⅱ)所表示的平面区域,再求并集. 答案:B 3.表示图中阴影部分的二元一次不等式组是( )

A.???? ? 2x +y -2≤0,x +1≥0,-2≤y ≤0 B.???? ? 2x +y -2≤0,x ≥-1,y ≤0 C.???? ? 2x -y -2≤0,x -1≥0,-2≤y ≤0 D.???? ? 2x -y -2≤0,x +1≥0,-2≤y ≤0 解析:可求得边界方程分别是x =-1,y =-2,2x +y -2=0和y =0将阴影内的点(-1,-1)代入检验知,选A. 答案:A 4.(2012·山东实验中学检测)完成一项装修工程,木工和瓦工的比例为2∶3,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工资预算2 000元,设木工x 人,瓦工y 人,请工人数的限制条件是( ) A.? ???? 2x +3y ≤5x 、y ∈N + B.???? ? 50x +40y ≤2 000x y =23 C.????? 5x +4y ≤200 x y =23x 、y ∈N + D.????? 5x +6y <100x y =23 解析:排除法:∵x 、y ∈N +,排除B 、D.又∵x 与y 的比例为2∶3,∴排除A. 答案:C 5.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是________. 解析:对于直线x -2y +4=0,令x =-2,则y =1,则点(-2,1)在直线x -2y +4=0上.又点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是t >1. 答案:(1,+∞) 6.(2012·南京高二模拟)不等式组????? x -y +4≥0,x +y ≥0, x ≤3所表示的平面区域的面积是 ________. 解析:不等式组??? x -y +4≥0, x +y ≥0, x ≤3 所表示的平面区域为三条直线所围成的三角形区域

《运筹学》习题线性规划部分练习题及答案

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2.线性规划问题的一般形式有何特征? 3.建立一个实际问题的数学模型一般要几步? 4.两个变量的线性规划问题的图解法的一般步骤是什么? 5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7.试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8.试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1.线性规划问题的最优解一定在可行域的顶点达到。 2.线性规划的可行解集是凸集。 3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5.线性规划问题的每一个基本解对应可行域的一个顶点。 6.如果一个线性规划问题有可行解,那么它必有最优解。 7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都 可以被选作换入变量。 8.单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9.单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目标函数值得到最快的减少。 10.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

《简单的线性规划问题》(第一课时)教学设计

《简单的线性规划问题》(第一课时)教学设计 一、内容与内容解析 本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法. 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想. 本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解. 二、目标和目标解析 (一)教学目标 1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念. 2. 会用图解法求线性目标函数的最大值、最小值. 3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想. 4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识. (二)教学目标解析 1. 了解线性规划模型的特征:一组决策变量(,) x y表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

线性规划习题

第一章 线性规划习题 1. 将下列线性规划问题变换成标准型,并列出初始单纯形表。 1) min Z =-3x 1+4x 2-2x 3+5x 4 s.t.???????≥≥+-+-≤-++-=-+-. ,0,,22321432244321432143214321无约束x x x x x x x x x x x x x x x x 2) max S =z x /p k s.t.???? ????? ==≥=-=-=∑∑∑===).,...,2,1;,...,2,1(0),,...,2,1(1, 1 11 m k n i x n i x x a z ik m k ik n i m k ik ik k 2. 分别用单纯法中的大M 法和两阶段法求解下述线性规划问题: min Z =2x 1+3x 2+x 3 s.t.??? ??≥≥+≥++.0,,,623,8243 212 1321x x x x x x x x 并指出该问题的解属哪一类解。 3. 【表1-6】是某求极大化线性规划问题计算得到单纯形表。表中无人工变量, a 1, a 2, a 3, d , c 1, c 2为待定常数。试说明这些常数分别取何值时,以下结论成立。 1) 表中解为唯一最优解; 2) 表中解为最优解,但存在无穷多最优解; 3) 该线性规划问题具有无界解; 4) 表中解非最优,为对解进行改进,换入变量为x 1,换出变量为x 6。 表1-6 4. 某饲料厂用原料A 、B 、C 加工成三种不同牌号的饲料甲、乙、丙。已知各 种牌号饲料中A 、B 、C 含量,原料成本,各种原料的每月限制用量,三种牌号的饲料的单位加工费及售价如【表1-7】所示。 表1-7

最新单纯形法解线性规划问题

一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题 s.t. 解:1)、将该线性问题转为标准线性问题 一、第一阶段求解初始可行点 2)、引入人工变量修改约束集合 取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。 2 -2 -1 1 2 1 1 -1 -1 1 2 -1 -2 1 2 5 -2 -4 1 -1 1 5 0 0 0 0 0 3)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。 2 -2 -1 1 2 1 1 1 -1 -1 1 0 2 -1 -2 1 2 0 5 -2 -4 1 -1 1 5 1 0 0 0 0 0 0 1 0 0 0 4)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。同时将以改变的决策变量转换为状态变量。增加的值使目标函数值更小。 1 -3 1 1 1 0 1 1 -1 1

1 -3 1 1 1 0 0 0 0 0 0 0 0 5)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为, 二、第二阶段用单纯形法求解最优解 -2 2 1 0 1 1 -1 0 -2 1 2 1 5 1 3 要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。

2、求解问题 s.t. 如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最 大值变达成c的函数。 解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。 1)将问题华为标准线性问题 s.t. 2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解 10 -1 -1 -1 10 -20 1 5 1 -20 -2 -1 -1 0 0 0 0 要使目标函数继续减小,可以增大,增大的限值是10。 10 -1 -1 -1 10 0 -20 1 5 1 -20 -10 -2 -1 -1 0 -20 0 0 0 10 0 0 3)转轴。将为零的松弛变量和决策变量交换进行转轴 10 -1 -1 -1 10 -10 4 0 -1 -10 0 -20 1 1 2 -20

高中数学:《简单的线性规划问题》(第一课时)说课稿

高中数学:《简单的线性规划问题》(第一课时)说课稿 一、内容与内容解析 本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法. 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想. 本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解. 二、目标和目标解析 (一)教学目标 1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念. 2. 会用图解法求线性目标函数的最大值、最小值. 3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想. 4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识. (二)教学目标解析 1. 了解线性规划模型的特征:一组决策变量(,) x y表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系. 2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.

线性规划单纯形法(例题)

《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》 ? ? ??≥=+ +=+++++=?? ? ??≥≤+≤++=0 ,,,24 261553).(002max ,,0,24 261553).(2max 14.1843214213 214 321432121212 1x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【为初始基变量, 选择43,x x )1000(00)0010(01 )2050(12)6030(24321=?+?-==?+?-==?+?-==?+?-=σσσσ 为出基变量。为进基变量,所以选择41x x

3 /1)6/122/10(00 )0210(03 /1)3/1240(10)1200(24321-=?+-?-= =?+?-==?+?-==?+?-=σσσσ 为出基变量。 为进基变量,所以选择32x x 24 /724/528/11012/112/124/1100 021110 120124321-=?+-?-=-=-?+?-==?+?-==?+?-=)()()()(σσσσ 4 33 4341522max , )4 3,415(),(2112= +?=+===x x z x x X T T 故有:所以,最优解为

??? ??? ?≥=+ +=+=+ ++++=?????? ?≥≤+≤≤+=0,,,,18232424).(0002max ,,,0 ,182312212 ).(52max 24.185432152142315 43215432121212 1x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。分别用图解法和单纯形)】 (页【 )000010(00001000000000100520200052300010254321=?+?+?-==?+?+?-==?+?+?-==?+?+?-==?+?+?-=σσσσσ)()()()( 为出基变量。为进基变量,所以选择42x x

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x1+40 x2 +80 x3 s.t. 3 x1 +2 x2 + x3 2 4x1 +x2 +3x3 4 2x1 +2x2 +2x3 3 x1 , x2 , x3 0 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。解:(1)设对应于上述约束条件的对偶变量分别为y1,y2, y3 ;则由原问题和对偶问题,可以直接写出对偶问题为: Max Z'=2 y1+4 y2+3 y3 s.t 3y1+4 y2+2 y3 60 2y1+y2+2 y3 40 y1 +3y2 +2 y3 80 y1,y2,y3 0 (2)用对偶单纯形法求解原问题(添加松弛变量x4 ,x5 , x6 )MaxZ= -60 x1 -40x2-80x3 +0x4 +0x5 +0x6 s.t -3x1 -2x2- x3+ x4 =-2 -4x1-x2-3x3+x5=-4 -2 x1-2 x2-2 x3+x6=-3

X i, X2 , X3 0 建立此问题的初始单纯形表,可见: 从表中可以看到,检验数行对应的对偶问题的解是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min (-2,-4, -3)=-4,故x为换出变量。换入变量的确定,计算得15,40, 80/3,故x i为换入变量。 由表可知,X6为换出变量。X2为换入变量。然后继续画单纯形表:

X i, X2 , X3 0

可得X4为换出变量,X3为换入变量。继续做单纯形表: 所以此问题的最优解为X= (11/10,19/30, 1/10),此对偶问题的最优解为Y二(16,12,30),原问题的最小值为118/3. (3)MaxZ '2 y1+4 y2 +3 y +0 y +0 * +0 y S.t 3 y1+4 y2+2 y3+ y4=60 2 y1 + y2 +2 y 3 + y =40 y1 +3y2+2 出 + y6=80 y1, y2, y3, y4, y5, y6 0 然后建立单纯形表,可得

人教课标版高中数学必修5《简单的线性规划问题》第一课时参考学案

§3.3.2 简单的线性规划问题(1) 学习目标 ①巩固二元一次不等式和二元一次不等式组所表示的平面区域; ②能根据实际问题中的已知条件,找出约束条件. 学习过程 一、课前准备 阅读课本P 87至P 88 的探究 找出目标函数,线性目标函数,线性规划,可行解,可行域的定义. 二、新课导学 ※学习探究 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,如:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件: 设甲、乙两种产品分别生产x、y件,由已知条件可得二元一次不等式组:(2)画出不等式组所表示的平面区域: 注意:在平面区域内的必须是整数点. (3)提出新问题: 进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种

生产安排利润最大? (4)尝试解答: (5)获得结果: 新知:线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数. ③线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(,) x y叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. ※典型例题 例1 在探究中若生产一件甲产品获利3万元,生产一件乙产品获利2万元,问如何安排生产才能获得最大利润? ※动手试试

高二数学 7.4简单的线性规划(第一课时)大纲人教版必修

高二数学 7.4简单的线性规划(第一课时)大纲 人教版必修 7、4 简单的线性规划课时安排3课时从容说课本节将要学习线性规划的初步知识,它是直线方程的一个直接应用、主要包括用二元一次不等式表示平面区域和简单的线性规划问题两大部分、通过对本节的学习,首先要学会用二元一次不等式表示平面区域,在“二元一次不等式表示平面区域”中,是使用点集的观点来分析直线,并提出点的集合{(x,y)|x+y-1>0}表示什么图形的问题,即用集合的观点和语言来分析和描述几何图形的问题、其次,还须了解线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念、另外,还要了解解决线性规划问题的常用方法之一图解法,并能应用线性规划的方法解决一些简单的实际问题,以提高解决实际问题的能力、●课题 7、4、1 简单的线性规划 (一)●教学目标 (一)教学知识点二元一次不等式表示平面区域、 (二)能力训练要求会用二元一次不等式表示平面区域、 (三)德育渗透目标

1、渗透数形结合思想、 2、培养学生应用意识、●教学重点二元一次不等式表示平面区域、●教学难点准确画出二元一次不等式(或不等式组)所表示的平面区域、●教学方法讨论法结合前面所学的以二元一次方程的解为坐标的点的集合是一条直线,提出以二元一次不等式的解为坐标的点的集合是什么图形呢?从而展开师生讨论,让学生加深对二元一次不等式表示平面区域的理解、●教具准备投影片四张第一张:记作 7、4、1 A内容:课本P59图7—22第二张:记作 7、4、1 B内容:课本P60练习 1、(1) (2)(3)(4)第三张:记作 7、4、1 C内容:课本P602、画出不等式组表示的平面区域、(1) 第四张:记作 7、4、1 D(2)●教学过程Ⅰ、课题导入通过前几节的学习,我们知道,在平面直角坐标系中,以二元一次方程x+y-1=0的解为坐标的点的集合{(x,y)|x+y-1=0}是经过点(0,1)和(1,0)的一条直线l,那么,以二元一次不等式(即含有两个未知数,且未知数最高次数都是1的不等式)的解为坐标的点的集合{(x,y)|x-y-1>0}是什么图形呢?Ⅱ、讲授新课[师]在平面直角坐标系中,所有的点被直线x+y-1=0分成三类:(1)在直线x+y-1=0上;(2)在直线x+y-1=0的左下方的平面区域内;

运筹学--线性规划问题最优解的确定与改进

线性规划问题最优解的确定与改进 线性规划是运筹学的一个重要分支。自1947年丹捷格(G.B.Dantzig )提出了一般线性规划问题求解的方法——单纯形法之后,线性规划在理论上趋向成熟,在实用中日益广泛与深入。线性规划最优解求解问题,在《运筹学》本科版给出了图解法和单纯形法。 一般线性规划问题的标准型为: 1 max (14)n j j i z c x ==-∑ 1,1,2(15)0,1,2,(16) n i j j i j j a x b i m x j n ===-≥=-?∑???? 满足约束条件(1-5)式、(1-6)式的解12(,,,)T n X x x x = ,称为线性规划问题的可行解,其中使目标函数达到最大值的可行解称为最优解。 2009年中国科教创新导刊,第三十期李高秀写的《线性规划中最优解的准确确定》中详细介绍了图解法的过程,图解法适合于二元线性规划问题,对于多元线性规划问题图解法相对较难。 图解法过程: 1 线性目标函数最值的分析 对于线性目标函数Z=ax+by ,若b ≠0时,目标函数可变为a z y x b b =-+,则是直线a z y x b b =-+在y 轴上的截距。 (1)b>0时,随着直线a z y x b b =-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的截距 z b 最大时z 最大;当z b 最小时z 最小。 (2)b<0时,随着直线a z y x b b =-+的平移,直线在与可行域有公共点的条件下,它在y 轴上的 截距z b 最大时z 最小;当z b 最小时z 最大。 由以上两点可知,要求线性目标函数z=ax+by 的最大最小值要注意y 的系数b 的正负和平移直线在y 轴上的截距。 2 在图上分别作出约束函数和目标函数,平移目标函数线到可行域的交点时,要把目标函数的斜率与相交于这一点的直线的斜率进行比较 上述的最值分析是确定平移目标函数的大概方向,而这次是确定最优解的确凿位置。斜率比较大

示范教案一(74简单的线性规划)第一课时

课题:7.4简单的线性规划(一) 教学目的: 1 ?使学生了解二元一次不等式表示平面区域; 2?了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念; 3?了解线性规划问题的图解法,并能应用它解决一些简单的实际问题- 4 ?培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力- 5.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新- 教学重点:二元一次不等式表示平面区域. 教学难点:把实际问题转化为线性规划问题,并给出解答. 授课类型:新授课- 课时安排:1课时- 教具:多媒体、实物投影仪- 一、复习引入: 通过前几节的学习,我们知道,在平面直角坐标系中,以二元一次方程 x y 1 0的解为坐标的点的集合{(x,y)| x y 1 0}是经过点(0, 1)和(1, 0)的一条直线I,那么,以二元一次不等式(即含有两个未知数,且未知数最高次数都是 1的不等式)的解为坐标的点的集合{(x,y)I x y 1 0}是什么图形呢? 二、讲解新课: 在平面直角坐标系中,所有的点被直线x y 1 0分成三类: (1)在直线x y 1 0 上; (2)在直线x y 1 0的左下方的平面区域内; (3)在直线x y 1 0的右上方的平面区域内 即:对于任意一个点(x, y),把它的坐标代入x y 1,可得到一个实数, 或等于0,或大于0,或小于0.若x+y-1=0,则点(x,y)在直线I上. 我们猜想:对直线I右上方的点(x, y), x y 1 0成立;

对直线I左下方的点(x,y), x y 1v 0成立. 我们的猜想是否正确呢?下面我们来讨论一下 不妨,在直线x y 1=0上任取一点P(x0, y0),过点P作平行于x轴的直线 y=y。,在此直线上点P右侧的任意一点(x, y),都有 x > X。, y = y o,所以,x+y> X o + y°, x y 1 > X o + y o-i=o, 即x y 1> 0. 再过点P作平行于y轴的直线x=x o,在此直线上点P上侧的任意一点(x, y), 都有x=x°,y> y°.所以,x+y > X o+y°, x y 1> x°+ y o-1=O, 即x y 1 > 0. 因为点P (x0, y0)是直线x y 1 =0上的任意点,所以对于直线 x y 1=0右上方的任意点(x,y), x y 1 > 0都成立. 同理,对于直线x y 1 =0左下方的任意点 (x, y), x y 1 v 0 都成立. 如图所示: 所以,在平面直角坐标系中,以二元一次不等式 x y 1 > 0的解为坐标的点的集合{(x, y )| x y 1 > 0}是在直线x y 1 =0右上方的平面区 域-如图所示: 那么,在平面直角坐标系中,以二元一次不 等式x y 1 v 0的解为坐标的点的集合 {(x, y)| x y 1 v 0}是在直线x y 1 =0 左 下方的平面区域. 总之,二元一次不等式Ax+By+C> 0在平面直 角坐标系中表示直线Ax+By+C=0某一侧所有点组x ty-1=0

线性规划与单纯形法

第1章 线性规划与单纯形法 1、用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。 ??? ??≥≥+≥++=0 x x 42x 4x 66x 4x 3x 2x minz )a (21 21212 1, ?? ? ??≥≥+≤++=0 x ,x 124x 3x 2 x 2x 2x 3x maxz )b (2121212 1 ?? ???≤≤≤≤≤++=8x 310x 5120 10x 6x x x maxz )c (21 212 1 ?? ? ??≥≤+-≥-+=0 x ,x 23x 2x 2x 2x 6x 5x maxz )d (2121212 1 2、用单纯形法求解下列线性规划问题。 ?????≥ ≤+≤++=0 x ,x 82x 5x 94x 3x 5x 10x maxz )a (21 2 121 2 1 ????? ? ? ≥ ≤+≤+≤+=0 x ,x 5x x 242x 6x 155x x 2x maxz )b (2 1 212 122 1 3、用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。 ??? ?? ??≥≥-≥+-≥+++-=0 x x x 0 x 2x 2x 2x 6 x x x 2x x 2x maxz )a (3 , 2,132 3 13213 21 ??? ??≥≥+≥++++=0 x , x ,x 6 2x 3x 82x 4x x x 3x 2x minz )b (3 21 2 1 3 21 3 21 4、已知线性规划问题的初始单纯形表(如表1所示)和用单纯形法迭代后得到的表(如表2所示)如下,试求括弧中未知数a ~l 的值。 表1

考虑如下线性规划问题

考虑如下线性规划问题: Min z=60 x+402x+803x 1 s、t、3 x+22x+3x≥2 1 4 x+2x+33x≥4 1 2 x+22x+23x≥3 1 x,2x,3x≥0 1 要求:(1)写出其对偶问题; (2)用对偶单纯形法求解原问题; (3)用单纯形法求解其对偶问题; (4)对比(2)与(3)中每步计算得到的结果。 解:(1)设对应于上述约束条件的对偶变量分别为 y,2y,3y;则由原问题 1 与对偶问题,可以直接写出对偶问题为: Max Z’=2 y+42y+33y 1 s、t 3 y+42y+23y≤60 1 2 y+2y+23y≤40 1 y+32y+23y≤80 1 y,2y,3y≥0 1 (2)用对偶单纯形法求解原问题(添加松弛变量 x,5x,6x) 4 MaxZ= -60 x-402x-803x+04x+05x+06x 1 s、t -3 x-22x-3x+4x=-2 1 -4 x-2x-33x+5x=-4 1 -2 x-22x-23x+6x=-3 1

x,2x,3x≥0 1 建立此问题的初始单纯形表,可见: 从表中可以瞧到,检验数行对应的对偶问题的解就是可行解。因b列数字为负,故需进行迭代运算。 换出变量的确定,计算min(-2,-4,-3)=-4,故 x为换出变量。 5 换入变量的确定,计算得15,40,80/3,故 x为换入变量。 1 由表可知, x为换出变量。2x为换入变量。然后继续画单纯形表: 6

可得 x为换出变量,3x为换入变量。继续做单纯形表: 4 所以此问题的最优解为X=(11/10,19/30,1/10),此对偶问题的最优解为Y=(16,12,30),原问题的最小值为118/3、 (3)MaxZ’=2 y+42y+33y+04y+05y+06y 1 s、t 3 y+42y+23y+4y=60 1 2 y+2y+23y+5y=40 1 y+32y+23y+6y=80 1 y,2y,3y,4y,5y,6y≥0 1 然后建立单纯形表,可得

高中数学必修五学案 简单的线性规划问题(第一课时)

学习目标: 1. 了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念; 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2 经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;通过解题 提高自己观察、联想以及作图的能力和解决实际问题的能力。 学习重点:用图解法解决简单的线性规划问题 学习难点:准确求得线性规划问题的最优解 (一)复习回顾 1、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项? 2、“直线定界、特殊点定域”方法的内涵。 3、问题:在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。解 决这些问题常常要考虑:一是给定一定数量的人力、物力资源,问怎样运用这些资源,能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样安排,能使完成这项任务耗费的人力、物力资源最小,这类问题就是数学中的线性规划问题。 (二)合作探究(25分钟完成,师生共同解答问题,归纳方法概念) 阅读课本P87---88页,解答下列问题 例1:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A 配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么? 解:(1)用不等式组表示问题中的限制条件: 设甲、乙两种产品分别生产x、y件,又已知条件可得二元一次不等式组: (A)(1)(2)(2)画出不等式组(A)所表示的平面区域:如图(1)

(3)提出新问题: 若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大? (4)尝试解答: 设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z= ,这样,上述问题就转化为:当x,y满足不等式(A)并且为非负整数时,z的最大值是多少? 直接解z=2x+3y不好解,变形为 2 33 z y x =-+,这是斜率为,在y轴上的截距 为的直线。求Z的最大值的问题就转化求直线 2 33 z y x =-+的截距 3 z 的最大值问题, 我们只要作出直线的图像,分析截距就可以了。 当Z变化时,可以得到一族互相平行的直线,由于这些直线的斜率是确定的,一般作Z=0的直线,作该直线的平行线就可以得到所有的直线如图(2),根据图像就可以找出斜率最大的直线解答问题。 课时小结: 1、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条 件都是关于x、y的一次不等式,故又称线性. ②线性目标函数: 关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性. ③线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为 ④可行解、可行域和最优解: 满足线性约束条件的解(x,y)叫.由所有可行解组成的集合叫做.使目标函数取得最大或最小值的可行解叫线性规划问题的. 2、用图解法解决简单的线性规划问题的基本步骤:

相关主题
文本预览
相关文档 最新文档